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Abstract: This work studies the changes in δ15N signature during the composting of sewage sludge
(MS) and agri-food sludge (AS) with different bulking agents and the potential relationships between
the changes in this parameter with both the source of the organic matter used as a raw material and
the stability of the end-materials obtained. For this, eleven mixtures were prepared in commercial
composting conditions using sewage sludge from municipal wastewater in a range of 60–85% (on a
fresh weight basis) or agri-food sludge in a range of 65–75%, mixed with seven different pruning wastes
as bulking agents. The thermal profile was monitored throughout the composting processes, and the
main physico-chemical and chemical parameters were determined. The results obtained confirmed a
correct development of the composting processes, observing slight differences in process evolution
depending on the type of sludge used. The composts obtained showed adequate contents of nitrogen,
phosphorus and potassium (NPK) and reached a good degree of maturity. Significant differences in
the specific nitrogen isotopic composition were found in the initial materials. Moreover, the results
suggest that the type of sludge had a main contribution in the δ15N value of the initial composting
mixtures. The use of δ15N is recommended as an indicator of the composting process, especially to
evaluate N dynamics, and the quality of the resultant compost.
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1. Introduction

Composting constitutes one of the main treatments for the management and valorisation of a
wide typology of organic wastes. Typical organic wastes used as raw materials in composting are
animal manures and crop wastes [1–3], agro-industrial wastes [4,5], municipal solid wastes [6,7],
sewage sludge [8,9] and agri-food sludge [10,11]. Moreover, there is extensive literature on the benefits
of the use of compost as soil amendment, maintaining soil organic matter contents, sustaining crop
productivity and improving soil quality, especially in the long-term, due to the slow release of
nutrients [12,13]. Compost is one of the main sources of nitrogen, especially in agricultural systems,
such as organic farming, where only organic amendments and specific fertilisers of natural origin
are allowed [14]. However, currently there are no standard analytical techniques to identify the
type of fertilisers used, which makes it difficult to detect the use of prohibited synthetic fertilisers
in organic farming systems [14,15]. In this context, in the last decade, the use of the 15N natural
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abundance (δ15N), based on the use of the N isotope ratio (15N/14N) has emerged as a promising
technique for discriminating between organically and conventionally grown crops [14,16]. The method
is based on the higher δ15N values of composted materials with respect to synthetic fertilisers,
because of the physical and biological processes that take place during composting, which leads to 15N
isotope enrichment in favour to lighter 14N isotope [2]. Thus, the crops obtained using compost as
organic fertiliser likely contain higher δ15N values in their tissues than those obtained with mineral
fertilisers [16,17]. Accordingly, the 15N signature will be different in the soil and crops of a farming
system, depending on the type of N source, reflecting the inputs of N fertilisers with different δ15N
values [15,18]. Nevertheless, very few studies have dealt with δ15N dynamics during the composting
and especially regarding the influence of the feedstock. Lynch et al. [19] studied the changes in δ15N
during the composting of corn silage, reporting an increase in δ15N values and a reduction in the
heterogeneity of the bulk organic material 15N signature. Kim et al. [2] evaluated the temporal changes
during composting of livestock manure and the effect of the bedding material used, observing a
clear effect of the bedding material on the δ15N of the composts obtained. Therefore, the aims of
this work were twofold: (i) to examine the dynamics of the δ15N signature during composting of
municipal sewage sludge (MS) and agri-food sludge (AS), mixed with different bulking agents; (ii) to
establish potential relationships between δ15N signature and the properties of both the feedstock and
the corresponding compost.

