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Abstract: Cardoon seeds have been proved to thrive in the Mediterranean region, even under low
input management and its biomass is suitable for several food and industrial uses. Despite that,
a proper value chain has not been set properly and uncertainty still lays among producers and
industries, particularly concerning the harvesting stage. The present study supports, via field trials,
the hypothesis that cardoon seeds can be harvested using a conventional combine harvester equipped
with the sunflower header. Theoretical field capacity (TFC), effective field capacity (EFC), and field
efficiency (FE) were 2.36 ha h−1, 2.05 ha h−1, and 1.82 Mg h−1, respectively, while harvesting costs were
calculated as 69.52 € ha−1. Seed loss was only 3.2% w/w of the potential seed yield. The machinery’s
performance, costs, and seed loss are comparable with sunflower harvesting, underlying the possibility
to use the available technology directly to harvest cardoon seeds.
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1. Introduction

The continuous increasing interest of the biorefinery industries in the exploitation of
bioresources stimulates the agricultural sector to broaden the scenario of the available feedstocks [1].
Biorefineries usually rely on agricultural residues or raw materials to produce either thermal energy or
biodegradable monomers for further industrial applications [2]. Such a new sustainable exploitation of
natural source is strongly encouraged by the UE’s circular economy policy, at different levels, inviting
European stakeholders to endorse this Action Plan actively [3]. However, the cultivation of energy and
industrial crops arises concerns regarding the proper land use, since the competition for food production
is unavoidable [4]. A possible alternative, may be offered by rustic species that can grow and thrive on
low productive soils, or even on marginal lands which are unsuitable for food crops cultivation [5–7].
Additionally, the cultivation of rustic species on marginal lands or less-productive ones can also
improve the wellness of local citizens, since it could generate job opportunities. This, would involve
the contribution of several stakeholders, such as farmers, contractors, and the transportation sector [8].

Among the crops suitable for cultivation on marginal lands, cardoon (Cynara cardunculus L.) is a
perennial multipurpose species that exhibits a good adaptation to drought environments similar to
the Mediterranean region [9–12]. Cardoon seeds have been extensively studied as alternative crops
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under several UE Programmes [13], highlighting the profound interest of the scientific community to
promote the interesting features of this species.

Good biomass and seed yields were obtained by low input management, thanks to the particular
adaptability of C. cardunculus to the Mediterranean environment. This is mainly related to its
autumn-spring growth season, from September (emergence) to July (seed maturity), to the feasibility to
rain fed cultivation, and to the capability of accumulating sugar, in particular inulin, in the roots [14].

The proposal of using cardoon seeds for oil production arose from the fact that the species is
botanically related to other oil crops such as sunflower of safflower, which presents oil with similar
characteristics to the cardoon oil [15]. Moreover, cardoon oil extracted from seeds, is particularly
suitable for biodiesel and biopolymers production [16–19].

The cardoon seeds establishment is accomplished either by seedling or by planting. Seedling
is the most adopted strategy although a higher variability is experienced among plants [20–24].
Seedling takes place in the fall or spring season, seeds are applied at the rate of 3–4 kg ha−1 up to
4.6 kg ha−1, in the case of plant density as high as 110,000 plants per hectare [25]. While, the harvest
of the aboveground biomass takes place in the summer, using different machines according to the
purpose of cultivation, moisture content, and the available fleet at the farm. The whole biomass can be
harvested using a forage harvester or biomass harvester-baler [13], while seeds have to be harvested
using a combine harvester [26]. The first attempts of Cynara seeds mechanical harvesting are dated
back to the 90s, but machines could not cope with the high quantity of pappi released by the capitula
during harvesting. Major concerns arose regarding the safety and feasibility of such an operation [27].
However, later studies conducted by Pari et al. [28–31] proposed alternative strategies to pursue the
problems: A dedicated header for Cynara seeds harvesting capable of reducing the seed loss, a flexible
header for allowing harvesting on stony soils, and finally, a wetting system to reduce as much as
possible the pappi dispersal [32]. The development of dedicated headers permitted the dramatic
reduction of the seed loss, although it could represent a considerable investment for the contractor,
which could not be satisfactorily paid off considering the currently lack of a proper value chain.

