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Abstract: Iron-biofortification is a sustainable food-based approach to combat iron deficiency by
increasing iron content and bioavailability in agronomic crops. Siderophore producing microbes
offer a sustainable and low-cost way to increase iron supply in crops. Also, certain substances
released from organic amendments act as iron-chelators which increase the solubility as well as the
availability of iron to plants. Present study investigated the role of siderophore-producing endophytic
bacteria and biochar on iron-fortification of a novel crop quinoa in iron-limited saline conditions.
The surface-disinfected seeds of quinoa were inoculated with Burkholderia phytofirmans PsJN (CFU =

109) and sown in saline soil (EC 20 dS m−1) amended with biochar (1% w/w). Results revealed that
biochar and PsJN particularly when applied together significantly enhanced plant growth, grain yield,
and grain nutrient contents of quinoa. Strikingly, iron concentration in quinoa grains was increased
up to 71% by the combined application of biochar and PsJN. Moreover, plant physiological parameters
were also improved significantly by the integrated application. However, enzymatic/non-enzymatic
antioxidants activities were decreased by integrated treatment thus ameliorated salinity stress.
Our study suggests that integrated application of siderophore-producing bacteria and biochar could
be a promising, sustainable and cost-effective strategy which is easily integratable into the existing
farming practices to achieve food fortification with micronutrients in developing countries.

Keywords: plant-microbe interaction; biofortification; salinity; biochar; quinoa; nutrient homeostasis

1. Introduction

Iron deficiency in plant-based foods continues to pose significant public health problems in
resource-limited settings. Hidden hunger for iron is significant nutritional disorder in the world, which
is considered as a prominent cause of anemia [1]. In developing countries, about 40% of young children
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and 50% of pregnant women are anemic [2]. A recent investigation showed that iron deficiency in the
newborn babies is responsible for irretrievable influence on the structure, function and the development
of the brain [1,3]. Iron deficiency can be cured either through pharmacological iron supplementation
or through agriculture-based iron biofortification. Iron-biofortification is a sustainable food-based
technique to combat iron deficiencies in humans that can be achieved through three main strategies: (i)
increase of iron content in grains or edible parts of plants (ii) increase of the prebiotics concentration
in the plant edible parts that favor iron absorption (iii) decrease of antinutrients like phytic acid that
reduce iron absorption in the human gut by iron chelating [4].

Agriculture-based iron biofortification can be done by crop fertilization with iron chelates.
However, in developing countries, this approach is not sustainable because it requires the long-term
supplementation of iron fertilizers and is costly accompanying potential threats to the environment.
Conversely, siderophore-producing microbes offer a sustainable and low-cost way to supply iron to
the crops. Plant growth promoting bacteria (PGPB) are known to cause improvement in iron uptake
in important food crops [5]. PGPB release siderophores into the surrounding environment, which
scavenge iron by making iron-chelate complexes and enhance its uptake through growing roots [6].
In saline soils, oxidation states of iron fluctuate between soluble forms to relatively insoluble forms
leading to the reduced iron availability in plants [7].

PGPB-based iron supply appeared to be more effective in iron-limited soils, where high pH
and salinity reduce Fe availability to crop plants [8]. Under stress conditions, PGPB releases an
enzyme 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase, which can mitigate the negative
effect of salinity on root growth by lowering the ethylene concentration in the plants [9–12]. PGPB
strain Burkholderia phytofirmans PsJN is well known to promote plant growth by improving essential
nutrient uptakes like phosphorus, iron, and zinc or by releasing other plant growth regulators like
ACC-deaminase and indole acetic acid [13]. Moreover, organic amendments when applied to soils
secret certain chemical compounds which acts as chelators and sequester nutrients thus increase
their bioavailability to crops [14]. Among the different forms of organic amendments, biochar is well
known for improving soil health and nutrient mobilization [15,16]. It has been reported that biochar
application enhances both the extent and rate of bacterial ferrihydrite reduction by mediating electron
transfer processes [17].

Chenopodium quinoa (quinoa) has recently gained worldwide attention due to its high nutritious
and gluten-free edible grains. It has been recognized as a key crop to improve world food security
because of its potential to grow on salt-affected soils which are not suitable for other major food
crops [18–20]. Until now, food-based iron biofortification is mostly studied either by Fe fertilization or
through genetic modification of important crops. However, microbial-based and biochar-based iron
biofortification offers more sustainable and cost-effective strategies to provide micronutrients (iron,
zinc, etc.,) in developing countries. Moreover, iron biofortification of important agronomic crops like
rice, wheat, and maize has been focused [21–24] but Fe biofortification of emerging food crop quinoa
is hardly investigated. Here, we investigated the potential of plant growth-promoting bacterium B.
phytofirmans PsJN and organic amendment (biochar) on the growth characters, yield parameters and
iron biofortification potential of quinoa growing in iron-limited saline soil.

2. Materials and Methods

2.1. Preparation of Endophytic Inoculum

The plant growth supporting endophytic bacterium Burkholderia phytofirmans PsJN was donated
by culture group of Bioresource Unit, Austrian Institute of Technology, Vienna, Austria. The inoculum
of B. phytofirmans PsJN was prepared in 500 mL Erlenmeyer flask comprising 200 mL Luria-Bertani
(LB) broth. The flask was incubated in an orbital shaking incubator (Firstek Scientific, Tokyo, Japan) at
180 rpm for 48 h at 28 ± 2 ◦C. The optical density of culture was measured at wavelength 600 nm via
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spectrophotometer (Nicolet Evolution 300 LC, England, UK) and adjusted to OD0.5 to attain an even
cell density of bacteria (109 CFU mL−1) for inoculation.