2. Materials and Methods

2.1. Composting Procedure

Eleven different commercial-scaled piles in trapezoidal form (25 m3 each pile) were prepared
and composted using the passive windrow composting system with periodical mechanical turning.
The main raw materials used in the elaboration of these composting mixtures were sewage sludge
(MS) and agri-food sludge (AS), respectively. Four different MS were collected at different municipal
wastewater treatment plants of Alicante (Spain). In all cases, the different MS samples were produced
by aerobic treatment of wastewater, followed by a step of stabilization in anaerobic conditions.
The four AS samples used come from the treatment of the wastewaters generated in two agri-food
industries—i.e., pear and strawberry processing plant and dairy desserts—both located in Murcia
(Spain). The treatment for these wastes consisted of three stages: a first stage of flotation by cavitation air
supply (CAF), a second stage of denitrification in an anoxic reactor, and a later treatment in USBF reactor
under aerobic conditions by forced aeration. The bulking agents used were different types of pruning
wastes produced after park maintenance activities in the urban area of the municipality of Orihuela
(Spain). These wastes were the following: tipa (Tipuana tipu) waste (TW); palm (Phoenix dactylifera L.)
leaves (LP) and trunk (TP1, TP2, TP3 and TP4); giant reed (Arundo donax L.) waste (AD); cotton gin
(CG); mulberry (Morus alba L.) waste (MA) and mixed garden pruning (GP). All these wastes were
homogenised and crushed to <4 cm particle size, prior to the preparation of the composting mixtures
in order to improve the homogeneity and aeration into the heaps. Table 1 summarises the mixtures of
feedstocks and bulking agents on a fresh weight basis:

Moisture and temperature (piles and ambient) were periodically monitored throughout the
composting process. Pile moisture was maintained at levels not less than 40%, while the temperature
was registered using multiple probes connected to data loggers (HOBO-Data Logger). Four samples
were conducted during the process (initial stage and maturity) obtaining the samples after mixing
seven sub-samples collected the whole profile of each mixture and from seven sites [20]. Each pooled
sample was divided into two fractions: the first fraction was dried at 105 ◦C for 24 h to determine the
moisture contents, and the second fraction was dried at 45 ◦C, and ground using an agate ball mill
(Frischt Pulverisette 3 SPARTAN) to obtain a sample of particle size < 0.5 mm, which was stored for
later analyses.
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Table 1. Proportions of feedstocks and bulking agents in the composting treatments.

Composting Pile Raw Material Bulking Agent Ratio (Dry Weight)

1 68% (MS2) 32% (LP) 36:64
2 60% (MS2) 40% (AD) 30:70
3 70% (MS2) 30% (CG) 38:62
4 75% (MS2) 25% (GP) 54:46
5 75% (MS3) 25% (TW) 41:59
6 85% (MS3) 15% (MA) 55:45
7 68% (MS4) 32% (TP1) 30:70
8 66% (AS1) 34% (TP2) 28:72
9 68% (AS2) 32% (TP3) 24:76

10 75% (AS3) 25% (TP4) 35:65
11 75% (AS4) 25% (TP4) 34:66

Raw material: municipal sewage sludge (MS1, MS2, MS3 and MS4), and agri-food sludge (AS1 and AS2 from
fruit-processing plants, AS2 and AS4 from dairy desserts). LP: palm (Phoenix dactylifera L.) leaves; AD: giant reed
(Arundo donax L.) waste; GP: mixed garden pruning; CG: cotton gin; TW: tipa (Tipuana tipu) waste; MA: mulberry
(Morus alba L.) waste; TP: palm (Phoenix dactylifera L.) trunk.

2.2. Chemical Determinations

The physico-chemical and chemical parameters studied in the initial materials and composting
samples were determined as follows: electrical conductivity (EC) and pH were measured in a 1:10
water-soluble extract (w/v), whereas organic matter (OM) content was determined by mass loss on
ignition at 430 ◦C for 24 h. Total organic carbon (TOC) and total nitrogen (TN) were quantified using
an automatic elemental microanalyser (EuroVector Elemental Analyser, Milano, Italy). The cation
exchange capacity (CEC) was determined according to the method used by Bustamante et al. [20].
Na and K were measured by flame photometry (Jenway PFP7 Flame Photometer) after acid digestion
(HNO3/HClO4, 1:4 v/v) of the sample, whereas P concentration was colorimetrically determined
according to the method described in Bustamante et al. [20]. The phytotoxicity of composts was also
determined by the germination index (GI) according to the method described by Zucconi et al. [21].
All the determinations were conducted in triplicate. TN losses were determined following Equation (1),
where N1 and N2 are the initial and final TN contents, respectively, and X1 and X2 represent the initial
and final ash contents [22]:

TN-loss (%) = 100 − 100 [(X1N2)/(X2N1)], (1)

2.3. Determination of δ15N Signature in the Initial and Composting Materials

The samples were weighed (1–5 mg) with an accuracy of 0.001 mg (Mettler Toledo MX5), placed in
tin capsules and measured using an EA1108 analyser (Carlo Erba Instruments) coupled to a MAT253
isotopic mass spectrometer (ThermoFinnigan) through a ConfloII interface. The molecules produced
during the sample combustion are ionized and separated according of the masses of the constituent
isotopes under the action of a magnetic field. The results of δ15N values are expressed in %� relative to
atmospheric air. The accuracy of the method, evaluated by using the external standard acetanilide,
resulted in ±0.15%� (n = 10).

2.4. Statistical Analyses

The viability of the composting process was evaluated through the Quadratic Exothermic Index
(EXI2), which was calculated as the quadratic sum of the daily difference between the temperature inside
the pile and that in the surrounding environment during the bio-oxidative phase of composting [9].
The statistical analysis of the data was conducted using ANOVA followed by the least significant
difference (LSD) test at p < 0.05. The Tukey-b test was used to check the statistically significant
differences among feedstocks and composts in relation to the physico-chemical and chemical properties.
The normality and homogeneity of the variances were checked using the Shapiro–Wilk and Levene
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test, respectively. In addition, factorial analysis (FA) was carried out to interpret the data set of initial
mixtures and composted materials, initially considering all the parameters studied. However, the best
results were obtained considering the following parameters: EC, OM, CEC, P, δ15N, TN and TOC.
All statistical tests were conducted with the IBM SPSS 25 software package.

3. Results and Discussion

3.1. Chemical Characteristics and Isotopic Composition (δ15N) of the Initial Materials

Tables 2 and 3 summarise the main chemical characteristics of the raw materials and bulking agents
used in the composting mixtures. The different samples of MS and AS showed similar physico-chemical
characteristics, with an acidic pH and electrical conductivity values varying between 3.4–5.8 dS/m
(Table 2). However, AS samples showed higher contents of the organic matter fraction (69.4%) than
MS samples (55.8%). Conversely, agri-food sludge samples had lower concentrations of N and K
than MS samples and thus, lower δ15N mean values than MS samples (7.6 and 4.9%�, respectively).
Moreover, the mean values of total nitrogen (TN) found in all the sludge samples were lower than
those reported by Rigby et al. [23] in a review about biosolids from mesophilic anaerobic digestion
treatment (7.5% TN). This discrepancy could be due to several sources of variation: (1) the source of N,
(2) the proportion of N derived from the degradation of organic matter [24], and (3) the techniques
used for producing and stabilizing each sludge. In our study, the higher δ15N mean values observed
in the MS samples compared to AS samples could be explained by the stabilization technique used
in each type of sludge. All the AS samples used in this study were stabilized in aerobic treatments.
However, the stabilization of the MS samples was performed by anaerobic treatment, which could
favour reduction conditions and, thus, the biological denitrification process. Consequently, the nitrogen
is released as atmospheric N2 enriched in 14N and the values of δ15N in the remaining material
increase [25]. Aside from AS3 (2.7%�), the range of the δ15N values determined in our sludge samples
(6.1–8.5%�) was close to that found in other composting studies with N-rich organic wastes, such as
livestock manures (δ15N = 5.3 and 7.2%�) [26]. Similarly, Choi et al. [27] and Kim et al. [2] reported
close values of δ15N for cattle manure (7.5 and 7.9%�, respectively).