Therefore, it is important to investigate the advantages and disadvantages of using non-specific
equipment for Cynara seeds harvesting. Small farms and contractors’ fleets are usually limited in
number due to the high purchase costs of the machineries. Therefore, the possibility to exploit a
conventional combine harvester equipped for sunflower (Helianthus annuus L.) seeds harvesting even for
Cynara seeds harvesting, would represent an advantage for small scale enterprises. The present study
aims to provide them with technical data collected, in a large scale trial, regarding the performance,
costs, and seed loss experienced in Cynara seeds mechanical harvesting, which is performed with a
combine harvester equipped with the sunflower header.

2. Materials and Methods

2.1. Study Area

Tests of mechanical harvesting of cardoon seeds were carried out on a field located in Maccarese
(Fiumicino, Lazio, Italy) (WGS84-UTM33T coordinate 271167 E, 4633933 N; 0 m a.s.l.) in August 2020.
The overall surface of the field was 18.32 ha, but the effectively sown area corresponded to 17.67 ha,
considering that the presence within the field of ditches was not affected by sowing (Figure 1).
The nutritional values of the soil were not investigated, while the texture was classified as silty clay
loam soil. The previous crop was Triticale.
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Figure 1. Experimental field location. 

Pre-seeding operations, performed in 2018, consisted of a previous subsoiling at a 30 cm depth, 
followed by harrowing through a rotative harrow. Excessive rainfall during autumn 2018 did not allow 
for seeding in the optimal time for cardoon seeds, i.e., November. Therefore, seeding was performed in 
February 2019, through a pneumatic seed drill applying 3 kg ha−1 of the seed (rows spacing 50 × 75 cm). 
The presence of water stagnation in some parts of the field led to an inhomogeneous seed emergence. 

In March 2019, weeding through the appliance of “Pendimetalin” was applied to avoid weeds 
emergence. It is important to underline the absence of registered agrochemicals for cardoon cultivation. 

Considering the long-lasting high moisture of the soil, in May 2019, a manual extirpation of 
weeds was needed. Subsequently, on the first half of July 2019, the overall aerial biomass was 
chopped, forcing the plant to re-sprout. 

In February 2020, the fertilization operation was carried out, with the appliance of 160 kg ha−1 of 
a slow-release nitrogen fertilizer, corresponding to 73 N-unit per hectare. After this, as mentioned 
above, seed harvesting took place in August 2020. 

The total rainfall from chopping to harvesting was 583 mm ha−1, with periods of increased 
precipitation in November and December 2019 (326 mm ha−1). 

It is important to underline that, even if the field shows a negligible value of slope and the total 
absence of rocks, it can be considered marginal, taking into account the context in which it is located. 
Indeed, the main crops of the area of Maccarese consist of potatoes and carrots. The soil texture of the 
field, which shows an excessive percentage of clay for the cultivation of the abovementioned 
vegetables, as well as the frequent water stagnation in some zones, make it practically impossible to 
cultivate this field with the typical crops in the area. Particularly, as a consequence of water 
stagnation, cardoon seeds were not able to grow in some of the field zones. Therefore, of the 17.67 ha 
of the sown surface, only 16.05 ha showed, in August 2020, the presence of cardoon plants. 

2.2. Pre-Harvest Tests 

Prior to the harvesting operation, 10 sample plots of 9 m2 each (3 × 3 m) were randomly selected 
to estimate the amount of the overall aerial biomass. Plants were cut at the ground level and brought 
outside the field to be counted and measured in both weight and height. The capitula from each 
sample plot were manually removed, counted, put in sealed bags, and shipped to the laboratory of 

Figure 1. Experimental field location.

Pre-seeding operations, performed in 2018, consisted of a previous subsoiling at a 30 cm depth,
followed by harrowing through a rotative harrow. Excessive rainfall during autumn 2018 did not allow
for seeding in the optimal time for cardoon seeds, i.e., November. Therefore, seeding was performed in
February 2019, through a pneumatic seed drill applying 3 kg ha−1 of the seed (rows spacing 50 × 75 cm).
The presence of water stagnation in some parts of the field led to an inhomogeneous seed emergence.

In March 2019, weeding through the appliance of “Pendimetalin” was applied to avoid weeds
emergence. It is important to underline the absence of registered agrochemicals for cardoon cultivation.

Considering the long-lasting high moisture of the soil, in May 2019, a manual extirpation of
weeds was needed. Subsequently, on the first half of July 2019, the overall aerial biomass was chopped,
forcing the plant to re-sprout.

In February 2020, the fertilization operation was carried out, with the appliance of 160 kg ha−1 of
a slow-release nitrogen fertilizer, corresponding to 73 N-unit per hectare. After this, as mentioned
above, seed harvesting took place in August 2020.

