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Abstract: Non-destructive estimation of the constituent properties of fruits and vegetables has
led to a dramatic change in the agriculture and food industry, allowing accurate and efficient
sorting of the products based on their internal properties. Therefore, the present study utilized
visible (VIS) and near-infrared (NIR) spectroscopy data in the range from 200 to 1100 nm for
the estimation of several properties of Red Delicious apples, namely Brix minus acid (BrimA),
firmness, acidity and starch content, using a hybrid of Artificial Neural Networks and Artificial
Bee Colony (ANN–ABC) algorithm. Furthermore, the hybrid Artificial Neural Network–Particle
Swarm Optimization (ANN–PSO) algorithm was utilized to select the most effective properties to
estimate these characteristics. The results indicated that there are different peaks within this spectral
range, and the spectral range for each peak gives different results. To ensure the stability of the
proposed method, 1000 replications were performed for each estimate. The highest coefficients of
determination, R2, for estimating the studied properties among the 1000 replicates were 0.898 for
BrimA, 0.8 for firmness, 0.825 for acidity and 0.973 for starch content. The selection of the most
effective wavelengths for estimating the properties produced five effective wavelengths for BrimA,
nine for firmness, seven for acidity and five for starch content. In this case, the best R2 of the hybrid
ANN–ABC among the 1000 iterations were 0.828, 0.738, 0.9 and 0.923, respectively.

Keywords: non-destructive estimation; internal fruit properties; hybrid neural networks; artificial
bee colony algorithm; particle swarm optimization algorithm; sorting

1. Introduction

The importance of fruit sorting and grading is increasing in the agro-industry and global economy.
The classification of fruits based on their internal and external qualitative features enables intelligent
management at the different stages of fruit distribution and processing [1]. The appearance, color, size
and absence of defects on fruits are some of the most important qualitative characteristics based on
external fruit properties [2]. On the other hand, the most important internal or constituent properties,
which attract buyers, include Soluble Solids Content (SSC), Titratable Acidity (TA) and the ratio of
Soluble Solids Content to Titratable Acidity [3–6].
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Conventional methods for measuring internal properties of fruits are a kind of destructive method,
since the fruits are destroyed in the process. In the last decade, however, non-destructive methods have
received more interest due to permitting individual measurement and analysis of fruits, reducing waste
and allowing repeated measurements at the same conditions for different times [7]. Some of these
non-destructive methods include near-infrared spectroscopy (NIRS) [7–11], mid-infrared spectroscopy
(MIRS) [10,12], hyperspectral imaging (HSI) [10,13], ultraviolet–visible spectroscopy (UV–vis) [14],
Raman spectroscopy [10] and the Proton Transfer Reaction Mass spectrometry (PTR–MS) [15,16].
Among these non-destructive methods, NIRS is the most widely used for quality control in food and
agricultural industries [7,17].

For example, in the work by Moscetti et al. [18], hailstorm damage was detected on olive using
NIRS. For this purpose, 744 olives were used and the spectrums in the range from 1100 to 2300 nm were
obtained with a Luminar 5030 Acousto-Optic Tunable Filter Near-Infrared (AOTF–NIR) Miniature
“Hand-held” Analyzer (Brimrose Corp., Baltimore, MD, USA). A genetic algorithm was used for
selecting the input properties for three classifiers: Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA) and k-nearest neighbor (KNN). The wavelengths selected by the genetic
algorithm were 1320, 1460, 1650, 1920, 2080, 2200 and 2220 nm. The determination of the fruit ripening
degree is another application of the spectroscopy method. In this regard, Neto et al. [19] conducted
a study to determine the ripening stage of mango fruits using electrical impedance spectroscopy.
This technique is based on changes in the bulk resistance depending on fruit ripening due to the changes
in the fluid content of fruit fibers. The results indicated a strong correlation between mechanical
measurements and electrical parameters. Therefore, it is possible to measure the degree of fruit ripening
using this non-destructive method.

Another interesting application is the non-destructive estimation of the constituent properties of
the fruits. Bizzani et al. [20] developed a method to estimate the firmness, skin thickness and total
pectin content. They used Partial Least Square Regression (PLSR) models of data of Time Domain
Nuclear Magnetic Resonance (TD–NMR) spectroscopy, NIRS and MIRS to predict these properties in
fresh Valencia oranges. The results indicated that NIRS and MIRS produced the best PLSR models for
predicting orange firmness, with Pearson Correlation Coefficients (PCC) of 0.92 and 0.84, respectively.
The PLSR model relating to the TD–NMR for predicting the orange peel thickness achieved a PCC of
only 0.72. Finally, the total pectin content was predicted using TD–NMR and NIRS with PCC of 0.76
and 0.70, respectively. In another research, Xie et al. [21] performed the non-destructive estimation of
the amounts of titratable acidity, malic acid and citric acid in bayberry using NIRS. For this, 129 samples
of bayberry juice were prepared from 14 different cultivars, and nine different regions in China.
The studied spectral range was 400 to 1250 nm. The results indicated that the correlation coefficient, R,
was 0.896, 0.669 and 0.897 for the prediction of the best model for the titratable acidity, malic acid and
citric acid, respectively.