Table 2. Main physico-chemical and chemical characteristics of the raw materials used in the composting
mixtures (data on a dry weight basis).

Raw Material pH EC (dS/m) OM (%) TOC (%) TN (%) δ15N (%�) Ratio C/N K (g/kg) P (g/kg) Na (g/kg)

MS1 6.1 4.4 66.8 43.6 5.5 6.9 7.9 26.2 2.43 3.73
MS2 6.8 4.8 47.5 31.1 4.2 7.6 7.4 36.0 2.73 3.03
MS3 5.1 5.0 50.8 36.0 5.2 7.4 6.9 30.0 2.58 2.58
MS4 4.9 5.8 58.1 40.1 7.0 8.5 5.8 25.1 4.72 2.28

Mean ± SD 5.7 ± 0.8 5.0 ± 0.6 55.8 ± 8.5 37.7 ± 5.4 5.5 ± 1.1 7.6 ± 0.6 7.0 ± 0.9 29.3 ± 5.0 3.12 ± 1.0 2.90 ± 0.6
AS1 5.6 5.5 81.4 50.5 6.7 4.6 7.5 17.4 6.88 4.54
AS2 7.2 5.1 52.4 34.5 3.3 6.1 10.4 5.87 5.68 5.68
AS3 5.5 3.6 69.0 52.3 4.9 2.7 10.4 6.07 4.34 4.34
AS4 5.4 3.4 74.7 44.8 4.4 6.2 10.3 3.98 5.45 5.45

Mean ± SD 5.9 ± 0.8 4.4 ± 1.0 69.4 ± 12.4 45.5 ± 8.0 4.8 ± 1.4 4.9 ± 1.6 * 9.7 ± 1.4 * 8.3 ± 6.1 * 5.59 ± 1.0 * 5.00 ± 0.6 *

MS: sewage sludge; AS: agri-food sludge. EC: electrical conductivity; OM: organic matter; TOC: total organic carbon;
TN: total nitrogen. * p < 0.05, t-Student test. SD: standard deviation.

Regarding the selected characteristics of the bulking agents (Table 3), all the materials showed pH
values close to neutrality; ranging from 5.5 (mulberry waste) to 7.3 (cotton gin waste). The electrical
conductivity showed a larger variability range, with values from 1.4 dS/m in MA to >7 dS/m in the
palm trunk wastes (PT). However, the organic matter contents were similar in the bulking materials
(70–92%). In general, the concentrations of the macroelements studied (N, P, K and Na) did not differ
much among them, except for the low TN values found in MA (0.7%) and the low P concentrations of
MA (2.3 g/kg) and TW (3.2 g/kg). The δ15N mean value of pruning waste (8.0%�) was close to the values
reported in previous studies. For example, Santiago et al. [28] found a similar value in a study about
C3 metabolism bush plants (7.7%�). However, Barbanti et al. [3] reported 2.05%� δ15N in C4 and CAM
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photosynthetic pathway metabolism plants, which was related to a more effective use of N, linked to
mechanisms of C assimilation by tissues. In our study, the lowest value of δ15N corresponded to TW
(2.6%�), which is in agreement with the results found by Santiago et al. [28] in leguminous species
trees. It is postulated that the lower 15N natural abundance in leguminous species is due to symbiotic
associations (root nodules) with Rhizobium group bacteria, which are capable of fixing atmospherics
N2. Finally, it is interesting to remark the differences observed in the isotopic composition between
the palm trunk samples (7.8, 10.5 and 8.5%�) and of the palm leaves (12.2%�). This tissue-specific
difference in δ15N has also been documented in previous studies [24], and it is explained by tissue N
redistribution. In both evergreen and deciduous species (caducifolias), the translocation of N from
senescent leaves to new tissues increases the δ15N values during the assimilation of nitrate in leaf [29].