The total rainfall from chopping to harvesting was 583 mm ha−1, with periods of increased
precipitation in November and December 2019 (326 mm ha−1).

It is important to underline that, even if the field shows a negligible value of slope and the total
absence of rocks, it can be considered marginal, taking into account the context in which it is located.
Indeed, the main crops of the area of Maccarese consist of potatoes and carrots. The soil texture of
the field, which shows an excessive percentage of clay for the cultivation of the abovementioned
vegetables, as well as the frequent water stagnation in some zones, make it practically impossible to
cultivate this field with the typical crops in the area. Particularly, as a consequence of water stagnation,
cardoon seeds were not able to grow in some of the field zones. Therefore, of the 17.67 ha of the sown
surface, only 16.05 ha showed, in August 2020, the presence of cardoon plants.

2.2. Pre-Harvest Tests

Prior to the harvesting operation, 10 sample plots of 9 m2 each (3 × 3 m) were randomly selected
to estimate the amount of the overall aerial biomass. Plants were cut at the ground level and brought
outside the field to be counted and measured in both weight and height. The capitula from each
sample plot were manually removed, counted, put in sealed bags, and shipped to the laboratory of
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Research Centre for Engineering and Agro-Food Processing (CREA-IT). The same was applied for five
plants from each sample plot.

In the laboratory, a stationary thresher (PLOT 2375 Thresher, Cicoria Company, San Gervasio,
Italy) was used to thresh the capitula and collect the seeds.

In this way, it was possible to evaluate the theoretical yield of the seed, dry weight (DW),
and moisture content.

2.3. Combine Harvester

A local contractor enterprise provided the combine harvester, a FiatAgri L624 (Figure 2) equipped
with a conventional cleaning shoe and a 4.8 m wide Laverda C480 header, modified with a Zaffrani
sunflower kit [33]. The machine was driven by a 176 kW diesel engine. The applied setting, which was
kept constant throughout the test, was as follows: Concave clearance of 23.7 mm, thresher speed of
800 rpm, fan speed of 420 rpm, upper sieve clearance of 5 mm, and lower sieve clearance of 4 mm.
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2.4. Evaluation of the Harvesting Performance

Twenty-three sample plots were randomly chosen within the field to evaluate the working
performance of the combine harvester. The surface of each plot ranged between 959 to 1330 m2.
Working times were estimated according to Reith et al. (2017) [34] with a hand chronometer Pro
touch. In particular, the working times were divided into: Effective working time, maneuvers time,
avoidable delay time, unavoidable delay time, and accessory time.

Measuring the working speed allowed estimating the theoretical field capacity (TFC, ha h−1),
the effective field capacity (EFC, ha h−1), and material capacity (MC, Mg h−1), namely:

• TFC: Working speed × cutting bar width;
• EFC: Harvested surface/working times (effective working time + maneuvers time, avoidable delay

time + unavoidable delay time + accessory time);
• MC: Harvested seeds/working times (effective working time + maneuvers time, avoidable delay

time + unavoidable delay time + accessory time).

It is important to underline that the material capacity referred to the seed collected in relation to
the effectively grown surface of 16.05 ha. The ratio between EFC and TFC is named field efficiency (FE).
The time needed to discharge the combine harvester was recorded as the accessory time. After the
harvesting operation, the material collected was discharged onto a trailer and weighed to determine
the seed yield at the farm scale. A sample of the collected material was taken and put in the sealed bag
for an evaluation of the moisture content and the 1000-seeds weight. The dry weight and moisture
content were assessed according to the EN ISO 18134-2:2017 standard [35]. For the seeds, the same
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procedure was applied to evaluate the dry weight and moisture content of both leaves and stalks.
The collected bulk density and 1000 seeds-weight were also measured. The seeds bulk density (Mg m−3)
was assessed according to ISO 17828:2015 [36] in 10 randomly selected samples taken from the trailer,
in which the seeds were discharged by the combine harvester.

2.5. Estimation of Harvesting Costs

An interview with the contractor allowed identifying the purchase and operating costs of the
combine harvester, while the performance of the machine was gained from the results of the field
tests and used as input data. Finally, the standard values for calculation were taken from the CRPA
(Research Centre on Animal productions) methodology [37], as applied in previous studies on a similar
topic [38]. The hourly cost of the combine harvester was estimated taking into account the market
value of the agricultural machinery. The price of the machine was discounted to 2019, through the
application of a lending rate of 3% provided by the Banca d’ Italia Institute [39]. Fuel consumption was
measured by filling the tank before starting the harvesting operation, then the tank was filled again at
the end of the operation. The fuel used was recorded and used for the assessment of fuel consumption.
Consumption of the lubricant was calculated according to the ASAE standard D497.4 [40]. The applied
parameters for the economic evaluation are reported in Table 1.

