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Abstract: Weeds are recognized globally as a major constraint to crop production and food security.
In recent decades, that constraint has been minimized through the extensive use of herbicides in
conjunction with genetically modified resistant crops. However, as is becoming evident, such a
stratagem is resulting in evolutionary selection for widespread herbicide resistance and the need for
a reformation of current practices regarding weed management. Whereas such a need is recognized
within the traditional auspices of weed science, it is also imperative to include emerging evidence that
rising levels of carbon dioxide (CO2) and climatic shifts will impose additional selection pressures that
will, in turn, affect herbicide efficacy. The goal of the current perspective is to provide historical context
of herbicide use, outline the biological basis for CO2/climate impacts on weed biology, and address the
need to integrate this information to provide a long-term sustainable paradigm for weed management.
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1. Introduction

At present, it is necessary to provide a sufficient and continuous food supply for a global population
approaching 8 billion. By 2050, the global population is expected to increase to ~10 billion [1].

Providing food security for an increasing global population remains a fundamental challenge for
humanity, and meeting that challenge will necessitate overcoming a number of obstacles, including
shifts in diet, diversion of crops to biofuels, loss of agricultural land, and anthropogenic climate change.

Overall, climatic uncertainty and potential extremes will pose inherent environmental risks in
regard to agricultural production and sustainability [2,3]. Such risks, including water availability,
excessive or irregular temperatures, and extreme climate events, have been the subject of considerable
research [4–7].

Overcoming climate induced physical barriers to maintain and sustain crop production is of
obvious importance [8]. Yet, it is also worth emphasizing that rising levels of carbon dioxide and climate
change will impact biological constraints to crop production including weeds, insects, and diseases [9].
Such biological impediments represent a significant constraint to global food production. For example,
recent estimates [10] for pest and pathogen losses average 21.5% for wheat, 30% for rice, 17% for potato,
and 22.5% for maize globally. A number of investigations have indicated that the production risk
posed by biological threats is likely to be exacerbated with rising CO2 and climatic change (insects, [11];
diseases, [12]; weeds, [13]).

The exacerbation of pest constraints on production by climatic change necessitates a closer
examination of future pest management efforts. Specifically, are current management paradigms
sufficient to minimize pest impacts in the context of a changing climate?
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2. Weed Management

Among biological impacts, weeds represent a major limitation to crop production (Figure 1). Weeds
share a similar trophic level with crop plants and can compete for similar resources with disproportionate
reductions in crop yields relative to other pests. In addition, they may also compromise crop quality
directly through contamination or act as a vector for additional pest infestation (i.e., viruses) [14,15].
Yet, it is also clear that such potential losses do not occur due to weed control efforts. Indeed, the largest
relative reduction in pest pressures due to management is associated with weed control (Figure 1).
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Figure 1. Potential and actual crop loss by pests. Differences in value reflect the ability to control
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Maintaining the efficacy of such management efforts relative to rising CO2 and climate change
will be essential in promoting and sustaining crop production. However, there is an increasing number
of reports indicating that rising CO2 and projected changes in climate could shift weed demographics
and increase weed competitiveness with negative consequences for agricultural productivity [17–20].
Moreover, there is evidence that climatic change and/or CO2 may directly affect weed control,
particularly chemical weed management, a predominant means for controlling weeds in developed
countries [21–23].

Such studies, while preliminary, may necessitate a reevaluation of the current weed management
paradigm. At present, that paradigm is centered around chemical weed management, especially in the
United States and other countries where chemical control is extensively practiced.

It may be illustrative then to examine recent spatial and temporal trends on selection, evolutionary
consequences, the current vulnerability of this paradigm, and the need for recognition and adoption of
the consequences associated with rising CO2 and climatic change for weed biology.

3. The Glyphosate Paradigm

Chemical weed management through the use of herbicides is among the most economical and
widely used methods for weed control. In recent years, herbicide use has increased in other parts
of the world, including China, India, and Sub-Saharan Africa, in part because of their potential to
improve crop yields and save labor and energy, reducing overall pest management costs [24].

Arising from chemical research during World War II, the new and improved age of herbicides began.
From 1945–1965, over 100 new substances were developed, tried, tested, and approved, including
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two key chemicals, 2,4 -D (2,4 dichlorophenoxyacetic acid) and 2,3,4-T (2,4,5-trichlorophenoxyacetic
acid). Their toxicity was such that even small amounts (1–2 kilos per hectare) were sufficient to control
weeds [24]. The screening and identification of herbicides continued as part of overall research efforts
to implement chemical weed management. However, beginning in the 1990s, the paradigm shifted.

This shift was related to the widespread use of a specific herbicide, glyphosate. As such, it is
worthwhile to trace its history. Glyphosate was registered as an herbicide in 1974 and marketed under
the trade name “Round-Up.” Glyphosate acts as a dummy molecule in a biochemical pathway unique
to plants and, in doing so, disrupts protein production [25]. However, it does not discriminate between
weeds and crops, limiting its use in postemergence weed management.