Table 3. Main physico-chemical and chemical characteristics of the bulking agents used in the
composting mixtures (dry weight basis).

pH EC (dS/m) OM (%) TOC (%) TN (%) δ15N (%�) Ratio C/N K (g/kg) P (g/kg) Na (g/kg)

LP 6.6 5.1 91.9 45.1 2.6 12.2 18.0 2.1 14.6 6.8
AD 6.6 3.7 74.8 34.8 2.4 6.9 14.3 1.4 9.1 2.4
CG 7.3 4.5 71.4 39.3 2.3 7.6 17.1 3.1 17.7 3.0
GP 6.9 5.8 69.3 30.6 2.4 8.0 13.1 7.0 17.2 4.7
TW 5.7 2.2 88.9 43.7 1.6 2.6 27.7 2.1 3.2 2.0
MA 5.5 1.4 94.0 43.9 0.7 6.1 61.1 1.9 2.3 1.5
TP1 6.7 6.6 83.2 40.4 2.0 7.8 20.9 1.1 14.2 8.5
TP2 5.7 7.8 80.2 37.7 1.3 9.4 28.9 1.6 6.4 8.3
TP3 6.5 7.4 88.0 41.4 1.2 10.5 33.7 2.7 16.2 4.5
TP4 6.1 13.1 85.5 38.9 1.3 8.5 31.7 1.3 28.5 12.3

Mean ± SD 6.4 ± 0.6 5.8 ± 3.3 82.7 ± 8.5 39.6 ± 4.4 1.8 ± 0.6 8.0 ± 2.6 26.7 ± 14.1 2.4 ± 1.7 12.9 ± 8.0 5.4 ± 3.5

LP: palm leaves (Phoenix dactylifera L.); AD: giant reed (Arundo donax L.) waste; CG: cotton gin; GP: mixed garden
pruning; TW: tipa (Tipuana tipu) waste; MA: mulberry (Morus alba L.) waste; TP: palm trunk (Phoenix dactylifera
L.) waste. EC: electrical conductivity; OM: organic matter; TOC: total organic carbon; TN: total nitrogen.
SD: standard deviation.

3.2. Thermal Development of the Composting Mixtures

The temperature in all the composting mixtures increased quickly, reaching thermophilic values
(>40 ◦C) in the first week, these values lasting more than 30 days in all piles (Figure 1a,b). In general,
the mixtures with MS showed temperature values >65 ◦C during a longer period than those with AS,
although some of these piles showed higher temperature values. In addition, pile 5, containing MS,
and pile 11, containing AS, remained more than 100 days with thermophilic temperature values.
With this temperature dynamics, the Quadratic Exothermic Index (EXI2) (Vico et al., 2018) was used to
describe, in detail, the exothermic behaviour of the composting mixtures. This parameter revealed
marked differences in the exothermic behaviour between piles (Figure 2a,b). Pile 3 (MS and CG)
and pile 8 (AS and PT) showed a faster increase in the temperature at the beginning of the process
(Figure 2a,b), thus defining a short bio-oxidative phase with higher accumulated values of the index
EXI2 at the end of this composting phase (Table 4). Some studies have reported the beneficial effects
of adding bulking agents, such as cotton gin and palm tree wastes to the composting heap [1,9].
These materials generally provide an adequate physical structure in the mixture, thereby affecting
the temperature reached during composting, requiring less energy to achieve maximum temperature
values into the windrow. In general, the temperature of all the composting piles dropped to values
close to ambient values after 45–50 days of the process, which corresponds to unaltered, high values
of EXI2 until to the end of the process (Figure 2a,b). The mean EXI2 values were close for MS and
AS piles, but the former was kept at temperature values >60 ◦C for a longer period than the latter,
indicating that the thermophilic stage was more intensive and shorter for MS composts, and was most
progressive in AS composts. In addition, the results obtained regarding the thermal behaviour in all
the piles suggest that the maximum pathogen reduction is ensured in all the composting mixtures [30].
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Figure 2. (a) Evolution of the cumulative values of EXI2 during the bio-oxidative phase in the sewage
sludge-derived composting mixtures; (b) Evolution of the cumulative values of EXI2 during the
bio-oxidative phase in the agri-food sludge-derived composting mixtures.