Table 1. Parameters and values used for the economic evaluation.

Parameter Measure Unit Value

Machine Power kW 176

Financial costs Investment € 250,000
Service life yr 10
Service life h 3000

Resale % 19.00
Resale € 47,500.00

Depreciation € 202,500.00
Annual usage h yr−1 312
Interest rate % 3.00

Fixed costs Ownership costs € yr−1 20,250.00
Interests € yr−1 4462.50

Machine shelter m2 22.08
Value of the shelter €m−2 100.00
Value of the shelter € yr−1 44.16

Insurance € yr−1 625.00

Variable costs Repair factor % 40
Repairs and maintenance € h−1 34.67

Fuel cost € l−1 0.57
Fuel consumption l h−1 25.00

Fuel cost € h−1 14.25
Lubricant cost € l−1 3.03

Lubricant consumption l h−1 0.32
Lubricant cost € h−1 0.97
Worker salary € h−1 11.50

2.6. Seed Loss Evaluation

The total harvesting seed loss (HASL) is given by the sum of the seed loss due to the inefficiency
of the header to correctly collect the capitula (HESL), and the ineffectiveness of the cleaning shoe of the
combine harvester to discriminate the seeds from the other portions of the processed biomass (TSL).
To summarize, HESL is given by the not-threshed capitula laying on the ground or standing on plants
not correctly cut by the header, and TSL corresponds to the seeds discharged from the rear of the
combine harvester rather than being collected in its container.
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To estimate TSL, a tarpaulin was manually held near the combine harvester in five sample plots
of 96 m2 each (4.8 × 20 m) to collect the seeds lost from the sieves and straw walkers [41]. Therefore,
the overall amount of material expelled by the machine was collected in the tarpaulin. Such a material
was shipped to the laboratory, then weighed, and sieved to assess the amount of TSL.

To estimate HESL, 10 sample plots of 30 m2 each (5 × 6 m) were randomly established in the
field. All the not-threshed capitula present both on the ground and on not-cut plants were collected
and put in sealed bags to be brought to the CREA-IT laboratory. Here, the previously mentioned
stationary thresher PLOT 2375 was used to thresh them and collect the seeds of the capitula. Seeds were
subsequently weighed to estimate HESL.

3. Results

The main crop features are given in Table 2. As it is possible to notice, the number of plants
per hectare reached 22,667 N ha−1 with an average plant height of 147 cm. The aerial biomass was
6.25 Mg ha−1 FM, which, considering the average potential seed yield (PSY) of 1.11 Mg ha−1 FM,
consisted of a harvest index (HI) of 0.20. The seed moisture content was 5.82%, while the leaves and
stalks exhibited the higher moisture content: 14.08% and 44.00%, respectively. The bulk density of the
seeds collected was 0.644 Mg m−3 FM.

Table 2. Crop features and potential seed yield before the mechanical harvesting.

Parameter Measure Unit Average St. Dev.

Plants per hectare N ha−1 22,667 1685

Plants height cm 147 111

Capitula per plant N 7.4 4.2

Height of the lower capitulum cm 126 13

Seeds content per capitulum g FM 6.7 0.7

1000-seeds weight g FM 37.17 1.20

Bulk density of collected seed Mg m−3 FM 0.644 0.014

Aerial biomass Mg ha−1 FM 6.25 2.86

Potential seed yield (PSY) Mg ha−1 FM 1.11 0.14

Potential seed yield (PSY) Mg ha−1 DM 1.05 0.13

Harvest index (HI) - 0.20 0.07

Seeds moisture % 5.82% 0.03%

Leaves moisture % 14.08% 1.67%

Stalk moisture % 44.00% 15.90%

The combine harvester’s performance is given in Table 3. The effective seed yield (ESY) resulted
in 0.89 Mg ha−1, while the working speed of 4.92 km h−1 led to a TFC of 2.36 ha h−1. The EFC was
2.05 ha h−1 and the FE was 87.24%. Moreover, the MC was estimated in 1.82 Mg h−1.

Table 3. Performance of the combine harvester equipped with the sunflower header.