The soil was prepared by sieving via a 2 mm mesh to remove plant debris, clods, etc., and analyzed
for various characters. The soil texture as measured through hydrometer method reported by Gee and
Bauder [25] was found to be clay loam comprising of 39.0% sand, 29.0% silt and 32.0% clay. The pH
of the soil paste was 7.9, and the electrical conductivity of soil was 1.98 dS m−1. Plant available Fe
was 3.9 mg kg−1 as extracted using 0.005 M DTPA [26]. Available phosphorus was measured by
the method described by Watanabe and Olsen [27], nitrogen by Bremner and Mulvaney [28] and
extractable potassium following the method of Richard [29]. Soil salinity level was maintained up to
(20 dS m−1) using sodium chloride salt. Tree twigs feedstock was pyrolyzed at 400 ◦C for production
of biochar in a laboratory setup muffle furnace with 10 ◦C min−1 increase in temperature and 40 min
residence time was maintained as described by Sanchez et al. [30]. The biochar was analyzed for
physicochemical properties as pH 7.24, EC 1.62, cation exchange capacity 88.52 cmolc kg−1, organic
carbon 57.20%, nitrogen 1.29%, phosphorus 2.94%, potassium 2.26%, zinc 82.53 mg kg−1 and iron
89.36 mg kg−1. The prepared biochar was then mixed at a rate of 1% (w/w) in the soil. The seeds of
quinoa (cv. UAF-Q7) were obtained from the Laboratory of Alternative Crops, Department of Crop
Physiology, University of Agriculture, Faisalabad, Pakistan. Surface-disinfected seeds of quinoa were
soaked in liquid suspension of PsJN (109 CFU mL−1) for one hour while un-inoculated seeds were
dipped in broth without bacterial cells [31]. Six seeds were initially sown in polyethene lined pots
containing 8 kg soil and after germination, two seedlings per pot (each representing one replicate) were
maintained. The seeds were sown in mid of November 2016, and the mean maximum temperature
was 22 ± 2 ◦C while mean minimum temperature was 11 ± 2 ◦C during the crop season. Pots were
placed in rain protected wire-house of Institute of Soil and Environmental Sciences, University of
Agriculture, Faisalabad, Pakistan under natural conditions. Iron was applied @ of 63 mg kg−1 using
(FeSO4.7H2O) as Fe source. Recommended rates of nitrogen, phosphorus and potassium were applied
at a proportion of 75, 60 and 30 kg ha−1, respectively by means of urea, diammonium phosphate, and
sulfate of potash. There were four treatments (i) control, (ii) biochar, (iii) PsJN and (iv) PsJN + biochar
which were replicated thrice under completely randomized design (CRD).

2.2. Plant Growth Parameters

Plant height and dry mass of roots and shoots were recorded on maturity following standard
procedures. Grains were threshed manually after harvesting the plants and air-dried under the shadow
after washing. Samples of root and shoot were dried in the oven at 80 ◦C for 48 h.

2.3. Physiological Attributes

After 55 days of sowing, various gas exchange traits, from upper canopy entirely stretched leaves
(two fully matured leaves per plant and four leaves per treatment) between 11:00 and 14:00 h were
determined by using CIRAS-3 (PP System, Amesbury, MN, USA). Measurements were done on 1.7 cm2

area of the leaf at 400 µmol mL−1 of carbon dioxide as well as 1000 µmol m−2 s−1 of photosynthetically
active radiations (PAR). Leaf chlorophyll contents were assessed by using SPAD meter. Each sample of
the leaf was measured at least six diverse spaces for SPAD measurement.

2.4. Extraction and Enzymatic/Non-Enzymatic Antioxidant Assays

Extraction of various enzymatic and non-enzymatic antioxidant was done by homogenizing solid
fresh leaf material in an ice-cold solution comprising of 0.2 M potassium phosphate buffer (pH 7)
having 0.1 mM EDTA. Glutathione reductase was estimated according to the method reported by
Smith et al. [32]. The activities of oxidized glutathione (GSSG) and reduced glutathione (GSH) were
calculated following [33] method. Whereas, Ascorbate peroxidase (APX) assay was performed by
Nakano and Asada [34]. Roth and Gilbert, [35] classical method was adapted to monitor the activity
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of superoxide dismutase (SOD) and the activity of glutathione-s-transferase (GST) was measured
spectrophotometerically by the method given by Habig et al. [36].

2.5. Measurement of Stress Related Metabolites

The ROS (super oxide anion O2
•−) was measured according to the method described by Elstner

and Heupel [37]. Whereas, to measure lipid peroxidation or malondialdehyde (MDA) concentration in
leaves the original method given by Jambunathan [38] was applied.