Table 4. Indicators of the exothermic behaviour of the composting mixtures.

Index EXI2 (◦C2)

Ratio Days in
Bio-Oxidative

Phase/Days with
Temperature >40 ◦C

Ratio EXI2/Days in
Bio-Oxidative Phase

Days > 60 ◦C

Pile 1 50,535 107/79 472 13
Pile 2 52,264 68/37 769 5
Pile 3 112,255 71/58 1581 40
Pile 4 79,126 71/46 1114 46
Pile 5 75,035 112/110 670 112
Pile 6 61,654 109/99 566 105
Pile 7 65,904 81/78 814 78
Pile 8 108,673 75/56 1449 56
Pile 9 54,746 69/34 793 34

Pile 10 43,856 100/68 439 68
Pile 11 59,408 134/109 443 109

EXI2: quadratic exothermic index (quadratic sum of the daily difference between the average temperature of the
pile and the ambient temperature). Piles 1–7, mainly constituted by sewage sludge; Piles 8–11, mainly constituted
by agri-food sludge.
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3.3. Composting Process: Effect on 15N Natural Abundance

Figure 3 shows δ15N variations in the raw materials, the initial composting mixtures and the
composts obtained. There was a clear differentiation among the different groups of materials,
and especially, between the initial composting mixtures and the composting end-products, the mature
composts having the highest median δ15N values. This finding could be due to the N losses
(preferentially 14N)—e.g., ammonia volatilization—during the composting process, which produces
an enrichment in 15N in the composting end-products. Moreover, the highest degree of humification
found in the final composts can also influence the δ15N values. Kramer et al. [31] found that, when the
humified carbon fraction increased in aliphacity (ratio of unsubstituted aliphatics to carbohydrates),
the δ15N value also increased. This relationship suggests that the 15N abundance is low when the
carbon organic materials are mainly present in labile forms.
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Total nitrogen losses and total nitrogen (TN) concentrations were also studied in the composting
mixtures, trying to establish a relationship between these parameters and the values of δ15N in the
composts at the beginning and end of the process (Table 5 and Figure 4). In addition, factorial analysis
(FA) of the data corresponding to the parameters selected (EC, OM, P, TOC, δ15N, TN and CEC) of
the initial mixtures and composted materials was carried out. According to the mass balance, the N
losses showed a wide range of values. Low N losses (<10%) were accounted for compost 2 (2.5%),
compost 4 (0.9%), compost 7 (0.9%) and compost 10 (4.8%) (Table 5). However, in the composts
1, 5, 6, 8, 9 and 11, N losses were similar to those found in previous studies. Guo et al. [32] reported N
losses from 18 to 46% when composted pig manure and sawdust at different C/N ratio, and Sáez et al. [33]
observed N losses of 44% during the composting of the solid phase of pig manure with cereal straw.
Previous studies have documented the relationship between 15N abundance and the N loss during
composting [2,19,34]. Particularly, Kim et al. [2] examined the changes in N isotope compositions
during composting of livestock manure. They concluded that the 15N abundance increased during
composting due to denitrification and ammonia volatilization processes, this last process being the main
mechanism of N loss during composting. In addition, the chemical and/or biological N immobilization
can contribute to the increase in δ15N during composting [2]. Kramer et al. [31] reported a contrasted
trend in δ15N, observing an increase at the same time that the humification process increased and
mainly attributed to microbial re-synthesis of polymerized compounds. The strong increase in δ15N
seems to indicate that the humification was primarily due to microbial processing rather than to
preferential degradation of labile constituents.
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Table 5. Total nitrogen losses, δ15N values of the initial composting mixtures and final composts and
isotope discrimination.

