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Abstract: Although the use of biocontrol agents (BCAs) to manage plant pathogens has emerged as a
sustainable means for disease control, global reliance on their use remains relatively insignificant
and the factors influencing their efficacy remain unclear. In this work, we further developed an
existing generic model for biocontrol of foliar diseases, and we parametrized the model for the Botrytis
cinerea–grapevine pathosystem. The model was operated under three climate types to study the
combined effects on BCA efficacy of four factors: (i) BCA mechanism of action, (ii) timing of BCA
application with respect to timing of pathogen infection (preventative vs. curative), (iii) temperature
and moisture requirements for BCA growth, and (iv) BCA survival capability. All four factors
affected biocontrol efficacy, but factors iii and iv accounted for > 90% of the variation in model
simulations. In other words, the most important factors affecting BCA efficacy were those related
to environmental conditions. These findings indicate that the environmental responses of BCAs
should be considered during their selection, BCA survival capability should be considered during
both selection and formulation, and weather conditions and forecasts should be considered at the
time of BCA application in the field.

Keywords: biological control; Botrytis bunch rot; epidemiological model; mechanisms of action;
system analysis; weather conditions

1. Introduction

Biocontrol of plant pathogens has emerged as a sustainable method of disease management and
as a viable way to reduce the application of chemicals in agriculture [1–4]. The reasons for increasing
restrictions on the use of chemicals and for increasing interest in biocontrol include the negative effects
of chemicals on human health and the environment [5,6], pathogen-acquired resistance to commonly
applied chemicals, and the lack of replacement products [7]. Biocontrol involves the use of fungi,
bacteria, yeasts, or viruses (together referred to as biocontrol agents or BCAs) that may suppress
plant pathogens via competition for nutrients or space, antibiosis, parasitism, and induced host plant
resistance [1].

Despite the extensive research on biocontrol and the potential of using BCAs as alternatives to
chemicals, the global reliance on BCA use remains relatively insignificant [4]. Many BCAs have been
reported to suppress plant pathogens under controlled conditions in laboratories and greenhouses,
but only a few have performed consistently in the field [8,9]. A possible reason for the lack of
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success of BCAs in the field is that they are often used in a similar manner as fungicides, even
though the processes influencing the efficacy of BCAs are complex [10]. The complexity is not
surprising, because BCAs are living organisms that dynamically interact with the target pathogen,
the host plant, the microbial communities in the phyllosphere, and the physical environment [11].
Fluctuating environmental conditions in the field influence BCA survival, establishment, growth, and
activity [1,12,13]. Although temperature and humidity have been evaluated as key factors affecting BCA
efficacy in some studies [11,12,14–18], the complex relationships between BCAs and the environment
remain difficult to predict and manage [19,20].

Mathematical models have been used to study disease epidemics in relation to BCA dynamics.
Some models focus on the relationship between BCA dose and pathogen infection [21–24], while others
consider more complex interactions [25–27]. Jeger et al. [28] developed a mean-field deterministic model
that is able to predict the likelihood of the successful control of foliar diseases by a single BCA in relation
to the biocontrol mechanisms involved. The latter model is a standard susceptible-infected-removed
(SIR) model, in which host–pathogen dynamics are coupled with pathogen–BCA dynamics through four
biocontrol mechanisms: mycoparasitism, competition, antibiosis, and induced plant host resistance.
Improved versions of this model were subsequently proposed to compare the effects of using a
single BCA with two biocontrol mechanisms [29] vs. the combined use of two BCAs, each with
an individual mechanism [30], or the effects of constant vs. fluctuating temperatures on biocontrol
efficacy [31]. The latter study revealed that the dynamics of biocontrol differed greatly under constant
vs. fluctuating temperatures and stressed the importance of characterizing biocontrol activity in
relation to environmental conditions and disease development.

In the current research, we enlarged the model proposed by Jeger et al. [28] by including (i) the
effects of environmental conditions on the interactions between the pathogen and BCA and (ii) the
dynamics of host growth and senescence. The proposed model structure is generic and could be
applied to various pathosystems and several pathogen–BCA interactions. We also parametrized the
model for the Botrytis cinerea–grapevine pathosystem. Botrytis cinerea is the causal agent of Botrytis
bunch rot (BBR), a serious disease that damages all grapevine organs, and especially bunches, resulting
in substantial losses of quantity and quality [32–34]. We then operated the model under three climate
types to determine whether the use of a specific BCA is more likely to result in effective biocontrol of B.
cinerea depending on its adaptation to fluctuating conditions of temperature and relative humidity. In
the following sections, we describe the model, its parametrization for the BBR case-study (i.e., Botrytis
bunch rot in grapes caused by Botrytis cinerea), and (iii) model simulations for different BCAs under
different climate types.

2. Model Description

The model is based on the generic model developed by Jeger et al. [28] and further revised by
Xu et al. [29]. In this model, a classic susceptible-infected-removed (SIR) model for host–pathogen
dynamics [35] is combined with a model for pathogen–BCA dynamics. The modified model was
developed by using a system dynamics approach [36], in which the system (consisting of the plant, the
pathogen, the BCA, and the environment) is described by state variables, which represent plant tissue
categories in relation to the pathogen–BCA interaction. The system moves from one state variable
to another by mean of fluxes, which are regulated by rate variables (or rates). Rates depend on the
characteristics of the pathogen, host plant, and BCA and may also be influenced by the weather
conditions that affect the processes underlying the dynamics of both the pathogen (i.e., infection and
infectiousness) and the BCA (i.e., growth and survival capability). The effect of external variables on
processes is accounted for by driving functions (i.e., temperature, relative humidity, and moisture
duration).