2.6. PsJN colonization of Rhizosphere, Root, and Shoot

Rhizosphere and endophytic colonization of plant tissues by the inoculant strain PsJN were
determined by dilution and plate counting technique. After harvesting, rhizospheric soil was sampled
by roots agitation and collecting closely adhered soil. For colonization assay, soil slurry was prepared at
a ratio of 1:3 (soil: NaCl) mixing 5 g rhizosphere soil with 15 mL of 0.9% (w/v) NaCl solution following
agitation at (180 rpm) for 30 min at 28 ◦C. After complete soil particles sedimentation, serial dilutions
up to 10−6 were plated onto tryptic soy agar (TSA) medium. Colonies were counted after incubating
the plates at (28 ± 2 ◦C) for 48 h, and the colonization value was determined afterwards. For root/shoot
colonization, 2 g of surface-sterilized samples of each were homogenized in 10 mL 0.9% NaCl solution
by using a sterile mortar and pestle. The material was placed in a shaking incubator for 30 min at 28
◦C. After settling the solid fraction, serial dilutions up to 10−5 were spread on TSA medium. 20 visible
colonies were selected per treatment randomly, and their identity with that of inoculant strain was
authenticated by restriction fragment length polymorphism (RFLP) analysis of the 16S–23S rRNA
intergenic spacer (IGS) region [39].

2.7. Water Relations and Grain Quality Parameters

Relative water contents (RWC), relative membrane permeability (RMP) and membrane stability
index (MSI) were measured from fully matured flag leaves. Relative water contents were assessed by
the method given by Mayak et al. [40].

RWC =
f resh weight− dry weight

f ully tugid weight− dry weight
× 100 (1)

For measuring RMP, leaves were cut and placed into test tubes consisting of 20 mL deionized
water, and EC0 was measured after vortexing samples for ten seconds. EC1 of this solution was
measured after 24 h of incubation at 4 ◦C. The tubes were autoclaved at 121 ◦C for 20 min to measure
EC2. Following formula was used to calculate RMP as defined by Yang et al. [41].

RMP(%) =
EC1 − EC0

EC2 − EC0
× 10 (2)

For measuring MSI, leaf cuttings were weighed and transferred into test tubes containing 10 mL
deionized water. These test tubes were set aside in water bath at 40 ◦C for 30 min, and EC1 was noted.
Then, tubes were set aside in water bath at 100 ◦C for 10 min to find out EC2. The formula to calculate
MSI as defined by Sairam et al. [42] is given below.

MSI =
[
1−

EC1

EC2

]
× 100 (3)

The concentration of protein in total grain samples was evaluated by Bradford method [43].
Phytate was examined through a process defined by Haug and Lantzsch [44]. After grinding, 60 mg of
each grain sample was extracted with 10 mL (0.2 N HCl) 25 ◦C for 2 h and following measurement
of respective concentration spectrophotometerically. Ash analysis of grain was done via methods of
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AOAC [45]. All devices utilized for chemical and biochemical examination were soaked in diluted
HNO3 (pro analysis quality, Merck, Kenilworth, NJ, USA) and washed with deionized water.

2.8. Nutrient Analysis

Plant samples (roots and shoots) were digested following Wolf [46] method by using sulphuric acid
(H2SO4) and hydrogen perchloric acid (HClO4). The digested samples (grains) were crushed in a mill
and passed through 0.5 mm sieve to perform chemical and biochemical analysis. For quantifying iron
metal, known weight of ground sub-samples of total grains was placed on digestion in a di-acid mixture
having ratio 2:1 (HNO3: HClO4) [47]. Concentrations of sodium and potassium in the root, shoot, and
grains of quinoa were determined by a flame photometer (Jenway, PFP-7, Staffordshire, UK) and Na+/K+

ratio was calculated afterwards. The concentration of nitrogen in the roots, shoots and grains of quinoa
was determined using Kjeldahl apparatus. Plant available phosphorus was determined using Barton
reagents through Ashraf et al. [48] method. Iron concentration was measured on atomic absorption
spectrophotometer (Perkin Elmer Aanalyst-100, PerkinElmer Inc, Waltham, MA, USA).

2.9. Statistical Analysis

Data recorded for growth, physiology, nutrients, and biochemical quality were subjected to
one-way (ANOVA) analysis of variance using statistix 8.1® software (Statistix, Tallahassee, FL, USA).
Significant differences among treatment means were computed by post hoc Tuckey’s test (P < 0.05).

3. Results

3.1. Plant Growth Parameters

Plant growth parameters varied considerably upon amendment of plant growth-promoting
endophyte PsJN alone and in a combination with biochar. Overall, both the sole bacterial inoculation
and in combination with BC increased the growth, development and nutrient uptake of quinoa at both
levels of iron fertilizer but the influence was more noticeable at 63 mg kg−1 iron level especially in the
integrated application (PsJN + BC) (Table 1). In the sole application of PsJN and BC, plant height was
increased up to 12 and 39%, respectively relative to the untreated control (EC, 20 dS m−1). Whereas, the
integrated use of PsJN and biochar resulted in a more striking effect on plant height that was recorded
up to 94% more over untreated control. Similarly, integrated application significantly increased shoots
and roots dry weights up to 38% and 46%, respectively at higher Fe level over control. Sole application
of BC and PsJN increased shoots dry weight up to 13% and 10% at Fe 3.9 mg kg−1 while 27% and 24%
increase was observed at Fe 63.9 mg kg−1. Similarly, same treatments showed increase in roots dry
weight (15%, 8%) and (38%, 31%) at both Fe levels, respectively as compared to control. Relatively
little increase (7% and 10%) in grain yield was observed by separate application of BC and PsJN at low
Fe level while up to 22 and 28% increase was observed when same treatments were integrated with
Fe at higher level as compared to control. The maximum increase in grain yield (35%) was recorded
through combined use of BC, PsJN and Fe (63.9 mg kg−1) over control.