TN Loss
(%)

δ15N (%�)
Initial Mixture

δ15N (%�)
Mature Compost

Isotope
Discrimination (%�)

Compost 1 46.1 5.46 7.19 1.73
Compost 2 2.51 6.66 9.51 2.85
Compost 3 13.5 6.56 11.0 4.44
Compost 4 0.96 6.96 9.75 2.79
Compost 5 54.1 7.40 10.6 3.20
Compost 6 35.9 6.65 12.3 5.65
Compost 7 0.91 9.76 13.9 4.14
Compost 8 27.1 7.16 11.0 3.84
Compost 9 24.6 7.10 8.58 1.48
Compost 10 4.76 6.15 7.39 1.24
Compost 11 13.5 10.5 10.7 0.20

TN: total nitrogen. Composts 1–7, mainly constituted by sewage sludge; Composts 8–11, mainly constituted by
agri-food sludge.
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Regarding TN concentrations (Figure 4), a trend in TN content was observed, which was consistent
in all the composting piles, with an average increase in the concentration values for MS composts and
AS compost (27.4 and 27.5%, respectively) (Figure 4). In the final composts, in general, MS composts
showed higher TN concentrations than AS composts, probably due to the greater N contents in MS
samples than in AS samples.

Regarding δ15N values, this parameter also showed an increasing pattern in all the composting
piles, but this increase was lower in AS composts than in MS composts (1.7 and 3.5%�, respectively).
Thus, the trend of TN concentration during composting seems not to be directly related to δ15N values,
since the values of these parameter did not show the same trend in the final composts as TN. In this
sense, different N concentrations and their δ15N values in the raw materials may directly influence
the δ15N values of the composting mixture through δ15N dilution or enrichment [19]. Kim et al. [2]
observed a variable effect dilution/enrichment in the initial mixture prepared of cattle feedlot manure
with rice hull and sawdust as bulking agents. These authors suggest that the relative contribution of
15N-depleted N from the bulking agent materials (isotope dilution) was greater in rice hull than in
sawdust, resulting in a lower 15N of total N in rice hull compost. In our study, a different effect in the
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δ15N values of the initial mixtures has been observed. In all the mixtures prepared with MS, an effect
of isotope dilution was observed when the different bulking agent was added, while in all the piles
prepared with AS was observed an isotope enrichment. Therefore, these results suggest that the type
of sludge had a main contribution in δ15N values in the initial composting mixtures.

Factorial analysis was conducted with the data of the selected parameters (EC, OM, TOC, CEC,
P, δ15N and TN) corresponding to the initial composting mixtures and mature composts. For this
analysis, three factors (F1, F2 and F3) were used and explained 83.5% of the total explained variance,
where F1 explained 41.6% of the variance, F2 explained 23.9% and F3 explained 18% of the variance.
Figure 5 shows the plot of the first and second factors for all the composting mixtures, corresponding to
the initial and maturity stages of composting. FA allows to observe an important differentiation
among groups, depending on the degree of stabilization of the material and the type of sludge used.
Additionally, the parameter δ15N was positively correlated with TN and CEC, the latter being a
parameter strongly associated to the humification processes during composting. This finding agrees
with the previous data on the correlation between the increasing trend of δ15N and the humification
process [31].
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3.4. Composting Process: Characteristics of the Composts