Enter genetic engineering. Ongoing research efforts were successful in developing the first
Round-Up-tolerant genetically modified (GMO) soybean line, released in the U.S. in 1996 as “Round-Up
Ready.” By 1997, 17% of all domestic soybean acres in the U.S. had transitioned to Round-Up Ready,
with 68% having transitioned by 2001, 90% by 2010, and ~94% by 2019. Weed management was simple
and highly effective relative to other methods. Such unequivocal adoption and use of soybean GMO
spurred additional innovation, and Round-Up Ready corn and cotton swiftly followed [26].

With the success of this approach, after Round-Up Ready crops were introduced, a number of
research articles were published reckoning that other management methods, such as crop rotations or
the use of other herbicides, were simply not as effective [27,28]. As glyphosate dominated the herbicide
market, other research efforts to identify and process new herbicides decreased.

However, as with many attempts to manage living organisms, chemical overuse can lead to rapid
increases in resistance. Ten years after glyphosate was introduced, over 150 million pounds were
being used in the United States alone, just in agricultural (not backyard) applications. In 2014, farmers
sprayed enough glyphosate to apply ~1.0 kg/ha (0.8 pound/acre) on every hectare of U.S.-cultivated
cropland and nearly 0.53 kg/ha (0.47 pounds/acre) on all cropland worldwide. As of 2020, that figure is
probably closer to 300 million pounds [29].

In 1998, resistance to glyphosate was first observed in Italian ryegrass (Lolium perenne L. ssp.
multiflorum (Lam.) Husnot) [30], followed by horseweed (Conyza canadensis (L.) Cronquist) in 2001 [31].
By 2020, almost 50 weed species had evolved resistance to glyphosate overall. At, present the Weed
Science Society of America (WSSA) estimates over 500 unique cases (species x site of action) for
herbicide resistance globally, with evolved resistance to 23 of the 26 known modes of action for 167
different herbicides. Overall, herbicide-resistant weeds have been observed in 94 different crops across
71 countries [32]. In the U.S., multiple-herbicide resistance and associated weeds, including water
hemp (Amaranthus tuberculatus (Moq.) Sauer), velvet leaf (Abutilon theophrasti) Medik., morning glory
(Ipomea spp.), and giant ragweed (Ambrosia trifida L.), are becoming endemic to much of the corn
belt [33].

4. A Shifting Dynamic

If glyphosate dominance represented a stable paradigm, it was short-lived, but generated
consequences. As a result of the widespread allure and efficacy of glyphosate, herbicide research was
put on hold. However, as resistance reports multiplied, researchers quickly returned to the drawing
board or wet lab, hoping to find new solutions, a new archetype for herbicidal control.

Such efforts are still ongoing. At present, older herbicides are being emphasized (Figure 2)
and new transgenic crops resistant to these mixes being generated. Yet, such efforts are short term,
in part because resistance already exists to these herbicides. Indeed, Round-Up (glyphosate) is still
being sprayed to control weeds with resistance to other modes of action, but greater and greater
concentrations are being used [33]. In addition, there are volatility and drift issues related to wider
applications of older herbicides (e.g., dicamba), including damage to orchards and native trees [34,35]
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Figure 2. Change in application rates for two older mode of action (MOA) herbicides, 2,4-D and
Dicamba. (Data are from the United States Geographical Survey (USGS) (https://water.usgs.gov/nawqa/

pnsp/usage/maps/).

Some progress on new formulations is being made. For example, the first new mode of action
(MOA) herbicide in over 35 years was recently announced by BASF (“Luximo”) [36]. Other efforts
are focusing on reducing drift in Dicamba, and new formulations and mixtures are being tried.
Overall, chemical weed control for major crops is at a precarious stage, scrambling for new technology,
a new paradigm.

5. CO2, Climate: New Evolutionary Pressures

It is an optimistic axiom that we learn from our previous mistakes. In evaluating the history of
glyphosate, one is reminded of another research effort in controlling pest (bacterial) threats, that of
antibiotics, specifically penicillin. No sooner than the miraculous effects of penicillin became apparent
to the general public, the antibiotic started to be overused. This triggered selective pressure for the
emergence of penicillin-resistant strains, which, over a few years, spread across different countries.
The discovery of each new generation of antibiotic quickly followed the same trend [37].

Not surprisingly, the basis for the decline in chemical effectiveness, irrespective of the biological
organism to be controlled, has similar evolutionary patterns: The discovery of an effective control
measure and the inherent belief that a “one-size-fits-all” paradigm has been established, followed by
blanket application, overuse, and the rapid selection of resistance genotypes. In agronomic systems,
blanket herbicide applications represent extraordinarily strong selective pressures, and the evolutionary
potential of weeds is perhaps best illustrated by the rapid and widespread documentation of subsequent
herbicide resistance [38].