Therefore, these fruit analysis methods based on spectroscopy are gaining interest in the research
community around the world because they are fast, non-destructive and can be widely used in sorting
based on the internal properties of the fruits. Some aspects that are important to consider are the
procedure for applying these methods, and the accuracy of the predicted values using robust estimation
methods. Consequently, the present study used a hybrid technique based on Artificial Neural
Networks and the Artificial Bee Colony (ANN–ABC) algorithm for the non-destructive estimation of
some constituent properties of the fruits. These properties include Brix minus acid (BrimA), firmness,
acidity and starch content of Red Delicious apples in the VIS–NIR spectrum. Furthermore, the most
effective wavelengths of the spectrum were selected using a hybrid of Artificial Neural Networks and
the Particle Swarm Optimization (ANN–PSO) algorithm. Then, the selected wavelengths were used as
the input to the hybrid ANN–ABC algorithm to estimate the same constituent properties.
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2. Materials and Methods

2.1. Sampling and Collection

Since the most important purpose of the present study was the non-destructive estimation of
different constituent properties of Red Delicious apples, the most adequate harvest days were asked to
different gardeners of Kermanshah, Iran (34◦18′48.87” N, 47◦4′6.92” E). After determining these harvest
dates, four stages were planned for the data collection. In each stage, 16 trees were randomly selected
for harvesting. The first stage was 135 days after flowering, and 55 apple samples were harvested
at this stage. The second stage was 145 days after flowering, and 53 apple samples were harvested.
The third stage was 155 days after flowering, and 56 samples were obtained. Finally, the fourth stage
was 165 days after flowering, with 55 samples. During the harvest process, apples with a healthy
appearance and medium size were collected, giving an average size in length of 57.47 mm (3.07 mm
standard deviation), width 63.01 mm (3.67 mm standard deviation) and height 62.61 mm (3.53 mm
standard deviation). The color at the first stage was almost green, and at the fourth stage was mostly
red. At each stage after harvesting, the samples were transferred to Shahid Beheshti University for
spectral data extraction, and then their mechanical and physicochemical properties were extracted in
Karaj Agricultural Engineering Research Institute. The resulting dataset was divided into training and
test sets.

2.2. Extracted Spectral Data

The radiation of electromagnetic waves to a material absorbs and reflects certain wavelengths
according to the properties of the material. This interaction between radiation and material provides
information in spectroscopic studies. In fruits and vegetables, the radiation absorption process is
mostly due to C-H, O-H and N-H bonds [7]. Figure 1 shows the configuration of the spectroscopy
system used in the present research.
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Figure 1. Configuration of the spectroscopy system used in this study.

The spectrometer used in this research was an EPP200NIR model (StellarNet Inc., Tampa, FL,
USA) with an indium–gallium–arsenide detector. It has a working range from 200 to 1100 nm and a
resolution between 0.1 and 0.4 nm. The reflective mode was the measurement mode used in the study.
The spectrometer was connected by a USB2 cable to a laptop PC, equipped with SpectraWiz® software
(StellarNet Inc., Tampa, FL, USA) to save the resulting spectra on the computer. The light source was
an SLI-CAL model (StellarNet Inc., Tampa, FL, USA) made of 20 W tungsten halogen. A two-strand
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optical fiber was used to direct the light beam from the light source to the apple and from the apple to
the spectrometer.

Four random points on each apple were used for the analysis, and the average of their spectral
data was considered in the study. The exact location of the optical fiber is not important, because the
radiation penetrates the apples. The wavelengths from 200 to 400 nm and from 1000 to 1100 nm were
eliminated due to the high noise that was observed in these bands; hence, the examined spectral range
was 400 nm to 1000 nm. Due to the noise produced by the spectrometer, we eliminated 13 samples
from the 55 samples of the first stage, 8 samples from the 53 samples of the second stage, 5 samples
from the 56 samples of the third stage and 6 samples from the 55 samples of the fourth stage. Therefore,
the number of samples from the first to fourth stages for the analysis were 42, 45, 51 and 49, respectively.

2.3. Reflection and Absorption Spectra

According to Nicolaï et al. [7], the reflection spectra of different fruits such as apples, oranges,
nectarines and pears are similar. This means that the occurrence of spectral peaks is similar in the
charts of these fruits. As an example, Figure 2 shows the mean reflection spectrum of VIS–NIR light
for the 187 apple samples considered, computed using the ParLeS software (IM Publications LLP,
Chichester, UK).
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Figure 2. Mean reflection of the visible and near-infrared (VIS–NIR) spectrum for the obtained
apple samples.

This software is also able to convert the reflection spectra, R, to the absorption spectra by taking
log(1/R) to reduce the nonlinearity that may exist in the data [22]. Figure 3 shows the mean absorption
spectrum of VIS–NIR light for the 187 apple spectra considered. It can be observed that there are
different peaks in this spectral range. The peak at 490 nm is attributed to carotenoid absorption;
the peaks at 549 and 680 nm are related to chlorophyll A absorption [23,24]; the peaks for 849 and
875 nm are due to the N-H bond; and finally, the peak corresponding to 962 nm wavelength belongs to
O-H and C-H bonds [25].
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2.4. Extraction of the Constituent Properties of the Apples

2.4.1. Measurement of the BrimA Property

BrimA is an abbreviation of Brix minus acids. It was introduced by Jordan et al. [26], as a parameter
that is highly related to the sweetness and flavor of the fruits. Using it, sweetness and flavor of the
fruits have been estimated by different authors [27]. This parameter is based on Total Soluble Solids
(TSS) and Titratable Acidity (TA). TSS is measured as a percentage that indicates the content of soluble
sugars with a contribution from the fruit’s acids, and TA is generally expressed as a percentage of the
predominant acid. Specifically, this index is calculated using the following equation:

BrimA = TSS − K × TA (1)

where K is a constant coefficient equal to 5 [28].