The model is generic and can be operated for fungal pathogens of aerial plant parts (e.g., leaves
and fruits) and for BCAs with different mechanisms of action (MOA), including competition with the
pathogen for space and nutrients, direct activity on the pathogen through antibiosis or mycoparasitism,
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and induced resistance in the plant. These are the main MOA of the currently used BCAs [1]. The
model works with a time step of 1 day.

The model was developed by using the software STELLA® (abbreviation of Systems Thinking,
Experimental Learning Laboratory with Animation, 1.6.1. version, Isee Systems, Lebanon, NH
03766 USA [37]), a visual programming language for system dynamics modelling. The model was
diagrammed (Figure 1) by using the graphic representation of Forrester [38], which combines state
variables (rectangles), flows (solid arrows), rates (valves), parameters and coefficients (circles), and
numerical relationships (dashed arrows). Acronyms for state variables, rates, driving variables, and
parameters are explained in Table 1.
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Figure 1. Model flowchart in which the state variables are host tissue categories that change according
to the interactions among the pathogen, biocontrol agents (BCAs), and the environment. The
diagram uses the symbols developed by Forrester [38]. The core of the model is based on a classic
susceptible-infected-removed (SIR) model, with tissue evolving from healthy-susceptible (HS) to
infectious (I) and removed (R). The rate of infection of tissue (RI) depends on primary (STARTP) and
secondary infections (I). The rate of resistance induction by a BCA (RRES) depends on BCA application
(STARTB) and the total amount of healthy-susceptible tissue (HS). The rates of BCA colonization
(RCOLH, RCOLI, RCOLR, and RCOLHr) depend on BCA application (STARTB) and the total amount
of colonized tissue (BSUM). The structure incorporates host growth (RG) and physiological senescence
(RS). Symbols for state variables, rates, and parameters are explained in Table 1.

Table 1. List of state variables, rates, driving variables, and parameters used in the model.

Symbol Meaning of Symbol Dimension

K Total surface area in the system [1]

HS Healthy-susceptible tissue [N]

I Affected by pathogen and infectious tissue [N]

R Affected by pathogen and removed tissue [N]
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Table 1. Cont.

Symbol Meaning of Symbol Dimension

Hr Healthy and resistant tissue [N]

Hb Healthy and BCA colonized tissue [N]

Ib Infectious and BCA colonized tissue [N]

Rb Removed and BCA colonized tissue [N]

BSUM Total of BCA colonized tissue [N]

RG Rate of growth [N.T−1]

RS Rate of senescence [N.T−1]

STARTP Initial inflow of the pathogen into the system [N.T−1]

RI Rate of infection [N.T−1]

RR Rate of removal [N.T−1]

STARTB Initial inflow of the BCA into the system [N.T−1]

RPIN Rate of daily pathogen inflow [N.T−1]

RBIN Rate of daily BCA inflow [N.T−1]

RRES Rate of induction of resistance by BCA [N.T−1]

RSUS Rate of change from Hr to HS tissue [N.T−1]

RCOLHr Rate of BCA colonization for Hr [N.T−1]

RCOLH Rate of BCA colonization for HS [N.T−1]

RCOLI Rate of BCA colonization for I tissue [N.T−1]

RCOLR Rate of BCA colonization for R tissue [N.T−1]

GRO Rate of BCA growth under fluctuating temperature and moisture [N.T−1]

BMORH Rate of BCA mortality for the Hb tissue [N.T−1]

BMORI Rate of BCA mortality for the Ib tissue [N.T−1]

BMORR Rate of BCA mortality for the Rb tissue [N.T−1]

RAUDPC Rate of AUDPC calculation [N.T−1]

RRG Relative rate of growth [N.N−1.T−1]

RRS Relative rate of senescence [N.N−1.T−1]

b Relative rate of infection [N.N−1.T−1]

h Relative rate of change from I to R tissue [N.N−1.T−1]

c0 Relative rate of change from HS to Hr tissue [N.N−1.T−1]

e Relative rate of change from Hr to HS tissue [N.N−1.T−1]

c1 Relative rate of change from HS to Hb tissue [N.N−1.T−1]

c2 Relative rate of change from I to Ib and from R to Rb tissue [N.N−1.T−1]

f Relative rate of BCA mortality [N.N−1.T−1]

COFR Correction factor for occupied tissue [1]

COFRHr Correction factor for Hr tissue [1]

COFRI Correction factor for I tissue [1]

COFRR Correction factor for R tissue [1]

PDUR Duration of mobilization of pathogen inoculum [T]

PIN Day of the first seasonal infection [T]
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Table 1. Cont.