3.2. Physiological Attributes

Plant physiological characters showed the greatest improvement with the integrated application
of endophyte PsJN and tree-twigs biochar under saline environment. The integrated application
significantly increased photosynthetic and transpiration rate up to 41% and 138%, respectively
compared to control. However, solely the biochar and PsJN boosted rate of photosynthesis up to 9 and
20%, respectively relative to control when both treatments were combined with Fe, relatively higher
increase 26% and 34% were observed compared to control. Similarly, in transpiration rate, BC and PsJN
showed 115 and 100% increase at Fe 63.9 mg kg−1 relative to control. The other physiological parameters
such as stomatal and sub-stomatal conductance, integrated use performed better as compared to the
sole application of bacteria and BC at both Fe levels compared to control (Table 1).
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Table 1. The effect of biochar-Burkholderia phytofirmans PsJN integration on growth and physiological parameters of Chenopodium quinoa under salinity stress.

Treatment Fe (mg kg−1)
Plant Height

(cm)
Root Dry Weight

(g pot−1)
Shoot Dry

Weight (g pot−1)
Grain Yield

(g pot−1)

Photosynthetic
Rate (µmol

CO2 m−2 s−1)

Transpiration
Rate (µmol

H2O m−2 s−1)

Stomatal
Conductance

(µmol m−2 s−1)

Internal CO2
Concentration
(µmol mol−1)

C
3.9 35.3 ± 1.45 g 1.3 ± 0.086 d 3.7 ± 0.165 c 6.8 ± 0.332 e 11.6 ± 0.185 e 1.3 ± 0.88 e 75.3 ± 2.02 e 274.7 ± 5.54 a

63.9 45 ± 1.94 ef 1.4 ± 0.086 bc 4.4 ± 0.258 ab 7.8 ± 0.265 c 13.4 ± 0.317 cd 1.9 ± 0.56 cd 83.7 ± 2.18 de 254.3 ± 4.91 bc

BC
3.9 48.9 ± 1.67 de 1.5 ± 0.106 bc 4.2 ± 0.248 bc 7.3 ± 0.270 d 12.6 ± 0.523 de 2.1 ± 0.91 c 86.7 ± 2.60 cd 246.3 ± 4.33 cd

63.9 61.2 ± 2.03 b 1.8 ± 0.128 ab 4.7 ± 0.355 ab 8.3 ± 0.292 b 14.6 ± 0.425 bc 2.8 ± 0.44 b 109.3 ± 3.52 a 231.7 ± 3.92 de

PsJN 3.9 39.5 ± 2.04 fg 1.4 ± 0.076 cd 4.1 ± 0.230 bc 7.5 ± 0.384 cd 13.9 ± 0.642 cd 1.7 ± 1.11 d 81.3 ± 2.02 de 264 ± 6.08 ab
63.9 56.9 ± 1.76bc 1.7 ± 0.113 ab 4.6 ± 0.302 ac 8.7 ± 0.352 ab 15.5 ± 0.550 ab 2.6 ± 0.64 b 99.3 ± 3.17 b 241 ± 4.16 cd

BC+PsJN 3.9 51.7 ± 1.90 cd 1.5 ± 0.104 ab 4.1 ± 0.261 bc 7.7 ± 0.243 cd 14.4 ± 0.545 bc 2 ± 1.04 cd 94.3 ± 2.40 bc 239.7 ± 3.48 cd
63.9 68.5 ± 1.96 a 1.9 ± 0.153 a 5.1 ± 0.346 a 9.2 ± 0.298 a 16.4 ± 0.497 a 3.1 ± 0.26 a 113.3 ± 3.84 a 220.7 ± 3.52 e

Quantities sharing similar letters are not different with each other. C: Control; BC: Biochar (1% w/w); PsJN: Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). Values are mean of
three repeats ± SD.
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3.3. Water Relations, Chlorophyll Content and Grain Quality Parameters

Data indicated that the integrated application of BC and PsJN also significantly increased the
water relations of Chenopodium quinoa in terms of RWC, MSI and RMP up to 55%, 127%, and 64%
respectively relative to their control treatments at Fe 63.9 mg kg−1 (Table 2). The sole application of BC
and PsJN showed increase in RWC (20% and 14%), MSI (45% and 30%) and RMP (23% and 9%) at
low Fe relative to their controls. However, BC and PsJN when combined with Fe showed increase
42% and 30% in RWC, 98% and 110% in MSI and 58% and 43% in RMP, respectively as compared to
control. Likewise, the grain protein and ash levels were improved up to 61% and 57% over control by
the simultaneous use of biochar and PsJN at higher Fe level. However, alone application of biochar
and PsJN enhanced protein levels up to 9% and 18% at low Fe while up to 42% and 52%, respectively at
higher Fe than control. Likewise, sole use of biochar and PsJN increased grain ash contents by 9% and
17% at low Fe, while 38% and 49% at high Fe level, respectively than control. In case of chlorophyll
content, sole use of BC and PsJN enhanced 15 and 23% chlorophyll content as compared to control at
higher Fe level. Maximum increase (32%) in chlorophyll content was recorded through combined use
of BC and PsJN at Fe 63.9 mg kg−1 (Table 2).

Table 2. The effect of biochar-Burkholderia phytofirmans PsJN integration on water relations, chlorophyll
contents and grain quality parameters of Chenopodium quinoa under salinity stress.