2.4.2. Measurement of the Firmness

Apple firmness was measured using a hand-pushed penetrometer. Therefore, a special apple
probe was used, consisting of a cylindrical rod attached to the machine, with 11 mm of diameter and
8 mm of height to the marker, for dipping into the apples.

According to the standard recommended procedure [29], the penetrometer was first calibrated,
and then each apple was tested on two opposite sides without fruit peel. The mean of these two
measurements was stored as the firmness. The numbers were calculated and recorded in terms of
force in Newton (N). During the test, it was tried to ensure that the applied force rate was equal in all
the samples [29]. For this purpose, the penetrometer was first calibrated and then a part of the fruit
peel was removed with a peeler. The tip of the penetrometer was put into the peeled place, and the
cylindrical probe was gently dipped into the tissue at a balanced speed. Finally, the amount of applied
pressure in N was read from the machine by hand.

2.4.3. Measurement of the Acidity

The acidity of the apple juice was measured using a pH meter of model 8689 AZ Detachable pH
Pen (AZ Instrument Corp., Taichung, Taiwan). To obtain the juice, first, the middle part of each apple
was peeled to remove the seeds. Then, a slice of the apple was cut and crushed in a mortar, and the
juice was extracted from it using a strainer.

2.4.4. Measurement of the Starch Content

Starch is a complex carbohydrate that contains many glucose units linked by a glycosidic bond.
To measure starch content in an apple, some juice was extracted as explained in the previous subsection.
Then, this juice was dissolved in a mixture of dimethyl sulfoxide and hydrochloric acid. The ratio of
dimethyl sulfoxide to hydrochloric acid was 4 to 1. After that, it was centrifuged at 12,000 rpm for
15 min. To prepare the iodine reagent, hydrochloric acid, 0.06 g of potassium iodide and 0.003 g of iodine
were dissolved in 100 mL of 0.05 N hydrochloric acid. A mixture of 0.5 mL of iodine reagent (yellow
reagent) and 0.5 mL of juice were poured into a small plastic tube and thoroughly mixed. After 15 min,
the absorption was read at 600 nm using a spectrophotometer Optizen 2120 UV plus (Mecasys Co. Ltd.,
Daejeon, Korea). The results were presented in mg/g of fresh weight. Standard glucose solutions
were prepared in the next step [30]. Different glucose concentrations from 0 to 100 mg/L were used to
prepare these solutions. Then, a scatter plot was drawn relating to the given concentrations and the
corresponding absorption values at 600 nm. A linear curve was fit to this scatter plot, obtaining an
equation to convert each absorption value into the starch content in mg/L. Finally, starch content in the
apples was determined using this equation and the corresponding absorption values. To facilitate its
reading, in the experiments, this value is expressed as a percentage of the total weight.
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2.5. Hybrid Artificial Neural Networks–Particle Swarm Optimization (ANN–PSO) Algorithm

The hybrid technique of Artificial Neural Networks and Particle Swarm Optimization algorithm
(ANN–PSO) was used to select the most effective spectral wavelengths for estimating the predefined
constituent properties. PSO is a meta-heuristic algorithm that emulates the mass movements of birds to
solve different optimization problems. This algorithm was first proposed by Kennedy and Eberhart [31].
Each possible answer to the problem is considered as a particle. All particles are constantly searching
and moving. The motion of each particle depends on three factors: (1) the current position of the
particle; (2) the best position that this particle has ever had; and (3) the best position that the whole set
of particles have ever had [31]. In our case, the whole extracted wavelengths were first considered as a
vector. In the next step, other vectors with different sizes were selected and sent to the ANN using the
PSO algorithm.

The multilayer perceptron ANN divides the dataset into three disjoint categories: the first category
contains 70% of the samples for training; the second category contains 15% for validation; and the
third category contains the remaining 15% for testing. The ANN produces a Mean Square Error (MSE)
for each selection of wavelengths, in the estimation of each constituent property. Finally, this MSE
of each vector is sent to the PSO optimization algorithm. The vector that produces the least MSE is
selected as the set of most effective wavelengths.

Table 1 presents the hyperparameters of the ANN applied to select the most effective wavelengths
with the PSO algorithm. The transfer functions, the backpropagation network training functions and
the weight/bias-backpropagation learning functions were selected from the Neural Network Toolbox
of the MATLAB software (MathWorks, Natick, MA, USA). The designed network has two hidden
layers. The hyperbolic tangent sigmoid (tansig) is used as the activation function for the hidden layers,
the scaled conjugate gradient backpropagation (trainscg) is used to train the network and the Hebb
weight learning function (learnhd) is used to adapt the network.