Symbol Meaning of Symbol Dimension

BDUR Duration of mobilization of BCA inoculum BDUR [T]

BIN Day of the BCA application [T]

T Driving function for daily temperature [1]

MD Driving function for daily moisture duration [1]

RH Driving function for daily relative humidity [1]

AUDPC Area under disease progress curve [1]

POCC Total K units occupied by the pathogen [N]

EFF Overall BCA efficacy [1]

C Relative contribution of competition [1]

A Relative contribution of antibiosis [1]

IR Relative contribution of induced resistance [1]

P Relative contribution of mycoparasitism [1]

2.1. State Variables and Connecting Flows

The site of the system consists of K units of plant tissue that can be potentially occupied (i.e.,
affected) by the pathogen during the epidemic. The K units represent the state variables of the model
and belong to one of the following non-overlapping categories of tissue: (i) healthy and susceptible to
infection (HS); (ii) affected by the pathogen and infectious, i.e., can generate new, secondary infections
(I); (iii) affected by the pathogen and removed, i.e., no longer infectious (R); (iv) healthy and colonized
by the BCA, i.e., resistant to infection by the pathogen (Hr); (v) healthy and colonized by the BCA,
i.e., which is protected from the pathogen (Hb); (vi) infectious and colonized by the BCA, i.e., unable
to generate new infections (Ib); and (vii) removed and colonized by the BCA (Rb). The seven state
variables are mutually exclusive so that:

K = HS + I + R + Hr + Hb + Ib + Rb. (1)

The model considers that, during the epidemic and as a consequence of BCA application, the K
units move from one state variable to another by means of rates.

At the beginning of a simulation, all of the plant tissue is in the state variable HS. The size of HS
is dynamic and increases over time as a consequence of plant growth (in such a way that HS = 1 at
the time of maximum plant size) or decreases as a consequence of senescence (which is relevant for
those diseases in which the senescent plant tissue is no longer susceptible to infection). Inflow (rate
of growth, RG) and outflow (rate of senescence, RS) of host tissue with respect to HS is calculated
as follows:

RGt = HSt−1 × RRGt (2)

RSt = HSt−1 × RRSt (3)

in which t is the current day, t−1 is the day before, and RRGt and RRSt are relative rates of host growth
and senescence on day t, respectively.

The host tissue in the state variable HS moves to state variable I as a consequence of infection by
the pathogen; this flow is regulated by RI, the rate of infection, which is calculated as follows:

RIt = STARTPt + bt × It−1 × COFRt (4)

in which STARTP is the initial inflow of the pathogen into the system, b is the relative rate of infection,
I is as previously defined, and COFR is the correction factor for occupied tissue.
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In Equation (4), STARTP is calculated by assuming that the pathogen enters the system starting
on day PIN (the day of the first seasonal infection) and continues to enter at a constant rate RPIN
for a period of PDUR days; PIN, RPIN, and PDUR are all model parameters that are defined for
each situation.

In Equation (4), COFR is calculated as follows:

COFRt = (1 − ((Kt − HSt)/Kt) (5)

in which K and HS are as previously defined.
The host tissue in the state variable I moves to state variable R when the infectious period (i.e.,

the period during which the pathogen continues producing inoculum on affected tissue) is over; this
outflow is regulated by RR, the rate of removal, which is calculated as follows:

RRt = ht × It−1 (6)

in which h is the relative rate of removal and I is as previously defined.
The model considers that, at any time during the simulation period, a BCA enters the system

because of human intervention (i.e., a treatment with the BCA); this can be before, at the same time as,
or after the pathogen. The BCA inflow is regulated by STARTB, which is calculated for a period of
BDUR days (i.e., the period during which the BCA is applied), starting from day BIN (i.e., the day
on which the BCA is applied) at a constant rate equal to RBIN; BIN, RBIN, and BDUR are all model
parameters that are defined for each situation.

The introduction of the BCA generates outflows from HS, so that the healthy tissue cannot be
infected by the pathogen and, therefore, cannot move to I. The model considers that this outflow
can be caused by BCAs that induce resistance in the host tissue and/or that prevent infection due to
competition and/or antibiosis.

For BCAs that induce resistance, the outflow from HS (named RRES) is calculated as follows:

RRESt = c0 t × Hr t−1 × COFRHr t−1 (7)

in which c0 is the relative rate of change from HS to Hr and COFRHr is the correction factor for plant
resistant tissue and is calculated as follows:

COFRHr t = (1 − ((K t − Hr t)/K t)) (8)

in which K and Hr are as previously described.
For BCAs that prevent infection by the pathogen, the outflow from Hr (named RCOLHr) is

calculated as follows:

RCOLHr t = STARTBt + c1 t × BSUMt−1 × COFRHr t−1 (9)

in which c1 is the relative rate of change from Hr to Hb; BSUM is the total of the tissue colonized by the
BCA (i.e., BSUM = Hb + Ib + Rb); and STARTB and COFRHr are as previously defined.

Since induction of resistance in the host tissue is transitory, the model considers that the Hr tissue
can go back to HS and become susceptible to infection. The flow from Hr to HS is calculated as follows:

RSUSt = et × Hr t−1 (10)

in which e is the relative rate of change from Hr to HS and Hr is as previously described.
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The introduction of a BCA that prevents infection by the pathogen also generates an outflow from
HS (named RCOLH), which is calculated as follows:

RCOLHt = STARTBt + c1 t × BSUMt−1 × COFRt−1 (11)

in which c1 is the relative rate of change from HS to Hb and BSUM, STARTB, and COFR are as
previously defined.