Treatment Fe (mg kg−1) RWC (%) RMP (%) MSI (%) Protein (%) Ash (%) Chlorophyll
(SPAD)

C
3.9 47.33 ± 1.53 d 42.43 ± 1.54 d 18.60 ± 0.66 e 9 ± 0.38 e 2.3 ± 0.15 e 47.5 ± 1.47 d

63.9 54.16 ± 1.84 cd 55.90 ± 2.08 b 28.80 ± 1.10 cd 12.1 ± 0.35 c 3 ± 0.23 ad 51.6 ± 1.73 cd

BC
3.9 56.60 ± 1.59 c 52.20 ± 1.99 bc 26.90 ± 0.81 cd 9.8 ± 0.23 de 2.5 ± 0.15 de 50.9 ± 1.51 d

63.9 67.13 ± 2.08 ab 66.80 ± 2.03 a 36.90 ± 1.10 b 12.8 ± 0.35 bc 3.2 ± 0.23 ab 54.7 ± 1.77 bc

PsJN 3.9 53.80 ± 1.59 cd 46.16 ± 1.48 cd 24.10 ± 0.64 d 10.6 ± 0.36 d 2.7 ± 0.15 ce 52.3 ± 1.33 cd
63.9 61.53 ± 1.79 bc 60.73 ± 1.85 ab 39.20 ± 1.18 ab 13.7 ± 0.27 ab 3.4 ± 0.26 ab 58.5 ± 1.83 ab

BC+PsJN 3.9 59.00 ± 1.91 bc 54.43 ± 1.51 bc 29.80 ± 0.63 c 12.4 ± 0.32 c 2.8 ± 0.17 be 53.2 ± 1.87 c
63.9 73.30 ± 1.84 a 69.70 ± 2.15 a 42.23 ± 1.39 a 14.5 ± 0.37 a 3.6 ± 0.21 a 62.6 ± 2.01 a

Quantities sharing similar letters are not different with each other. Values are mean of three repeats ± SD. C: Control;
BC: Biochar (1% w/w); PsJN: Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). RWC = Relative water
contents, RMP = Relative membrane permeability and MSI = Membrane stability index.

3.4. Nutrient Analysis

Data regarding Fe concentration in roots revealed that integrated application significantly increased
root Fe concentration relative to control at both iron levels. However, the maximum increment 71% in
root iron content was noticed when Fe was applied at 63.9 mg kg−1 along with BC and PsJN. The sole
application of BC and PsJN showed 40% and 48% in shoot and 43% and 53% increase in grain Fe
contents, respectively as compared to control whereas integrated application strikingly enhanced Fe
concentration up to 70 and 71%, respectively in both parts over control (Figure 1).

Bacterial inoculation, especially in combination with BC enhanced major nutrients like nitrogen
(N), phosphorus (P) and potash (K) concentration both in below and aboveground parts of the plant
(Tables 3 and 4). Sole application of BC and PsJN showed increase (17% and 13%), (13% and 8%) and
(31% and 19%) in root, shoot and grain N, respectively over control. Fe application along with BC
and PsJN showed more promising increase in plant upper tissue compared to control. Maximum
increase 66%, 58% and 90% in root, shoot and grain was observed through integrated application of
BC and PsJN at 63.9 mg Fe/kg compared to control. Similar trend was observed regarding P and K
concentration in upper plant tissue of quinoa by BC and PsJN application at 3.9 and 63.9 mg Fe/kg
compared to control. Application of BC and PsJN inoculum decreased sodium (Na) concentration in
roots as well as in shoots. The integrated application of biochar and PsJN showed highest decrease
in Na level particularly at higher Fe dose that was 40%, 58%, and 66% less than control in the roots,
shoots and grains, respectively (Table 4). Contrarily, plant potassium concentration was increased
significantly (107%) over control especially with the integrated application of biochar and PsJN at
63.9 mg kg−1. However, irrespective to the applied treatments, the Na+/K+ ratio was considerably
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decreased as compared to control (Figure 2). Maximum decrease in Na+/K+ ratio of root, shoot and
grain by 64%, 87% and 89%, respectively through combined use of BC and PsJN at 63.9 mg kg−1 as
compared to control.
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Table 3. The effect of biochar-Burkholderia phytofirmans PsJN integration on chemical parameters (N
and P) of Chenopodium quinoa under salinity stress.

Treatment Fe (mg kg−1) N in Root
(mg kg−1)

N in Shoot
(mg kg−1)

N in Grain
(mg kg−1)

P in Root
(mg kg−1)

P in Shoot
(mg kg−1)

P in Grain
(mg kg−1)

C
3.9 21.6 ± 0.72 d 15.8 ± 0.47 d 9.1 ± 0.23 f 3.1 ± 0.15 e 2.1 ± 0.10 e 1.2 ± 0.06 f

63.9 26.9 ± 0.98 c 18.8 ± 0.51 c 12.6 ± 0.55 d 4.8 ± 0.28 cd 3.1 ± 0.17 cd 2.1 ± 0.06 de

BC
3.9 25.2 ± 0.97 c 17.9 ± 0.53 c 11.9 ± 0.32 de 4.9 ± 0.26 cd 3.5 ± 0.21 bd 2.2 ± 0.09 de

63.9 31.8 ± 1.18 b 21.9 ± 0.58 b 14.4 ± 0.41 c 6.1 ± 0.32 ab 4.8 ± 0.32 a 3.7 ± 0.0 7 b

PsJN 3.9 24.4 ± 0.75 cd 17.1 ± 0.43 cd 10.8 ± 0.32 e 4.6 ± 0.21 d 3.0 ± 0.15 d 2.1 ± 0.07 de

63.9 33.3 ± 1.38 ab 23.8 ± 0.66 a 15.9 ± 0.72 b 5.6 ± 0.31 bc 4.0 ± 0.26 b 3.2 ± 0.08 c