Table 1. Hyperparameters of the multilayer perceptron ANN used in the Artificial Neural
Network–Particle Swarm Optimization (ANN–PSO) algorithm.

Number of Layers Number of
Neurons Transfer Function

Backpropagation
Network Training

Function

Backpropagation
Weight/Bias

Learning Function

2 1st layer: 8 1st layer: tansig trainscg learnhd
2nd layer: 12 2nd layer: tansig

2.6. Hybrid Artificial Neural Networks–Artificial Bee Colony (ANN–ABC) Algorithm

The hybrid method of Artificial Neural Networks and Artificial Bee Colony algorithm (ANN–ABC)
was used to estimate the defined set of constituent properties. The ABC algorithm is inspired by how
bees behave in nature. In a beehive, a number of bees are responsible for searching food sources; in the
optimization problem, this would mean producing initial responses. After identifying food sources,
the bees return to the hive and inform other bees that are called worker bees. Worker bees are sent to
these regions to check the amount and quality of the food, and then they return to the hive. This will
continue until a food source is identified in large quantities and quality. In the optimization problem,
this operation means finding optimal points [32].

The task of the ABC algorithm is to determine the optimal values of the ANN parameters.
This network has 5 adjustable parameters: number of layers; number of neurons per layer; transfer
function of each layer; backpropagation network training function; and weight/bias-backpropagation
learning function. If these parameters have optimal values, the neural network will achieve the
highest efficiency.

In the present study, the number of neurons per layer could be at least 0 and at most 25; and the
number of layers could be between 1 and 3. The transfer functions, the backpropagation network
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training functions and the weight/bias-backpropagation learning functions were again selected from
MATLAB Neural Network Toolbox. To this end, the ABC algorithm first considers a vector with the
same size as the number of the listed parameters, with between 4 and 8 members. Each member
represents a parameter. For instance, the vector x = {8, 21, hardlim, poslin, trainbfg, learngd} indicates
that the corresponding ANN has 2 hidden layers with 8 and 21 neurons. The hard-limit (hardlim)
transfer function is used in the first layer, and the positive linear (poslin) transfer function is used in the
second layer. The BFGS quasi-Newton (trainbfg) function is used to train the network, and the gradient
descent (learngd) weight/bias-backpropagation learning function is used to adapt the network.

The result of each vector transferred to the ANN is measured with the MSE. Finally, the vector
with the least MSE is used as the optimal vector of parameters of the multilayer perceptron ANN.
Since different ANN were used in the present research to estimate each constituent property, only
a sample table of optimal parameters is presented. Table 2 presents these optimal parameters
for estimating BrimA property. This network has 3 hidden layers, with 25 neurons in each layer.
The hyperbolic tangent sigmoid (tansig) is used as the activation function of the hidden layers,
the Levenberg–Marquardt backpropagation algorithm (trainlm) is used to train the network, and the
LVQ1 weight learning function (learnlv1) is used to adapt the network.

Table 2. Optimal values of the multilayer perceptron ANN parameters found by the Artificial Bee
Colony (ABC) algorithm for the estimation of the Brix minus acid (BrimA) property.

Number of Layers Number of
Neurons Transfer Function

Backpropagation
Network Training

Function

Backpropagation
Weight/Bias

Learning Function

3 1st layer: 25 1st layer: tansig
trainlm learnlv12nd layer: 25 2nd layer: tansig

3rd layer: 25 3rd layer: tansig

2.7. Predictive Model Evaluation Parameters

The parameters used to evaluate the accuracy of the models for the estimation of the constituent
properties using the hybrid ANN–ABC were the Mean Square Error (MSE), the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE) and the coefficient of determination R2 [33,34]. The formulas
to calculate these parameters are as follows:

MSE =
1
n

n∑
s=1

(Xs −Ys)
2 (2)

RMSE =

√√
1
n

n∑
s=1

(Xs −Ys)
2 (3)

MAE =
1
n

n∑
s=1

|Xs −Ys| (4)

R2 = 1−


∑n

s=1 (Xs −Ys)
2∑n

s=1 (Xs −Xm)
2

 (5)

Xm =
1
n

n∑
s=1

Xs (6)

where n is the number of samples in the test set, Xs is the measured value of the property for the sample
s, Ys is the estimated value of the property for sample s and Xm is the mean of the measured values of
the property. Some research works also report the regression coefficient, R, which is simply computed
as the square root of R2.
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On the other hand, given a certain accuracy measure (MSE, RMSE, MAE or R2), since the
experiment is repeated many times, it is interesting to report not only the mean value obtained, but
also the standard deviation (SD) of this measure. This value indicates the stability of the method in
different executions, being the ideal situation an SD near 0. Let us suppose an accuracy measure M,
which is repeated m times, producing values Mj for j = 1, . . . , m. The SD of this measure is defined as:

SD(M) =

√√√
1

m− 1

m∑
j=1

(
M j −M

)2
(7)

where M is the average of the values of Mj.

3. Results and Discussion

3.1. Estimation of the Constituent Properties Using Spectral Information

As presented in Figure 3, a total of six peak wavelengths were used between 400 and 1000 nm to
estimate the constituent properties of Red Delicious apples. In this section, the results for estimating
the predefined mechanical and physicochemical properties of the apples related to these peaks in the
test data are presented.