The introduction of a BCA also generates an outflow from I. This occurs for those BCAs able to
inhibit or reduce the sporulation on affected and infectious plant tissue (i.e., I) because of mycoparasitism
and/or antibiosis, so that the infectious tissue reduces its ability to generate new infections. The outflow
from I (named RCOLI) is calculated as follows:

RCOLIt = STARTBt + c2 t × BSUMt−1 × COFRIt−1 (12)

in which c2 is the relative rate of change from I to Ib, BSUM and STARTB are as previously defined,
and COFRI is the correction factor for infectious tissue and is calculated as follows:

COFRIt = (1 − ((Kt − It)/Kt)) (13)

in which K and I are as previously described.
The introduction of a BCA also generates an outflow from R, even though this does not directly

affect the epidemic. This outflow (termed RCOLR) is calculated as follows:

RCOLRt = STARTBt + c2 t × BSUMt−1 × COFRRt−1 (14)

in which c2 is the relative rate of change from R to Rb, BSUM and STARTB are as previously defined,
and COFRR is the correction factor for removed tissue and is calculated as follows:

COFRRt = (1 − ((Kt − Rt)/Kt)) (15)

in which K and R are as previously described.
The model considers that as the plant tissue becomes colonized by the BCA (which is accounted

for by Equations (9), (11), (12), and (14)), the plant tissue can revert to BCA-free tissue because of BCA
mortality. The flows from Hb, Ib, and Rb to HS, I, and R, respectively, are calculated through a rate of
BCA mortality, BMOR (BMORH, BMORI, and BMORR, respectively), as follows:

BMORt = f t × (Hb or Ib or Rb) t−1 (16)

in which f is the relative rate of mortality (i.e., the relative rate of change from Hb, Ib, or Rb to HS, I, or
R, respectively).

2.2. Driving Variables for the Pathogen

Driving variables are those functions that determine the relative rate of change of the system as
influenced by external variables [39].

For pathogen infections that are influenced by temperature and relative humidity, the relative rate
of infection (b) is calculated by Equation (17a):

bt = (γ× Teqt
ζ
× (1− Teqt))

ν
/

(
1 + exp(%−ψ×

RHt
100 )

)
(17a)

in which γ, ζ, and ν are the equation parameters accounting for the effect of temperature; ρ and ψ
are the equation parameters accounting for the effect of humidity; Teq are temperature equivalents
calculated as (Tt − Tmin)/(Tmax − Tmin), in which Tt is the average temperature (in ◦C) of day t;
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Tmin and Tmax are minimal and maximal temperatures at which the pathogen can cause infection,
respectively; and RH is the average relative humidity (%) of day t.

For pathogen infections that are influenced by temperature and the duration of a moist period,
the relative rate of infection (b) is calculated by Equation (17b):

bt = (α×Teqt
β
× (1− Teqt))

θ
× exp −ϑ× exp (−ς×MDt) (17b)

in which α, β, and θ are the equation parameters accounting for the effect of temperature; ϑ and ς are
the equation parameters accounting for the effect of moisture; Teq is as previously described; MD is
moisture duration (number of wet hours per day or number of hours with high RH, depending on the
pathogen).

Equation (17a) is a logistic equation, and Equation (17b) is a Gompertz equation, and both describe
the S-shaped increase in infection as “moisture” (RH or MD, respectively) increases [40] up to an
asymptote that is defined by temperature by means of a bell-shaped beta equation of Analytics [41]. In
the beta equation, parameters γ and α define the top of the curve, ζ and β its symmetry, and ν and θ
its size.

The relative rate of change from I to R (h) is calculated as follows:

h = 1/

φ ×

(

Tt − Tmin
Topt− Tmin

)
×

(
Tmax− Tt

Tmax− Topt

)( Tmax−Topt
Topt−Tmin )


 (18)

in which φ is the duration of the infectious period (in days) at the optimum temperature (Topt, ◦C),
and Tt, Tmin, and Tmax are as previously described.

In Equation (18), the temperature response curve is derived from Reed et al. [42] and Wadia and
Butler [43].

2.3. Driving Variables for the BCA

The model considers four main biocontrol mechanisms: mycoparasitism, competition, antibiosis,
and induced resistance. As in Jeger et al. [28], a single BCA can have one or more biocontrol mechanisms,
and these may operate additively. The biocontrol mechanisms characterizing an individual BCA are
included in the model as the BCA profile (PROF):

PROF = P + C + A + IR (19)

in which P, C, A, and IR are the relative contribution of mycoparasitism, competition, antibiosis, and
induced resistance, respectively, to the overall BCA activity, considering that P + C + A + IR = 1.

The relative rates of change from HS to Hr (c0), HS and Hr to Hb (c1), I to Ib, and R to Rb (c2) are
calculated as follows:

c0 = GRO × IR × EFF0 (20)

c1 = GRO × (C + A) × EFF1 (21)

c2 = GRO × (A + P) × EFF2 (22)

in which GRO is the BCA growth rate under fluctuating temperature and moisture; and EFF0, EFF1,
and EFF2 are overall BCA efficacies in preventing the infection of the HS and Hr tissue by induced
resistance (EFF0), antibiosis, and mycoparasitism (EFF1), and in reducing the sporulation of the I tissue
(EFF2).

In Equations (20), (21), and (22), GRO is calculated by using Equation (17b), in which α, β, and θ
are replaced by χ, δ, and ε (the equation parameters accounting for the effect of temperature); ϑ and ς
are replaced byω and η (the equation parameters accounting for the effect of moisture); and Teq and
MD are as previously defined.
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The relative rate of change from Hb to HS, Ib to I, and Rb to R (f ) is calculated as follows:

ft =

1−


(

Tt − Tmin
Topt− Tmin

)
×

(
Tmax− Tt

Tmax− Topt

)( Tmax−Topt
Topt−Tmin )


 ×

1−


(

RHt −RHmin
RHopt−RHmin

)
×

(
RHmax−RHt

RHmax−RHopt

)( RHmax−RHopt
RHopt−RHmin )


 (23)

in which Tt and RHt are as previously defined, and Tmin, Topt, Tmax, RHmin, RHopt, and RHmax
are the minimal, optimal and maximal temperatures and RHs for BCA survival, respectively. The
temperature and RH response curve in polynomial Equation (23), in which T and RH are the
independent variables, is derived from Equation (18).