If a known chemical begins to fail, it is tempting to return to the research strategy that brought
success. For antibiotic pharmacological efforts, there are similar parallels to the herbicide industry,
the low-hanging research fruit (soilborne antibiotics) have been utilized and greater biological efforts
are underway. For example, extensive and rapid screening of synthetic compounds for antimicrobial
properties or the use of genomic sequence information from different microbe strains to identify
bacterial survival genes [39]. Clearly, parallel efforts (e.g., “gene-drive” technology [40] are underway
for herbicide research [41].

Yet, there are new evolutionary pressures that must be considered in the context of herbicide
research and efficacy, specifically the indirect effects of climate change and the direct effects of rising
carbon dioxide. Such considerations are essential in maintaining chemical efficacy and future weed
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management, as the overuse of herbicides and induced resistance have evidenced that weeds are
capable of evolutionary change on ecological (generational) timescales [42–45].

Indirect climatic effects that influence evolutionary selection are already recognized. For example,
changes in wind speed, rainfall, spray patterns, temperature effects on chemical persistence, etc.,
are inclusive to herbicide management. However, the projections of greater uncertainty in climate,
including rapid temperature increases or precipitation extremes, will also impact all aspects of chemical
weed management, from changes in crop systems to weed demography, weed-crop competition,
the efficacy of spray applications, and physiological and phenological shifts in herbicide MOA, etc.
However, to a large extent, these impacts and their evolutionary consequences are not well understood
or characterized [21].

Similarly, the direct, evolutionary influence of rising CO2 on plant biology, especially in the
context of chemical weed management, is not always recognized within the research community.
It is well established that photosynthesis by C3 plants (~90% of all plant species) is limited by the
current concentration of CO2, and that ongoing increases will stimulate photosynthesis and plant
growth. However, the evolutionary roles of rising CO2 on weed species selection, phenotypic changes
in development and phenology, potential changes in crop/weed competition, and weed demographics
are still being elucidated [18,43].

There are concerns directly related to herbicide efficacy and selection as well [21,44,46,47].
CO2-induced changes in leaf thickness, root-shoot ratio, stomatal characteristics, etc., can alter the
uptake, translocation, and dilution of herbicides, including glyphosate [21,44]. For famine weed,
Parthenium hysterophorus L., a noxious invasive weed, CO2-induced increases in biomass were a factor
in recovery from glyphosate applications [48].

In addition, there are longer-term selection issues related to rising CO2 levels and differential
responses between weeds and crops. One of these is gene transfer, whereby changes in phenology and
flowering may increase gene flow and alter herbicide resistance. This was observed between weedy red
rice and Clearfield (an herbicide resistant rice line) as flowering times overlapped with increasing CO2,
with a subsequent increase in rice de-domestication and a greater number of weedy, herbicide-resistant
hybrid progenies [49]. Another is CO2 selection between herbicide-resistant and susceptible weed
biotypes. For example, projected CO2 levels increased the resistance of multiple-resistant strains of
junglerice (Echinochloa colona L.) to cyhalofop-butyl [23].

There is a great deal more to be learned regarding rising CO2, climate change, and weed biology.
Unfortunately, many of these lessons are likely to be experienced in situ in the near future. However,
there is sufficient evidence that increases in atmospheric CO2 and a chaotic environment will impose
strong selection pressures on weeds and that weeds will have the capacity to respond, in turn, with
rapid adaptive evolution. This poses a substantial hurdle for chemical weed control. Indeed, it is not
an exaggeration to suggest that these changes impose difficulties for chemical pest control in general.

6. A New Paradigm?

How can we seek a new weed management paradigm, one that recognizes current and future
evolutionary pressures, a rapidly changing climate, and environmental consequences, yet is sustainable,
effective, and economical?

It is important, in this context, not to claim a single idea or approach as a final answer to
such a question. The ability to be dynamic and fluid in any management approach will be essential.
Yet, there are some basic tenets that should be considered and included moving forward.

Let us recognize that historic pest demographics may not serve as a future standard. Rather, there is
a clear and insistent need to provide ongoing assessments of new and emerging weeds. Evolutionary
pressures by chemical overuse or climate change can significantly and suddenly alter specific weed
threats (e.g., water hemp, giant ragweed). Hence, greater stress on early detection may be especially
critical, as economic and environmental costs can increase exponentially with pest establishment.
Following establishment, any existing or new threat requires appropriate evaluation and, if necessary,
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weed control technology. Hence, the development of optimization systems for automated recognition
of weeds and invasive plants is essential.