Parameter Measure Unit Average St. Dev.

Working speed km h−1 4.92 0.87
Theoretical Field Capacity (TFC) ha h−1 2.36 0.42

Effective Field Capacity (EFC) ha h−1 2.05 0.33
Field Efficiency (FE) % 87.24% 4.13%

Material Capacity (MC) Mg h−1 1.82 0.30
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The values reported above for the working performance led to a cost per surface unit of 69.52 € ha−1,
which consists of a cost per biomass unit of 86.15 €Mg−1 (Table 4).

Table 4. Evaluation of the harvesting unitary costs.

Parameter Measure Unit Value

Costs per unit of time € h−1 142.74
Cost per unit of surface € ha−1 69.52

Costs per unit of seed yield €Mg−1 FM 86.15

Concerning the evaluation of the seed loss, reported in Table 5, the major part of the lost seed was
related to the header (HESL), with a value of 28.72 kg ha−1 corresponding to 2.58% of the PSY, while the
combine harvester threshing systems (TSL) led to only 6.44 kg ha−1 of the lost seed, corresponding to
0.58%. Therefore, the overall harvesting loss (HASL) resulted in 35.16 kg ha−1, i.e., 3.16% of PSY.

Table 5. Evaluation of the seed loss due to the header and threshing system.

Parameter Measure Unit Average St. Dev.

Header seed loss (HESL) kg ha−1 28.72 17.13
Header seed loss (HESL) % 2.58% 1.54%

Threshing system seed loss (TSL) kg ha−1 6.44 3.20
Threshing system seed loss (TSL) % 0.58% 0.29%

Harvesting seed loss (HASL) kg ha−1 35.16 -
Harvesting seed loss (HASL) % 3.16% -

4. Discussion

Cynara has been proposed as a perennial crop for biomass production and oil seed crop due to its
high adaptability throughout the Mediterranean region and its tolerance to unfavorable conditions.
The plant density was 2.26 m−2 on average, which agrees with the majority of the values found in the
literature, although the plant density can range from 0.5 to 16 m−2, as reported by Gherbin et al. (2001)
and Raccuia et al. (2012). The higher the plant density, the better the yield [14,42]. However, it is
important to underline that, in the present study, a certain variability in the mean value of the plant
density was due to the undesired flooding events which were scattered on the field. This reduced the
germination of the seeds and, in turn, the effective grown surface by 9% of the initial sown surface.

The aerial fresh biomass resulted in 6.25 Mg ha−1. This parameter, along with the seed yield,
is quite sensitive to the local climate and soil conditions. Therefore, they can both remarkably vary
in the Mediterranean region. In fact, the biomass yield ranged from 3.4 Mg ha−1 DM in the dryland
conditions in Spain [22], to 16.6 Mg ha−1 DM in Romania [43], up to 27.6 Mg ha−1 DM, as reported by
Ierna et al. (2012) under the irrigation regime [44]. It is important to highlight that the cardoon biomass
is an interesting by-product, indeed it is suitable for bio-energy production in the form of a solid
biofuel, as well as through pyrolysis and gasification [13]. However, in the present case, the biomass
was chopped after seed harvesting and left on the ground to ensure the input of the organic matter in
the soil [45].

Focusing on seed harvesting, the potential seed yield was 1.11 Mg ha−1 FM (1.05 Mg ha−1 as
dry matter) and each capitulum carried 6.7 g of seeds on average. Curt et al. (2002) reported a seed
yield of 1.3 Mg ha−1 DM in the field test conducted in Central Spain [46], while field trials in Sicily
(South Italy) showed values ranging from 0.28 to 2.61 Mg ha−1 DM [47]. The lower seed yield value of
about 0.6 Mg ha−1 was reported by Gominho et al. (2011) in Southern Portugal [48]. Finally, the 3-year
study performed in Central Italy on marginal lands by Francaviglia et al. 2016, reported the cardoon
seeds yield up to 3.69 Mg ha−1 [20].

The 1000-seed weight was 37.17 g FM on average, values higher than 30 g are considered valid for
sowing [49].
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A lower aerial biomass production eases the mechanical harvesting since less biomass is processed
by the combine harvester which, therefore, can better discriminate the seeds from the rest of the
collected biomass. Additionally, the mean plant height (from the base of the plant to the top of the
first capitulum) was 147 cm and the lowest capitulum was positioned on average at 126 cm from the
ground. Therefore, the capitula were usually carried in a range of just 20 cm from the lowest to the
highest one. This pattern allowed setting the cutting bar of the combine harvester at approximately
100 cm from the ground with a few adjustments needed during harvesting.