The relative rate of change from Hr to HS (e) is constant and depends on the duration of the
induced resistance in the plant tissue, which depends on the combination of BCA and pathogen.

2.4. Model Output

The model output is represented by changes over time of the state variables in the system. An
example of model output is shown in Figure 2A for three categories of host tissue: (i) healthy and
susceptible (HS, green line); (ii) healthy and occupied by the BCA (Hb, purple line); and (iii) occupied
by the pathogen and infectious (I, red line). The simulation describes the changes in the proportion of
the three categories of host tissue following the application of a preventative BCA on day 1 for a 40-d
period during which the host tissue does not change because of plant growth and/or senescence. In
Figure 2A, the proportion of HS tissue declines on day 1 because of the introduction of the BCA, which
colonizes 60% of the tissue, and declines again at day 4 because of infection by the pathogen. Following
infection, the tissue colonized by the BCA remains relatively constant until day 25; during this period,
the BCA is effective in controlling the pathogen, which does not colonize additional tissue. After
day 25, the tissue colonized by the BCA rapidly decreases, and the tissue occupied by the pathogen
increases. Weather conditions (Figure 2B) are important drivers for these dynamics, with a decrease in
air temperature and wetness duration favoring the pathogen more than the BCA.
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Figure 2. A representative simulation of the model, which predicts the control of a foliar pathogen
following application of a biocontrol agent. (A) Example of one simulation that shows the dynamics
for three categories of host tissue: healthy-susceptible tissue (HS, green line); infectious tissue (I, red
line); and BCA colonized tissue (Hb, violet line). The simulation refers to the application of a BCA as a
preventative treatment for a simulation period of 40 days. (B) Weather conditions used as input in
this simulation: temperature (T, ◦C, red line); moisture duration (MD, h, light-blue area); and relative
humidity (RH, %, green line).

An additional state variable, the area under the disease progress curve (AUDPC) [40], was
calculated to evaluate the overall effects of BCA characteristics and usage and of environmental
conditions on the disease development. The AUDPC was calculated at a daily rate (RAUDPC) as the
sum of the total K units of plant tissue occupied by the pathogen (POCC), as follows:

AUDPC = I + R + Ib + Rb. (24)

3. Model Parametrization

The model was parametrized for the biocontrol of BBR in grapevine clusters during ripening,
which is between “veraison” (growth stage GS83, [44]) and “berries ripe for harvest” (GS89). The
simulation period was set at 40 days, with northern Italy as the reference environment [45]. K units are
single berries, which can dynamically belong to one of the seven categories (state variables) of the
model. Since the number of berries is already defined at the beginning of the simulation period (K = 1)
and does not change because of plant growth from GS83 to GS89, relative rate of growth (RRG) was set
to 0 for the entire simulation. Since we assumed that no berries become resistant to B. cinerea infection
because of senescence during that growth stage, relative rate of senescence (RRS) was set to 0 for the
entire simulation.

During ripening, BBR can develop under favorable weather conditions through three main
pathways: (i) latent infections become visible as rotted berries, (ii) air-borne conidia germinate on and
infect berries, and (iii) aerial mycelium produced on rotted berries infects adjacent healthy berries
(berry-to-berry infection) [46,47]. In the current study, we considered that latent infections and resulting
berry-to-berry infections are more common than conidial infections [47–51]. We then assumed that the
BBR epidemic starts with the onset of rotted berries that have been latently infected in early growth
stages, which constitutes the initial inflow of the pathogen into the system (STARTP). This inflow is
assumed to occur on the 4th day of the simulation (i.e., PIN = 4) and to continue for a period of PDUR
= 1 day, at a rate RPIN = 0.2 (meaning that 20% of the berries are affected by latent infections).

During the simulation, new berries become affected (i.e., rotted) through the berry-to-berry
pathway at the relative rate b, which is calculated by using Equation (17a), following Ciliberti et al. [52].



Agronomy 2020, 10, 222 11 of 21

We assumed that as berries become affected, they begin producing conidia and enter in the I category.
Afterwards, the affected berries continue producing conidia until harvest [46]; therefore, there is no
outflow from I to R and h = 0.

Two BCAs with different multiple MOA (i.e., having different PROFs) were entered in the system
(i.e., BCAs are applied to clusters) in different simulation runs. Specifically, the MOA profile of the
first BCA is PROF = P (0.0) + C (0.8) + A (0.2) + IR (0.0). This profile can represent, for example,
Aureobasidium pullulans, which is effective against B. cinerea by competing for nutrients at the infection
site, which is its main MOA, and also by releasing hydrolytic enzymes that inhibit the pathogen [53,54].
The MOA profile of the second BCA is PROF = P (0.8) + C (0.2) + A (0.0) + IR (0.0). This MOA
profile can represent, for example, Pythium oligandrum, which is mainly a mycoparasite but which also
competes for nutrients with pathogens [55].