BC+PsJN 3.9 26.1 ± 0.64 c 18.3 ± 0.55 c 12.1 ± 0.34 de 5.1 ± 0.30 cd 3.8 ± 0.21 bc 2.4 ± 0.07 d

63.9 35.9 ± 1.21 a 25.0 ± 0.78 a 17.3 ± 0.42 a 6.8 ± 0.32 a 5.0 ± 0.32 a 4.0 ± 0.12 a

Quantities sharing similar letters are not different with each other. C: Control; BC: Biochar (1% w/w); PsJN:
Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). Values are mean of three repeats ± SD.
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Table 4. The effect of biochar-Burkholderia phytofirmans PsJN integration on chemical parameters (Na
and K) of Chenopodium quinoa under salinity stress.

Treatment Fe (mg kg−1) Na in Root
(mg kg−1)

Na in Shoot
(mg kg−1)

Na in Grain
(mg kg−1)

K in Root
(mg kg−1)

K in Shoot
(mg kg−1)

K in Grain
(mg kg−1)

C
3.9 2.2 ± 0.06 a 1.7 ± 0.05 a 0.6 ± 0.06 a 19.2 ± 0.64 d 11.2 ± 0.63 e 7.2 ± 0.14 f

63.9 1.9 ± 0.06 cd 0.8 ± 0.03 d 0.4 ± 0.03 b 25.7 ± 0.99 bc 18.2 ± 0.63 c 11.8 ± 0.50 cd

BC
3.9 1.9 ± 0.05 bc 0.9 ± 0.03 c 0.4 ± 0.03 b 26.2 ± 1.18 bc 19.2 ± 0.83 bc 12.5 ± 0.34 c

63.9 1.6 ± 0.05 e 0.6 ± 0.03 e 0.25 ± 0.02 cd 29.3 ± 1.30 ab 21.1 ± 0.86 ab 13.6 ± 0.45 b

PsJN 3.9 2.1 ± 0.07 ab 1.1 ± 0.07 b 0.5 ± 0.04 a 23.2 ± 1.03 c 16 ± 0.55 d 11 ± 0.34 de

63.9 1.8 ± 0.05 cd 0.6 ± 0.03 e 0.3 ± 0.02 bc 27.9 ± 1.27 ab 20.1 ± 0.57 bc 12.4 ± 0.30 c

BC+PsJN 3.9 1.8 ± 0.05 cd 0.7 ± 0.04 de 0.3 ± 0.03 bc 22.6 ± 0.92 cd 15.1 ± 0.40 d 10.1 ± 0.28 e

63.9 1.3 ± 0.03 f 0.4 ± 0.02 f 0.2 ± 0.02 d 31.3 ± 1.52 a 22.9 ± 0.98 a 14.9 ± 0.36 a

Quantities sharing similar letters are not different with each other. C: Control; BC: Biochar (1% w/w); PsJN:
Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). Values are mean of three repeats ± SD.
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3.5. Enzymatic and/Non-Enzymatic Antioxidants and Stress Related Metabolites

Various assays for enzymatic or non-enzymatic antioxidant activities showed that treatment with
biochar and PsJN especially when they were applied together significantly decreased glutathione
reductase (GR) activity (61%), oxidized glutathione (GSSG) activity (27%), reduced glutathione
(GSH) activity (54%), GSH-GSSG ratio (38%), ascorbate peroxidase (APX) activity (45%), superoxide
dismutase (SOD) activity (53%), glutathione-s-transferase (GST) (56%), glutathione peroxidase (GPX)
(47%), super-oxide anion (52%) and malondialdehyde activity (47%), as compared to control where
plants were supplemented with 63.9 mg kg−1 Fe (Figures 3–5). Similarly, sole use of BC showed
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decrease in GR (30% and 35%), GSSG (17% and 20%), GSH (22% and 33%), APX (14% and 20%),
GPX (7% and 23%), SOD (15% and 34%), GST (25% and 34%), super-oxide anion (28% and 32%) and
MDA (5% and 29%), respectively at low and high Fe levels relative to their controls. Similarly, single
application of PsJN inoculum showed decrease in GR (44% and 46%), GSSG (20% and 22%), GSH
(37% and 43%), APX (31% and 33%), GPX (25% and 34%), SOD (39% and 43%), GST (39% and 44%),
super-oxide anion (42% and 40%) and MDA (13% and 38%), respectively at both Fe levels as compared
to their controls.Agronomy 2019, 9, x FOR PEER REVIEW 12 of 21 
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Figure 4. The effect of biochar-Burkholderia phytofirmans PsJN integration on antioxidant activity of
Chenopodium quinoa under salinity stress. SOD = Super-oxide dismutase, APX = Ascorbate peroxidase,
GR = Glutathione reductase, GPX = Glutathione peroxidase, GST = Glutathione S-transferase. Quantities
sharing similar letters are not different with each other. C: Control; BC: Biochar (1% w/w); PsJN:
Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). Values are mean of three repeats ± SD.
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−; Superoxide anion. Quantities
sharing similar letters are not different with each other. C: Control; BC: Biochar (1% w/w); PsJN:
Burkholderia phytofirmans; Fe: Ferrous sulphate (15 kg ha−1). Values are mean of three repeats ± SD.