3.1.1. Estimation of BrimA

In the estimation of the properties, the hybrid approach ANN–ABC was repeated 1000 times
for the estimation of BrimA property, in this case using spectral data around the wavelength 962 nm.
Table 3 presents the obtained results in terms of the accuracy evaluation parameters.

Table 3. Mean and standard deviation of the performance evaluation parameters of the hybrid
ANN–ABC method in estimating the BrimA property on the spectral data around the wavelength of
962 nm for the 1000 iterations.

Criterion MSE RMSE MAE R R2

Mean 0.0659 0.2529 0.2005 0.8806 0.7775
Standard deviation 0.0242 0.0441 0.0345 0.0450 0.0768

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.

The standard deviation of the performance evaluation parameters is acceptable because their
values are small, compared to the typical values of this property. Figure 4 shows the regression analysis
of the scatter plot between the estimated and the measured values of BrimA of the apples, using a
spectral data range around the wavelength of 962 nm in the best training execution. As shown in
this figure, the regression coefficient R was 0.948 (coefficient of determination R2 0.898) for the best
execution of the hybrid ANN–ABC method, which can be considered an acceptable value for the
non-destructive estimation, although the mean R2 is only 0.7775.

Figure 5 shows the boxplots of the five performance criteria for the 1000 iterations. This figure
shows that boxplots are highly compressed and the amount of outlier data out of the box is very small.
Figure 6 shows the actual value versus the mean estimated value of BrimA property (for the test set),
i.e., the mean estimation for each sample after the 1000 iterations. As shown, the mean value set was
able to estimate very accurately the actual measured values of the samples.
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Figure 6. Measured values versus the mean estimated values of BrimA property for the test set.
Each iteration contains 56 test samples; hence, there are 56,000 samples at 1000 iterations, and since there
are only 187 samples, there are more than 299 iterations in each sample and their mean is calculated.

3.1.2. Estimation of the Firmness

The estimation of the firmness property using the hybrid ANN–ABC approach was also repeated
1000 times. In this case, spectral data around the wavelength of 875 nm was used. Table 4 presents the
mean and SD values of the accuracy evaluation parameters.
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Table 4. Mean and standard deviation of the performance evaluation parameters of the hybrid
ANN–ABC method in estimating apple firmness on the spectral data around the wavelength range
from 875 nm at 1000 iterations.

Criterion MSE RMSE MAE R R2

Mean 0.0422 0.2034 0.1503 0.7974 0.6377
Standard deviation 0.0118 0.0283 0.0187 0.0429 0.0674

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.

According to this table, the performance of the hybrid ANN–ABC method is unacceptable in
the estimation of firmness using these spectral data, since the R2 is relatively low. Figure 7 shows
the regression analysis of the scatter plot between the estimated and the actual (measured) value of
firmness of the apples for the best training execution. Figure 8 shows the boxplots of the performance
criteria of estimation error and regression coefficients for the 1000 repetitions.

Agronomy 2020, 10, 267 10 of 20 

 

Criterion MSE RMSE MAE R R2 
Mean 0.0422 0.2034 0.1503 0.7974 0.6377 

Standard deviation 0.0118 0.0283 0.0187 0.0429 0.0674 
Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). Regression coefficient, R, and coefficient of determination, R2. 

According to this table, the performance of the hybrid ANN–ABC method is unacceptable in the 
estimation of firmness using these spectral data, since the R2 is relatively low. Figure 7 shows the 
regression analysis of the scatter plot between the estimated and the actual (measured) value of 
firmness of the apples for the best training execution. Figure 8 shows the boxplots of the performance 
criteria of estimation error and regression coefficients for the 1000 repetitions. 

 
Figure 7. Regression analysis of the scatter plot between the estimated and the measured values of 
the apple firmness on the spectral range around the wavelength of 875 nm in the best training case. 

  

(a) (b) 

Figure 8. Boxplot of the evaluation criteria of the hybrid ANN–ABC method in estimating the value 
of firmness on the spectral range around the wavelength of 875 nm at 1000 iterations. (a) Error 
measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). (b) Regression coefficients and coefficient, R, of determination, R2. 

Figure 7 shows that, in the best training execution, this method is able to estimate the firmness 
with a coefficient of determination greater than 0.8. Figure 8 also indicates that more than half of the 
replicates are able to estimate the firmness with a coefficient of determination greater than 0.7, 
although there are some executions with a very poor result. Finally, Figure 9 shows that the mean 
value of the firmness property for some apple samples is very close to the measured values, but there 
are some samples that produce a very high error. 

Figure 7. Regression analysis of the scatter plot between the estimated and the measured values of the
apple firmness on the spectral range around the wavelength of 875 nm in the best training case.

Agronomy 2020, 10, 267 10 of 20 

 

Criterion MSE RMSE MAE R R2 
Mean 0.0422 0.2034 0.1503 0.7974 0.6377 

Standard deviation 0.0118 0.0283 0.0187 0.0429 0.0674 
Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). Regression coefficient, R, and coefficient of determination, R2. 