In the model, the overall BCA efficacies (EFF0, EFF1, and EFF2) in preventing the infection are
considered at their maximal (i.e., EFF0, EFF1, EFF2 = 1), meaning that tissue colonized by the BCA
totally prevents or reduces B. cinerea development.

Both BCAs are applied to clusters as a preventative treatment on the 1st day of simulation (BIN =

1) or as a curative treatment on the 7th day (BIN = 7). These applications constitute the initial inflow of
the BCA into the system (STARTB), which has BDUR = 1 day (i.e., the day of BCA application) at a rate
RBIN = 0.6 (meaning that the BCA covers 60% of the K units at the time of application).

Parameters of driving functions for calculating b, GRO, and f were derived from the literature and
are indicated in Table 2. Rate b is calculated by using Equation (17a), as in Ciliberti et al. [52]. GRO is
calculated by using Equation (17b) and by using different parameter values that describe the different
responses to temperature and moisture of nine BCA strains (named S1 to S9, see Table 2).

Table 2. Parameter estimates of the equations fitting the following relationships: the effects of
temperature and relative humidity on b (the relative rate of Botrytis cinerea infection), the effects of
temperature and moisture duration on GRO (the relative rate of growth of the BCA), and the effects of
temperature and relative humidity on f (the relative rate of BCA mortality).

Relative Rate Parameter

b a γ ζ ν ρ ψ Tmin Tmax

Botrytis cinerea 7.750 2.140 0.469 35.360 40.260 0 30

GRO b BCA strain χ δ ε ω η Tmin Tmax

S1 6.416 1.292 0.469 2.300 0.048 0 35
S2 12.000 4.000 0.469 2.300 0.048 5 37
S3 4.000 0.600 0.469 2.300 0.048 0 30
S4 6.416 1.292 0.469 4.000 0.500 0 35
S5 12.000 4.000 0.469 4.000 0.500 5 37
S6 4.000 0.600 0.469 4.000 0.500 0 30
S7 6.416 1.292 0.469 2.300 0.010 0 35
S8 12.000 4.000 0.469 2.300 0.010 5 37
S9 4.000 0.600 0.469 2.300 0.010 0 30

f c Survival capability Tmin Tmax Topt RHmin RHmax RHopt

low 0 35 10 0 100 30
medium 5 35 15 0 100 40

high 5 40 20 0 100 50
a b = (γ × Teqζ × (1 − Teq))ν ⁄ (1 + exp (ρ−ψ×RH/100)); b is the relative infectious rate; Teq is the equivalent of temperature
calculated as (Tt−Tmin)/(Tmax−Tmin), in which T is the average temperature (in ◦C); and RH is the average
relative humidity (%). b GRO = (χ × Teqδ × (1 − Teq))ε × exp −ω×exp (−η×MD)); GRO is the BCA growth rate under
Teq, as previously described; and MD is moisture duration. c f = {1−[((T − Tmin)/(Topt − Tmin)) × ((Tmax −
T)/(Tmax − Topt))((Tmax−Topt)/(Topt−Tmin))]} × {1 − [((RH − RHmin)/(RHopt − RHmin)) × ((RHmax − RH)/(RHmax −
RHopt))((RHmax−RHopt)/(RHopt−RHmin))]}; T and RH are as previously defined; Tmin, Topt, Tmax, RHmin, RHopt, and
RHmax are minimal, optimal, and maximal temperatures and relative humidity, respectively, for BCA survival.
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Finally, rate f is calculated using Equation (23), with different settings of parameter values referring
to three temperature and humidity conditions under which the BCA survives (Table 2); these settings
simulate different BCA manufacturing processes and/or formulations that result in different survival
capabilities under stressful vineyard conditions [56,57].

4. Model Running

The model was used to study the effect of the following sources of variation on BBR development:
(i) MOA of the BCA (2 levels: mainly competition and mainly mycoparasitism); (ii) BCA application
time (2 levels: preventative and curative); (iii) BCA strain (9 levels: 3 ranges of temperatures combined
with 3 moisture requirements for BCA growth); and (iv) BCA survival capability (3 levels: low, medium,
and high). These sources of variation generate 108 combinations (2 MOAs × 2 application times × 9
strains × 3 survival capabilities). In addition, a situation with no BCA application was considered as
the untreated control (NT). To study the effects of environmental conditions, each combination was
run under nine scenarios that reflect three climate types with three scenarios per type: (i) warm and
dry, (ii) mild and semi-arid, and (iii) cold and wet. Scenarios are represented by fluctuating conditions
of temperature, relative humidity, and wetness duration (see Table 3). Therefore, 981 model runs were
generated: (1 NT + 108 BCA combinations) × 9 climate scenarios.

Table 3. Summary of the weather data for the nine climate scenarios.

Climate Type Scenario Average
Temperature (◦C) a

Average Relative
Humidity (%) b

Total Wetness
Duration (h) c

Warm and dry 1 25.74 68.80 56
2 25.40 74.85 70
3 25.88 69.75 61

Mild and semi-arid 1 19.15 79.27 81
2 20.08 79.35 91
3 18.74 80.97 112

Cold and wet 1 17.08 87.32 588
2 15.37 87.55 287
3 16.16 88.30 446

a Average of daily temperatures (◦C). b Average of daily relative humidity (%). c Total number of hours with wetness (h).