The performance of the combine harvester agrees with the current literature. The EFC of 2.05 ha h−1

found in the present study is consistent with the EFC found in similar studies, but performed with the
specific header, which reported values ranging from 1.57 to 2.10 ha h−1 [28–30]. In addition, the FE of
87.24% is also consistent with other tests performed on cereals harvesting, where the tested combine
harvesters were all equipped with a dedicated header [38,50,51].

The harvesting cost of cardoon seeds per surface unit was 69.52 € ha−1, lower than 109.00 € ha−1

as reported by Francaviglia et al. 2016 [20]. However, Semerci et al. (2010 and 2019) found that
the sunflower of safflower harvesting cost ranged from 57.23 to 82.11 € ha−1 for sunflower seeds
harvesting [52,53].

Another fundamental parameter to evaluate the suitability of a given harvesting system is yield
loss, which is related to the proper machinery functioning in relation to the features of the crop.
Pari et al. (2016) reported a seed loss of about 3% w/w when the cardoon seeds were harvested using a
combine harvester equipped with the specific header [30]. According to our findings, a similar result
can be obtained without using the specific header. In fact, only 3.2% w/w of the seed loss was found and
this is consistent with the findings reported in similar studies dealing with the mechanical harvesting of
other oil seeds, namely: 0.97–2.76% w/w in canola (Brassica napus L.) [54,55], about 3% w/w in safflower
(Carthamus tinctorius L.) [26] and crambe (Crambe cabyssinica Hochst) [56], and 2% w/w in sunflower [57],
although reducible to less than 1% w/w if particular adjustments are applied [58,59]. Nevertheless, it is
dutiful to underline that the specific cardoon header described by Pari et al. was specifically developed
to prevent the subsequent use of a shredder to manage the left aboveground biomass [28,30]. In fact,
as reported above, the cardoon biomass is suitable for bioenergy purposes [60–64] but, unfortunately,
the value chain is not yet developed in such a way. Consequently, the cardoon biomass still represents
a burden and cost for farmers and contractors, which refuse to invest money on specific equipment,
as for instance, the ad-hoc header for the combine harvester. In this point of view, it is worthy to keep
on investigating the possibility to stretch the suitability of existing machineries as much as possible.

5. Conclusions

Cardoon seeds have been strongly proven to be suitable for multipurpose applications and the
Mediterranean region fulfils the agroecological needs of the species. The different fractions of the
aboveground and belowground biomass are gaining attention worldwide from industries, among them,
seeds are proven to be rich in oil suitable for the green biochemistry applications, as bioplastics.

Therefore, it is important to investigate the weaker parts of the cardoon biomass value chain in
order to make it feasible and worthy for both farmers and industries. To date, several studies have
been conducted to try to address the problems related to the harvesting of the seeds but, unfortunately,
the modifications to the machineries were costly and not affordable to farmers and contractors.

Our findings address the problems related to the harvesting stage, which is still not fully
investigated. Particularly, under two critical aspects, such as the possibility to use the already available
technology and related costs. The hypothesis to use a conventional combine harvester equipped with
the sunflower header is supported by our results. The machine has performed as good as the dedicated
prototypes tested in the past. Additionally, the reduced production of aerial biomass experienced in
the mentioned cropping regime, has eased the cleaning process carried out by the combine harvester.
Clogs did not occur, and the seed loss was low. In addition, the harvesting costs are similar to those
experienced in sunflower seed harvesting.
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In conclusion, the present study does not preclude the will to further improve the harvesting
machinery specifically dedicated to cardoon seed harvesting but, it does provide scientific evidence to
farmers, contractors, and large enterprises on the possibility to use the available technology to collect
cardoon seeds efficiently.
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Abbreviations

EFC Effective Field Capacity (ha h−1)
FE Field Efficiency (%)
HASL Harvesting seed loss (kg ha−1), i.e., overall loss of seeds due to harvesting
HESL Header seed loss (kg ha−1), i.e., loss due to the impact of the header on the standing plants
MC Material Capacity (Mg FM h−1)
PSY Potential seed yield (Mg FM ha−1)
TFC Theoretical Field Capacity (ha h−1)
TSL Tarpaulin seed loss (kg ha−1), i.e., seed loss due to the threshing system of the combine harvester
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