Table 6 summarises the selected chemical properties of the final composts. In general, AS- and
MS-derived composts presented pH values close to neutrality. However, AS-derived composts had
higher electrical conductivity (EC) values than MS-derived composts, despite of the higher EC values
observed in MS samples. This fact could be due to the characteristics of the bulking agent used in
AS pile (palm trunk), which showed the highest EC values (Table 3). Probably due to these higher
contents in soluble salts, which may negatively affect the germination and the early stage of plant
growth [35], these composts reached lower values of the germination index (GI) than MS compost
at the end of the process (Table 6). However, the GI values reached in all the composts of our study
indicate absence of phytotoxicity [21]. All the composts had OM concentrations higher than 35%,
AS composts showing in general the highest OM contents, with similar values to those obtained
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by Vico et al. [9] and Morales et al. [11] during the co-composting of agri-food sludge. CEC and
CEC/TOC ratio are parameters usually considered to evaluate compost maturity [36,37]. The values
of the CEC and CEC/TOC ratio differed greatly among the obtained composts (Table 6). In general,
MS composts showed higher mean values of these parameters than AS composts, although in all cases
both parameters showed values higher than those established as reference values in the literature [38].
In the MS mixtures, the humification processes were probably more intense, which would lead to the
formation of functional groups responsible for the cation exchange capacity [11]. Concerning the P and
K concentrations, the values observed were similar to those found in other studies of composting using
sewage sludge [39,40] and/or agri-food sludge [11] and higher than those reported by Awasthi et al. [41]
in compost of sewage sludge with biochar. The AS composts presented the highest K content according
to the results previously found in other studies of composting using agri-food organic materials [9,11].

Table 6. Chemical characteristics and maturity properties of the final composts.

pH EC
(ds/m)

OM
(%)

P
(%)

K
(%)

CEC
(meq/100 g OM)

CEC
(meq/g TOC)

GI
(%)

Compost 1 6.1 7.8 61.5 1.6 1.4 135 2.7 68
Compost 2 6.7 3.4 44.3 1.8 1.1 99 2.0 131
Compost 3 7.1 8.1 47.8 3.3 1.8 135 2.5 106
Compost 4 7.2 8.2 40.7 2.7 1.6 166 2.7 81
Compost 5 5.9 4.9 56.8 3.1 1.1 194 3.8 77
Compost 6 5.7 5.5 59.6 3.3 0.9 159 3.1 77
Compost 7 6.0 7.2 45.9 2.1 1.3 152 3.1 69
Compost 8 6.9 6.7 42.7 1.6 1.6 82 1.5 72
Compost 9 7.0 12.7 76.0 2.4 2.6 117 2.2 94

Compost 10 6.7 13.1 74.9 2.5 2.4 91 1.9 71
Compost 11 7.2 12.3 71.2 2.7 2.4 120 2.4 80

MS-compost 1 6.1 6.5 50.9 2.6 1.3 148 2.8 87
AS-compost 2 6.7 11.2 66.2 2.3 2.3 102 2.0 79

1 Mean value for all the sewage sludge-derived composts. 2 Mean value for all the agri-food sludge derived-composts.
EC: electrical conductivity; OM: organic matter; CEC: cation exchange capacity; GI: germination index. Composts 1–7,
mainly constituted by sewage sludge; Composts 8–11, mainly constituted by agri-food sludge.

4. Conclusions

The results in this study evidence that the use of 15N abundance in composting studies may be a
suitable parameter to monitor the N losses throughout the composting process. Moreover, the results
obtained show higher values of δ15N in the sewage sludge samples compared to agri-food sludge
samples, while the bulking agents showed a wide variation in the δ15N values, even between wastes
within the same plant species. The incorporation of the bulking agents to the composting mixtures
produced an isotope dilution in the mixtures with sewage sludge, but an isotope enrichment in the
agri-food derived mixtures, which indicates that the type of sludge had a main contribution in δ15N
content of the initial composting mixtures. Furthermore, the different increasing trend of δ15N during
composting in relation to total nitrogen contents seems to indicate that there is isotopic discrimination
and confirms that exist other processes associated to this parameter, such as the humification processes
during composting. Therefore, further studies concerning the changes of δ15N in the different stages of
the composting should be carried out to increase the knowledge concerning the nitrogen dynamics
during the composting process.
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