An example of the effect of the previously mentioned sources of variation on the disease dynamics
in the three climate types is provided in Figure 3. Each graph shows the simulated proportion of
the host tissue occupied by the pathogen (POCC) over the entire simulation period for each climate
type (blue lines, cold and wet; green lines, mild and semi-arid; and yellow lines, warm and dry;
Figure 3). Simulations of Figure 3 refer to a competitive BCA (Figure 3A,B) or to a mycoparasitic BCA
(Figure 3C,D) applied as a preventative treatment (Figure 3A,C) or as a curative treatment (Figure 3B,D),
with the temperature and moisture requirements of S8 and with low survival capability (Table 2). In
the cold and wet climate type, BCA application reduced the final (i.e., at day 40) value of POCC by
11% to 16%. In the mild and semi-arid climate type, BCA application reduced the final value of POCC
by 53% to 68%, irrespective of application time or MOA. In the warm and dry climate type, BCA
application reduced the final value of POCC by 40% to 45%.

The final values of AUDPC simulated for each of the 981 runs of the model were used to calculate
the efficacy (E) of each BCA combination (T) in relation to the untreated control (NT), as follows: E
= (NT – T)/NT. A factorial analysis of variance (ANOVA) was carried out for each climate type to
determine whether the efficacy of each BCA combination was significantly affected by the main sources
of variation (MOA, application time, strain, and survival capability) or their interactions. The three
scenarios per climate type were used as replicates. The ANOVA was conducted by using the function
anova of R software (v 3.6.0; R core team, [58]).
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Figure 4 summarizes the efficacy of the BCA in controlling BBR for the different simulation runs.
Under the cold and wet climate (Figure 4A), in which BBR developed rapidly and occupied all of
the host tissue in < 20 days (Figure 3), BCA efficacy ranged from 0% to 99% and was significantly
influenced by all of the main sources of variation (p < 0.001) and by the following interactions: MOA
× application time, application time × strain, application × survival capability, and strain × survival
capability (Table 4). MOA and application time (preventative or curative) accounted for 2.6% and 1.7%
of total variance, respectively, and all of the interactions accounted for <1.7% of the total variance
(Table 4). Those factors that are greatly affected by environmental conditions (the BCA strain and its
survival capability) together accounted for 91% of the total variance (Table 4). The average efficacy
was higher for BCAs with medium or high survival capability (Figure 5A) than for BCAs with low
survival capability. The average efficacy in the cold and wet climate was higher for S2 and S8 than for
S6 (Figure 6).
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Figure 3. Examples of the total tissue occupied by the pathogen (POCC) as affected by MOA, application
time, and climate type. (A) A mainly competitive BCA applied as a preventative treatment, (B) A
mainly competitive BCA applied as a curative treatment, (C) A mainly mycoparasitic BCA applied as a
preventative treatment, and (D) a mainly mycoparasitic BCA applied as a curative treatment. Dashed
lines indicate POCC dynamics when no BCA application is applied (NT), and solid lines indicate POCC
dynamics when a BCA is applied. Blue, green, and yellow lines indicate the simulation in a cold and
wet, mild and semi-arid, and warm and dry climate type, respectively. Each line corresponds to the
POCC dynamics averaged across the three scenarios used as replicates for each climate type.
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Figure 4. BCA efficacy against Botrytis bunch rot in ripening grapevine clusters, as affected by MOA
(mainly competitor or mainly mycoparasite, as indicated at the top of the figure); responses of 9
BCA strains to temperature (S1 to S9; X axis, see Table 2 for details); BCA survival capability (low,
medium, and high, as indicated on the right side of each plot); and climate (A: cold and wet, B: mild
and semi-arid, and C: warm and dry). Each point represents the average, and the bars represent the
standard errors of three scenarios per each climate type. Red and blue colors indicate that the BCA is
applied as a preventative or a curative, respectively, i.e., before or after Botrytis cinerea infection.
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Table 4. Analysis of variance statistics for the influence of MOA, application time, BCA strain, and survival capability on BCA efficacy.

Warm and Dry a Mild and Semi-Arid Cold and Wet

Source of Variation df b Variance c P (>F) Variance P (>F) Variance P (>F)

MOA 1 0.05 0.724 0.763 0.017 2.59 <0.001
Application time 1 0.03 0.791 0.155 0.279 1.66 <0.001

Strain 8 0.03 1.000 0.412 0.002 4.96 <0.001
Survival capability 2 97.34 <0.001 97.884 <0.001 86.02 <0.001

MOA × Application time 1 0.14 0.562 0.009 0.788 1.31 0.001
MOA × Strain 8 0.02 1.000 0.015 0.998 0.10 0.553

MOA × Survival capability 2 0.05 0.879 0.264 0.137 0.06 0.626
Application time × Strain 8 0.03 1.000 0.011 1.000 1.04 <0.001

Application time × Survival capability 2 2.15 0.007 0.311 0.097 1.68 <0.001
Strain × Survival capability 16 0.01 1.000 0.137 0.417 0.25 0.010

MOA × Application time × Strain 8 0.02 1.000 0.002 1.000 0.10 0.547
MOA × Strain × Survival capability 16 0.01 1.000 0.017 1.000 0.04 0.991

MOA × Application time × Survival capability 2 0.08 0.823 0.008 0.949 0.03 0.799
Application time × Strain × Survival capability 16 0.01 1.000 0.012 1.000 0.12 0.446