New technological advances in physical weed management show promise. Mechanical or robotic
control of weeds facilitated by improved plant-weed recognition software and sophisticated global
positioning system (GPS) is beginning to be recognized as a potential means to maintain weed
control for specific crop systems (e.g., lettuce, [50]). Automatic weed removal technology provides a
physical means for weed management, one that may be especially viable in specialty crops. Another
mechanical innovation is the roller-crimper, a devise designed to cut cover crops as a means of weed
suppression [51].

There are, at present, few economical alternatives to herbicides in large-acreage crops.
Consequently chemical weed research will continue. It is tempting to find a single new chemical and/or
derive a GMO crop that is suitably resistant as a means to further chemical pest management.

However, as we have experienced, such an approach has its own set of economic and biological
risks. It costs millions of US dollars to develop a chemical product, perform rapid and widespread
dissemination, and within a few years, the product may have developed evolutionary selection and
massive resistance. At a time when sustainability is greatly desired as a means to control agronomic
pests and maintain food security, particularly with an uncertain climate imposing additional selection
pressures, sole reliance on a single MOA may be obsolete. Rather, diversity in any chemical endeavor
may provide a more sustainable approach.

There are new avenues to begin diversification. Gene editing and genomic engineering may offer
new insight into additional modes of action for herbicide development. New technologies that allow
precise gene editing, such as CRISPER (clustered regularly interspaced short palindromic repeats),
may be key to suppressing pest populations through “gene-drive” technology. CRISPR/Cas9 is efficient
in inserting targeted mutations in both alleles of an individual, resulting in a conversion from the
heterozygous to the homozygous condition with subsequent transmission of a specific gene to nearly
all progeny. This technique has the potential to replace a given gene with a version designed by
humans [52].

Another potential source remains biobased herbicides derived from natural plant products.
Such products could represent allelopathic or novel microbial plant-pathogen chemistry. However, it is
estimated that only a small fraction of microbial or plant biodiversity has been evaluated for herbicidal
activity [41]. Here, there are also additional opportunities for genetic selection or engineering, e.g.,
the selection of crop plants with enhanced allelopathic (bioherbicide) capability. However, the role of
climate and/or CO2 on altering the chemical composition or availability of these products deserves
additional consideration.

Whereas such efforts can provide additional tools in negating weed pressures, how these tools are
managed constitutes another critical aspect of any future paradigm. The concept of diversification
of management, of not putting all eggs in one basket, is key to sustainability. Such diversification
is emblematic in integrated weed management (IWM), which assimilates different control tactics
into a given management strategy. Such an approach can be simple (cleaning equipment, changing
surfactants) or complex (decision support model systems, e.g., [53]). However, the central tenet of
IWM is to alter selection pressures so as to prevent the dominance of a handful of highly adapted weed
species. Such an evolutionarily aware approach, one that can utilize all available tools, is critical to
minimize weed adaptation and spread [43].

7. Further Challenges

The brief synopsis of alternate approaches given here can be of potential use but is by no means
complete. Additional efforts, especially in education and herbicide chemistry or new insight into weed
biology and ecology, as well as climate uncertainty, are a vital aspect for next-generation scientists and
land managers.
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Perhaps the biggest challenge is one of human behavior. There is, understandably, an incentive for
growers to use what worked before. Yet, dependence on a single management technique (e.g., herbicide
application to GMO-resistant crops) will accelerate the evolution of herbicide resistance. Changing
such behavior is a twostep process—derivation and testing of new approaches (as discussed earlier),
as well as presentation, acceptance, and adoption of these approaches as effective at the field level.
This process will be essential for any long-term sustainable approach to weed management, and given
the onset of climate uncertainty, time is of the essence.

8. Final Thoughts

Weeds have been, and remain, the greatest constraint to global crop production. Their control and
management will be essential if food security is to be maintained with projected increases in human
population for the current century.

There is no question that chemical application has been a cornerstone of effective weed control
within developed countries for decades. The combination of chemical use with GMO-resistant crops
has been, until recently, the epitome of the weed management paradigm.

However, as is increasingly clear, overreliance on a single methodology and subsequent rapid
increases in herbicide resistance belie the long-term sustainability of such an approach. The ability
of weeds to undergo rapid genetic change and to develop resistance to multiple mechanisms of
herbicide action stresses the need for a reassessment of past practices. There are a number of seminal
reviews [41,54–58] that recognize the current, critical need to reassess and transform weed control
technology, particularly herbicide efficacy, to cope with spatial and tempoThiral changes in weed
evolution and adaptation.

Given this need, it is a seminal time to simultaneously diagnose the challenges of rising levels
of CO2, and climate uncertainty for all aspects of weed management. It is a seminal time because
any reassessment and any need to formulate a new paradigm must recognize these environmental
parameters as significant in their own ability to alter weed evolution and herbicide efficacy. As such,
diagnosing the challenges of rising levels of CO2, and climate uncertainty is essential to any long-term
sustainable weed management effort.
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