According to this table, the performance of the hybrid ANN–ABC method is unacceptable in the 
estimation of firmness using these spectral data, since the R2 is relatively low. Figure 7 shows the 
regression analysis of the scatter plot between the estimated and the actual (measured) value of 
firmness of the apples for the best training execution. Figure 8 shows the boxplots of the performance 
criteria of estimation error and regression coefficients for the 1000 repetitions. 

 
Figure 7. Regression analysis of the scatter plot between the estimated and the measured values of 
the apple firmness on the spectral range around the wavelength of 875 nm in the best training case. 

  

(a) (b) 

Figure 8. Boxplot of the evaluation criteria of the hybrid ANN–ABC method in estimating the value 
of firmness on the spectral range around the wavelength of 875 nm at 1000 iterations. (a) Error 
measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). (b) Regression coefficients and coefficient, R, of determination, R2. 

Figure 7 shows that, in the best training execution, this method is able to estimate the firmness 
with a coefficient of determination greater than 0.8. Figure 8 also indicates that more than half of the 
replicates are able to estimate the firmness with a coefficient of determination greater than 0.7, 
although there are some executions with a very poor result. Finally, Figure 9 shows that the mean 
value of the firmness property for some apple samples is very close to the measured values, but there 
are some samples that produce a very high error. 

Figure 8. Boxplot of the evaluation criteria of the hybrid ANN–ABC method in estimating the value
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Figure 7 shows that, in the best training execution, this method is able to estimate the firmness
with a coefficient of determination greater than 0.8. Figure 8 also indicates that more than half of the
replicates are able to estimate the firmness with a coefficient of determination greater than 0.7, although
there are some executions with a very poor result. Finally, Figure 9 shows that the mean value of the
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firmness property for some apple samples is very close to the measured values, but there are some
samples that produce a very high error.Agronomy 2020, 10, 267 11 of 20 
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3.1.3. Estimation of the Acidity

Table 5 presents the mean and standard deviation of the accuracy measured in the estimation of
acidity on the spectral range around 849 nm at 1000 iterations using the hybrid ANN–ABC method.

Table 5. Mean and standard deviation of the performance evaluation parameters of the hybrid
ANN–ABC in estimating the acidity of spectral range around the wavelength of 849 nm at 1000 iterations.

Criterion MSE RMSE MAE R R2

Mean 0.0597 0.2431 0.1821 0.9053 0.8198
Standard deviation 0.0129 0.0240 0.0215 0.0173 0.0305

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.

Figure 10 contains the regression analysis of the scatter plot between the estimated and the
measured value of acidity in the best training case. Figure 11 shows the boxplots of the accuracy
criteria for the 1000 repetitions.
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Table 5 and Figure 10 indicate that the coefficients of determination for both the mean of the
1000 iterations and the best training execution are greater than 0.8, which can be acceptable for the
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non-destructive estimation. Figure 11 shows that the boxplots of all performance evaluation parameters
of the hybrid ANN–ABC method are compact; hence, it can be argued that this method has close
results in different iterations. Figure 12, which depicts the mean of the estimations, also shows that this
method is able to achieve an accurate estimate of the acidity.Agronomy 2020, 10, 267 12 of 20 
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Table 6 and Figures 13–15. In this case, the wavelength of 849 nm was used, and again the test was 
repeated 1000 iterations. As shown, the mean R2 is greater than 0.94 for this method, and the R2 in the 
best execution is greater than 0.97. In other words, the non-destructive starch estimation is very close 
to the measured values. 
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Figure 11. Boxplot of the evaluation criteria of the hybrid ANN–ABC method in estimating the acidity
of spectral range around the wavelength of 849 nm at 1000 iterations. (a) Error measures: Mean
Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). (b) Regression
coefficient, R, and coefficient of determination, R2.
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3.1.4. Estimation of the Starch Content

The experimental results for the estimation of the starch content of the apples are presented in
Table 6 and Figures 13–15. In this case, the wavelength of 849 nm was used, and again the test was
repeated 1000 iterations. As shown, the mean R2 is greater than 0.94 for this method, and the R2 in the
best execution is greater than 0.97. In other words, the non-destructive starch estimation is very close
to the measured values.

Table 6. Mean and standard deviation of the performance evaluation parameters of the hybrid
ANN–ABC method in estimating starch content on the spectral range around the wavelength of 849 nm
at 1000 iterations.

Criterion MSE RMSE MAE R R2

Mean 0.0190 0.1367 0.1047 0.9725 0.9458
Standard deviation 0.0053 0.0175 0.0135 0.0080 0.0155

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.
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3.2. Estimation of Physicochemical Properties Using the Most Effective Wavelengths

3.2.1. Estimation of BrimA Property

In this set of experiments, the estimation of the constituent properties of the apples is performed
using only the most effective wavelengths selected in the hybrid approach ANN–PSO, described in
Section 2. Tables 7 and 8 and Figure 16 show the effective wavelengths selected by this method for
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the non-destructive estimation of BrimA, as well as the results of different performance evaluation
criteria obtained in the estimation of BrimA using different numbers of effective wavelengths. Figure 16
presents a comparison of the measured values versus the estimated values of BrimA using the five
most effective wavelengths selected by the hybrid ANN–PSO.

Table 7. Most effective wavelengths selected by the hybrid ANN–PSO for the estimation of BrimA.