3.6. PsJN Colonization of Rhizosphere, Root, and Shoot

Efficient colonization of the applied strain was observed in root/shoot interior of quinoa under
saline conditions (Figure 6). However, when integrated with biochar and Fe, the persistence of PsJN was
more enhanced relative to sole inoculation in the rhizosphere and tissues of quinoa plants. Inoculation
combined with biochar showed 2.73 × 105 CFU g−1 rhizosphere, 9.92 × 104 CFU g−1 root interior and
1.95 × 104 CFU g−1 shoot interior bacterial population. However, most CFU g−1 dry weight of the
inoculant strain was recovered from the rhizosphere (5.73 × 105), root interior (4.53 × 105), and shoot
interior (9.92 × 104) in the presence of biochar and Fe.
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Figure 6. Persistence of selected endophytic strain in the shoot interior of Chenopodium quinoa under
salinity stress. C: Control; BC: Biochar (1% w/w); PsJN: Burkholderia phytofirmans; Fe: Ferrous sulphate
(15 kg ha−1). Values are mean of three repeats ± SD.
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4. Discussion

4.1. Plant Growth Parameters

Iron is a significant element for normal plant growth and development because it is a cofactor of
numerous metabolic reactions, and its deficiency can adversely affect plant growth, photosynthesis,
and respiration. Plants growing in saline soils often show typical symptoms of iron deficiency
(chlorosis), as the solubility of iron (Fe) in the soil solution decreases with high pH [49]. In current
experiment, we examined the effect of endophytic bacterium Burkholderia phytofirmans PsJN and organic
amendment (biochar) on the growth, physiology, and iron-fortification of an emerging crop quinoa in
saline soil. BC and PsJN application alone and in combination improved the plant growth, nutrient
uptake, and antioxidant homeostasis apart from conferring salinity tolerance in plants. However,
these effects were more significant with the combined application of biochar and PsJN. Salinity
stress has been known to limit plant growth and yield through disturbing various physiological
processes of crops [50]. We found significant reduction in growth attributes (plant height, shoot and
root dry weights) of Chenopodium quinoa under saline conditions. However, application of biochar
and Burkholderia phytofirmans PsJN significantly improved plant growth in the present study. This
improvement in growth of plants might be associated with solubilization of nutrients from biochar [51].
This might also be due to the role of biochar and applied bacteria that have resulted in rhizosphere
acidification leading to desorption of nutrients from biochar surface and /or soil colloids and thus
have stimulated the growth attributes [31,51–53]. These observations are supported by previous
studies, where siderophore producing bacteria including PsJN (which secrete hydroxamate-containing
siderophore such as pyoverdin) often reported enhanced plant growth by facilitating Fe uptake and
mediating plant tolerance against various abiotic stresses [13,54,55]. Moreover, biochar is known to
play a critical role in iron biofortification of cereals in pH affected calcareous [22] as well as saline
soils [56]. Biochar addition enhances nutrients availability to crops, increase water holding capacity
of the soil and enhance microbial activity which might increase plant biomass accumulation under
stressed conditions [57].

4.2. Plant Physiological and Biochemical Attributes

While it is well established that, water stressed plants close their stomata and ultimately lower
the gaseous exchange attributes [58] and hence reduced photosynthetic activity. The influence on
photosynthesis can be assessed from the influence on photosynthetic pigments. It has been described
in certain studies that salinity stress causes decline in photosynthetic pigments of plants [50,59,60]. We
found decreased physiological attributes in stressed plants. This reduction in physiological parameters
might be attributable to disturbed metabolic machinery of the plants under stress [61]. It may also be
due to increased osmotic stress in plants that causes shortage of water for plants and reduced rate
of transpiration [62]. However, integrated application of biochar and PsJN improved physiological
parameters such as stomatal conductance, photosynthetic rate, chlorophyll contents and transpiration
rate in present study. By virtue of its high cation exchange capacity, biochar might have increased the
availability of essential nutrients to stressed plants and hence enhanced physiological adaptations of
quinoa plants under stress [63]. Moreover, bacterial inoculation can have a positive effect on plant
physiology through uplifting chlorophyll contents, stomatal conductance, internal CO2 concentration
and relative water contents [31,64–67]. Certain PGPB have been recognized in imparting salinity
resistance through direct stimulation of crops by providing fixed N, Fe sequestered by bacterial cells,
phytohormones and soluble phosphates [11,68,69].

Enhanced crop productivity and improved nutritional quality grown on degraded soils are
proposed to be the best solutions to combat malnutrition and hidden hunger [70,71]. Quinoa seeds
are distinguished from cereals probably due to significant source of essential amino acids, vitamins
and macro- and micro- nutrients [72,73]. Previously, several reports demonstrated reduced nutritional
quality of quinoa grown on salt-affected soils [61,74,75]. In current study, plants grown on saline soil
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showed significant reduction in nutritional parameters, however, the application of biochar and PsJN
significantly improved nutritional attributes. This enhancement of nutritional status of amended plants
might be due to the better provision of nutrients through biochar and endophytic bacteria [31,64]
which might have helped plants to better adjust under unfavorable growth conditions [76].

4.3. Nutrients Homeostasis

Plant salinity tolerance capacity has been correlated with increased K+ and decreased Na+

uptake, which ultimately affects the Na+/K+ ratio in plants [77]. PGPB are well known to produce
exopolysaccharides which can bind Na+ and thereby reduce its uptake by the plants [10]. Because
the strain PsJN has the potential to produce exopolysaccharides, therefore, its inoculation in present
study decreased the contents of Na+ available for plant uptake. These results are substantiated by
Nadeem et al. [68], where inoculation of wheat seedlings with exopolysaccharide producing bacteria
restricted Na+ uptake and stimulated plant growth under saline condition. This may also be attributed
to the higher Na+ adsorption on surface of applied biochar. These results are in excellent agreement
with [78], they reported enhanced growth of rice plants grown under salt-affected soil conditions due
to synergistic application of biochar and PGPR.