MOA × Application time × Strain × Survival capability 16 0.01 1.000 0.000 1.000 0.03 0.999
a To study the effect of environmental conditions, each combination was run under nine contrasting scenarios, i.e., under three scenarios for each of three climate types. b Degrees of
freedom. c Percentage of the variance accounted for by each source of variation.
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means, and black points in the graph are outliers.
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Under the mild and semi-arid climate (Figure 4B), in which BBR developed gradually and did
not completely occupy the host tissue until the end of the simulation period (Figure 3), BCA efficacy
ranged from 1% to 71% and was significantly influenced by the MOA of the BCA (P = 0.017), which
accounted for 0.8% of total variance (Table 4), and by the growth requirement of the BCA (as indicated
by the strain; p = 0.002), which accounted for 0.4% of total variance (Table 4). BCA efficacy was
significantly affected (p < 0.001) by the survival capability of the BCA, which accounted for 97.9% of
the total variance (Table 4); BCA efficacy increased with the survival capability of the BCA (Figure 5B).

Under the warm and dry climate (Figure 4C), in which BBR developed slowly and occupied only
50% of the host tissue at the end of the simulation period (Figure 3), BCA efficacy ranged from 0%
to 40% and was significantly influenced by the survival capability of the BCA (p < 0.001) and by the
interaction between application time and survival capability (P = 0.007), which accounted for 97.3%
and 2.2% of total variance, respectively (Table 4). The average efficacy was higher for BCAs with a
high survival capability than for BCAs with a low or medium survival capability (Figure 5C). MOA,
strain, and application time did not significantly affect BCA efficacy (Table 4).
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5. Discussion and Conclusions

The model that was developed by Jeger et al. [28] and that was improved by Xu et al. [29], Xu et
al. [30], and Xu and Jeger [31], accounts for the biocontrol mechanisms involved and is able to predict
the dynamics of pathogen and biocontrol agent (BCA) populations. In Xu and Jeger [31], the significant
effects of varying BCA–temperature relationships and application times on BCA efficacy suggested
the importance of considering environmental conditions under which the BCA and target pathogen
interact. In the present research, the model of Jeger et al. [28] was enlarged to include crop growth and
senescence and the environmental effects on the pathogen and on BCA growth and survival. Like
the model of Jeger et al. [28], the enlarged model has a generic structure and can be applied to any
pathosystem involving fungal pathogens of aerial plant organs, as well as different pathogen–BCA
interactions involving different BCA mechanisms of action.

We parametrized the enlarged model for B. cinerea causing Botrytis bunch rot (BBR) on grapevines.
The model parametrization was derived from the epidemiological studies performed by Ciliberti and
colleagues [52,59,60]. Those epidemiological relationships were incorporated in a mechanistic model
for B. cinerea-grapevine developed by González-Domínguez et al. [47], but the latter model did not
include a BCA component. The use of BCAs for BBR control has been extensively studied [61–66], with
emphasis on biocontrol mechanisms and field efficacy; less research has been conducted to understand
how environmental conditions affect BCA fitness and efficacy [11]. In the current study, the model
parametrization for BCAs used different parameter values represented by nine BCA strains, which
differed in their growth and survival in response to temperature and moisture conditions.

The model was run under three climate types to study the combined effects of the following
factors: (i) mechanism of action of the BCA, (ii) timing of BCA application with respect to the pathogen
(preventative vs. curative), (iii) temperature and moisture requirements for BCA growth, and (iv)
BCA survival capability. All of these factors affected, although to different degrees, biocontrol efficacy.
Environmental conditions were the most important factors, accounting for > 90% of the variance
in simulated biocontrol efficacy; other factors, even though significant under some climate types,
accounted for only a minor percentage of the variance. This finding may help explain why the
application of BCAs often results in inconsistent control of the target pathogen in the field [66]. In other
words, our results suggest that the inconsistent BCA efficacy in repeated experiments [8,16,67] and in
the practical biocontrol of diseases [63,68–70] can be caused, at least to some extent, by differences in
environmental conditions between experiments or by fluctuations in environmental conditions in the
same experiment [1,12,13]. This finding also stresses the importance of considering the environmental
response of the BCA during its selection, BCA survival capability during both selection and formulation,
and weather conditions and forecasts at the time of BCA application in the field.

Concerning the environmental response of the BCA during its selection, BCAs that are able to
grow under a wide range of environmental conditions (i.e., strains S2 and S8 in this study) and that
share the temperature and moisture requirements of the target pathogen may be more effective than
BCAs with a more limited ability to grow under a range of environmental conditions. BCA responses to
temperature and moisture can be evaluated by means of environmentally controlled experiments [71],
and the effects of temperature and moisture on the pathogen–BCA relationship can be evaluated by
using environmental niches [11]. It is essential that the effects of environments be included when
screening BCAs for market development [72,73].

Concerning the BCA survival capability during both selection and formulations, our model
simulations indicate that BCAs may be more effective in controlling the target pathogen for long
periods and under a range of weather conditions if they have a high rather than a low survival
capability. This result confirms previous findings [74–76] and also the importance of protective effects
provided by additives or adjuvants used in the formulation of the commercial product [56,77,78]. This
result also confirms that survival capability should be a key property used to screen microorganisms
for biocontrol [73].
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Finally, weather conditions and forecasts at the time of BCA application in the field should
be considered so as to maximize the probability that the BCA will grow and control the pathogen.
Although the current model could be useful in this respect, its utility should be verified with field
experiments [79]. On the other hand, developers of BCAs could use the current model to predict the
efficacy of candidate organisms under different scenarios of weather conditions and application timings.
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