Number of Wavelengths Most Effective Wavelengths

2 959.3, 970.8
3 965.5, 958.1, 960.4
5 962.2, 969.0, 968.5, 960.8, 958.4
7 966.4, 966.1, 970.2, 965.2, 955.4, 957.8, 963.1
9 955.7, 959.3, 960.8, 961.9, 962.5, 963.7, 966.4, 969.0, 971.1

Table 8. Results of different performance evaluation criteria of the hybrid ANN–ABC method for the
estimation of BrimA using different numbers of most effective wavelengths.

Num/Criterion MSE RMSE MAE R R2

2 13.44 3.67 2.85 0.891 0.794
3 25.72 5.07 3.92 0.840 0.706
5 11.44 3.38 2.42 0.910 0.828
7 20.26 4.50 3.29 0.830 0.689
9 19.58 4.42 3.61 0.839 0.704

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.
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The highest value of R2 is 0.828 for the non-destructive estimation of the value of BrimA, and it is
related to the input data by the hybrid ANN–ABC method with five wavelengths.

3.2.2. Estimation of the Firmness

Tables 9 and 10 and Figure 17 present the results of the non-destructive estimation of firmness
using the most effective wavelengths. According to Table 10, the hybrid ANN–ABC method is not able
to estimate correctly the firmness of the apples in four of the five cases. Only the estimation using nine
wavelengths achieves an R2 of 0.738, which is still not a very high value. This problem is consistent
with the results obtained using all the spectral information, where it was observed that the firmness of
the apples could not be estimated accurately.
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Table 9. Most effective wavelengths selected by the hybrid ANN–PSO method for the estimation of the
firmness of the apples.

Number of Wavelengths Most Effective Wavelengths

2 882.1, 869.4
3 870.3, 872.4, 882.1
5 872.4, 869.1, 872.7, 876.5, 882.7
7 875.3, 870.9 880.1, 868.3, 879.5, 874.5, 872.4
9 870.6, 878.3, 884.8, 874.5, 873. 0, 874.8, 880.4, 876.2, 868.6

Table 10. Results of different performance evaluation criteria of the hybrid ANN–ABC method for the
non-destructive estimation of firmness using different numbers of most effective wavelengths.

Num/Criterion MSE RMSE MAE R R2

2 0.577 0.759 0.548 0.765 0.585
3 0.649 0.806 0.592 0.760 0.577
5 0.609 0.781 0.633 0.711 0.506
7 0.933 0.966 0.668 0.699 0.489
9 0.416 0.645 0.472 0.859 0.738

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.
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3.2.3. Estimation of the Acidity

The results of the proposed non-destructive estimation of acidity are presented in Tables 11 and 12
and in Figure 18, using in this case the seven most effective wavelengths.

As shown, the highest R2 in the estimation of acidity is related to the case that uses seven
wavelengths as the input of the hybrid ANN–ABC method. The value of R2 is greater than 0.9 in this
case, which can be considered a very accurate estimation.

Table 11. Most effective wavelengths selected by the hybrid ANN–PSO method for the estimation of
the acidity.

Number of Wavelengths Most Effective Wavelengths

2 846.1, 852.3
3 843.4, 845.2, 853.8
5 851.4, 841.9, 855.0, 844.0, 852.0
7 850.8, 846.7, 852.6, 841.4, 844.9, 855.8, 850.5
9 846.1, 850.8, 848.2, 855.0, 852.9, 848.7, 852.0, 855.1, 868.5
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Table 12. Results of different performance evaluation criteria of the hybrid ANN–ABC method for the
non-destructive estimation of acidity using different numbers of most effective wavelengths.

Num/Criterion MSE RMSE MAE R R2

2 0.0040 0.0635 0.0471 0.9095 0.8272
3 0.0027 0.0518 0.0399 0.9405 0.8845
5 0.0036 0.0600 0.0430 0.9235 0.8529
7 0.0027 0.0522 0.0400 0.9487 0.9001
9 0.0044 0.0662 0.0500 0.9096 0.8273

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.
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Figure 18. Measured values versus estimated values of the apple acidity for the test set, using the seven
most effective wavelengths selected by the hybrid ANN–PSO.

3.2.4. Estimation of the Starch Content

Table 13 presents the most effective wavelengths selected by the hybrid ANN–PSO method for
the non-destructive estimation of the starch content of the apples. Table 14 shows the results of
the performance criteria of the hybrid ANN–ABC using different numbers of effective properties.
The comparison between the measured values and the estimated values of starch content using the
five wavelengths selected by the hybrid ANN–PSO method are depicted in Figure 19.

Table 13. Most effective wavelengths selected by the hybrid ANN–PSO method for the estimation of
the starch content.

Number of Wavelengths Most Effective Wavelengths

2 849.3, 854.4
3 851.1, 853.8, 849.0
5 851.4, 845.2, 842.2, 844.9, 852.9
7 841.6, 844.0, 851.7, 848.4, 845.8, 846.4, 850.8
9 846.0, 852.9, 848.4, 841.4, 852.6, 849.9, 851.1, 841.1, 841.6

Table 14. Results of different performance evaluation criteria of the hybrid ANN–ABC method for the
non-destructive estimation of starch content using different numbers of most effective wavelengths.