Moreover, it is well known fact that Na+ in higher levels hinders the uptake of other essential
nutrients [79]. We found higher concentrations of macro nutrients especially nitrogen, phosphorous
and potassium in plants amended with biochar and PSJN alone or in combination as compared to
un-amended plants. These findings are in line with other studies describing increased availability of
nutrients under the application of organic amendments [60,80]. Several other studies have confirmed
the involvement of organic amendments (biochar and composts) in improved nutritional status of
crops under saline soils due to increased soil aggregate stability, enhanced CEC, improved water
retention, improved aeration and organic matter content [81,82]. In addition, we found increased
contents of Fe in plants amended with biochar and PSJN relative to control. Previously, it was reported
that inoculation of PGPR can facilitate uptake of micronutrients and increase plant tolerance against
stress [83–85]. Moreover, Plant growth-promoting bacteria (PGPB) can mobilize the nutrients through
various mechanism such as production of organic acids, rhizospheric acidification, nutrients chelation
and by multiple exchange reactions [11,86]. It has been reported that PsJN is well-known PGPB, having
many functional traits for plant growth promotion, nutrient uptake, and stress tolerance. PsJN found to
be producing siderophores, indole acetic acid (IAA) and synthesis of ACC deaminase and its genome
sequencing revealed that this strain harbors numerous genes for these traits and equipped with other
important PGPB functions [13,87]. The synthesized siderophores release into the soil, bind iron and
facilitate its uptake through TonB-dependent Fe-siderophore complex receptors [88]. Very recently,
Shahid et al. [12] reported enhanced growth of rice through up-regulation of stress responsive genes
due to inoculation of PGPR (Achromobacter sp. FB-14) showing ACC deaminase activity. Moreover, the
production or modulation of plant hormones such as indole acetic acid and ethylene as well as nutrient
solubilizing ability explain the possible mechanism of plant growth promotion of quinoa by PsJN.

4.4. Antioxidant Homeostasis

Under abiotic stress conditions, plant produce certain ROS such as hydrogen peroxide, superoxide,
and hydroxyl radicals [89]. To avoid oxidative stress by scavenging ROS, plants are equipped with
antioxidant defense characterized by various metabolites and enzymes. Among various enzymes, APX
plays a critical role as powerful antioxidant H2O2-scavenger [90,91]. The antioxidants are produced
under the stimuli of various stresses (such as salinity and other abiotic stress), and their concentration
is frequently characterized as an assessment of oxidative stress. PsJN harbor numerous genes for ROS
tolerance such as glutathione-S-transferases (GST), catalases, hydroperoxide reductases, superoxide,
dismutases, and peroxidases [13]. In the present study, enzymatic antioxidants activities decreased
especially by combined utilization of biochar and PsJN under saline condition. Our results are
supported by the findings of Kanwal et al. [92] where biochar reduced the negative effects of salinity by
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decreasing superoxide dismutase in wheat. Very recently, Saeed et al. [31] reported that combined use
of endophytic bacteria along with amendment reverted the harmful effects of abiotic stress on Brassica
napus growth by decreasing the activities of certain studied antioxidants.

4.5. Persistence of Endophyte in Shoot, Root and Rhizosphere

The persistence and activity of bacterial strain are governed by multifarious environmental factors
(e.g., salinity). In this study, PsJN was found to be able to compete with the indigenous microbiota
and effectively persisted in the plant environment (Figure 6) apart from promoting plant growth and
nutrient uptake under saline environment. However, higher endophytic populations were observed
in the soil treated with biochar, the viability of endophytic bacteria was further increased in the Fe
enriched saline environment. The reason for the greater colonization of PsJN strain in BC amended
soil might be due to availability of plentiful nutrients for normal microbial growth, provision of
niches and shelter from predators. Moreover, microbial inoculation may have helped plants to meet
their nutrient requirements under diverse environmental conditions [76]. Furthermore, Naveed et
al. [93] demonstrated that under stressed conditions, plants undertake multiple metabolic and osmotic
adjustments resulting in altered root exudation, which could affect the colonization and efficacy of
bacterial inoculum. Moreover, PsJN strain harbor a wide range of genes for motility, chemotaxis,
surface adhesion and quorum sensing which explain its ability of successful colonization in a variety of
stressed environments [13]. The positive impact of biochar on soil microbial population and nutrient
supply might explain the reason why the integrated application of biochar and PsJN perform best in
our study.

5. Conclusions

The research findings suggested that the integrated application of Burkholderia phytofirmans PsJN
and biochar have great ability to shed beneficial impacts on Fe bioavailability, growth, yield and
nutritional value of quinoa grains grown in iron-limited saline conditions. The combined use of
PsJN, BC and Fe enhanced growth, physiology, and mineral nutrition by alleviating salinity-induced
oxidative stress as depicted by reduced antioxidants activity and Na+/K+ ratio of C. quinoa. The use of
siderophore producing microbes with organic amendments might be a promising, sustainable and
low-cost strategy for tackling micronutrient deficiencies in the low-and middle-income countries.
Moreover, this approach can easily be integrated into the existing farming system to achieve food
fortification with micronutrients.
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