Num/Criterion MSE RMSE MAE R R2

2 75.42 8.68 6.18 0.943 0.889
3 87.97 9.38 7.24 0.945 0.893
5 49.84 7.06 5.40 0.961 0.923
7 119.57 10.93 7.97 0.883 0.780
9 58.85 7.67 6.28 0.958 0.918

Error measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Regression coefficient, R, and coefficient of determination, R2.
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As shown in Table 14, the highest R2 is related to the case that uses five wavelengths to estimate
the amount of starch, and it is equal to 0.923, which is again a very good result.

3.3. Comparison of the Proposed Method with Other Research Works

3.3.1. Non-Destructive Estimation of the Firmness

This subsection compares the accuracy of the proposed method with the results reported by other
authors that also estimate the firmness of different fruits using spectral information. Three works have
been found in the literature, proposed by Bizzani et al. [20], Uwadaira et al. [35] and Huang et al. [36].
Table 15 describes the main features of these works and the obtained values of the coefficient of
determination, R2.

Table 15. Comparison of the proposed method with other previous studies for the non-destructive
estimation of firmness based on the coefficient of determination, R2.

Researchers Type of Fruit Method (Spectrum Unit: nm) R2

Proposed method Apple 868 to 884 nm 0.803
Bizzani et al. [20] Orange 1000 to 2500 nm 0.92

Uwadaira et al. [35] Peach 500 to 1000 nm 0.8
Huang et al. [36] Tomato 300 to 550 nm 0.894

Coefficient of determination, R2.

As shown in Table 15, the highest R2 of this property is achieved in the spectral range between
1000 and 2500 nm. Since the amount of tissue firmness is directly related to the amount of fruit juice, it
is possible to perform the non-destructive prediction of the amount of tissue firmness by the opposite
action of the NIR spectrum. According to Abbott’s research, there is an absorption peak between
spectra of 1400 nm and 1500 nm due to the presence of water in the fruit tissue [37]. This justifies that
the R2 obtained in our work is not very high, since the spectral range is outside of the ideal range.

3.3.2. Non-Destructive Estimation of the Acidity

In the case of the acidity, the most related works are due to Huang et al. [36], Cavaco et al. [38]
and Cayuela [23]. Table 16 shows the comparison of the proposed method and these works.

As shown in Table 16, the R2 of the proposed method is higher than those of the other methods
for the non-destructive estimation of the acidity, but still, it is not an acceptable value. The reasons for
this case may be similar to those for the titratable acidity.
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Table 16. Comparison of the proposed method with other previous studies for the non-destructive
estimation of the acidity based on the coefficient of determination, R2.

Researchers Type of Fruit Method (Spectrum Unit: nm) R2

Proposed method Apple 841 to 855 nm 0.825
Huang et al. [36] Tomato 400 to 1100 nm 0.64
Cavaco et al. [38] Orange 733 to 1000 nm 0.52

Cayuela [23] Orange 578 to 1850 nm 0.45

Coefficient of determination, R2.

3.3.3. Non-Destructive Estimation of the Starch Content

Concerning the estimation of the starch content in fruits, only two previous papers were found,
due to Jiang and Lu [39] and Ignat et al. [40]. Table 17 compares the results reported in these works
with the proposed method.

Table 17. Comparison of the proposed method with other previous studies for the non-destructive
estimation of the starch content based on the coefficient of determination, R2.

Researchers Type of Fruit Method (Spectrum Unit: nm) R2

Propose method Apple 841 to 855 nm 0.97
Jiang and Lu [39] Corn 1100 to 2500 nm 0.99
Ignat et al. [40] Apple 340 to 1014 nm 0.91

Coefficient of determination, R2.

As can be observed in Table 17, the results of all these studies are acceptable because they have
high coefficients of determination. The major spectral regions of starch aggregation are the spectral
region from 800 to 1000 nm, and the wavelengths greater than 1700 nm [37]. This table shows that the
spectral domain has an acceptable range in all studies and, thus, the results are acceptable.

4. Conclusions

In this study, a new non-destructive method based on the hybrid Artificial Neural
Networks–Particle Swarm Optimization (ANN–PSO) algorithm and on the hybrid Artificial Neural
Networks-Artificial Bee Colony (ANN–ABC) algorithm has been proposed to estimate some mechanical
and physicochemical properties of Red Delicious apples, namely BrimA, firmness, acidity and starch
content, using spectral data in the range between 400 and 1000 nm.

Four main conclusions can be drawn from the experimental results. First, the selection of the
appropriate spectral ranges is essential to increase the estimation accuracy of the spectral data-based
methods. Second, the predicted starch content of the Red Delicious apple was very close to actual
measured values in the spectral range from 400 to 1000 nm. Third, the results obtained with the use of
the most effective wavelengths produced coefficients of determination lower than those obtained using
a wide range of spectral properties, but the difference was not significant. Fourth, the selection of the
most appropriate spectral range, and the use of effective machine learning techniques guaranteed high
performance of the proposed method in the present study.

For future works, we suggest developing a non-destructive method to estimate the ripeness of
Red Delicious apples. The spectral measurements of the above-mentioned physicochemical properties
will be used as features to determine the ripening state of the fruits. Artificial Neural Networks (ANN)
and deep learning techniques could be an interesting way to achieve this goal.
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