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Abstract: Soil organic matter (SOM) is a combination of materials having different origin and with
different stabilization and decomposition processes. To determine the different SOM pools and
their turnover rates, a silt loam-textured Luvisol from West Hungary was taken from the 0-20 cm
soil depth and incubated for 163 days. Maize residues were added to the soil in order to obtain
natural 3C enrichment. Four different SOM fractions—particulate organic matter (POM), sand
and stable aggregate (S + A), silt- plus clay-sized (s + c) and chemically resistant soil organic
carbon (rSOC) fractions—were separated and analyzed using FT-IR, $!3C, and *C measurements.
The mean residence time (MRT) of the new C and the proportion of maize-derived C in the fractions
were calculated. The POM fraction was found to be the most labile C pool, as shown by the
easily decomposable chemical structures (e.g., aliphatic, O-alkyl, and polysaccharides), the highest
proportion (11.7 + 2.5%) of maize-derived C, and an MRT of 3.6 years. The results revealed that
the most stable fraction was the rSOC fraction which had the smallest proportion of maize-derived
C (0.18 + 2.5%) and the highest MRT (250 years), while it was the only fraction with a negative
value of A™C (=75.0 + 2.4%o). Overall, the study confirmed the hypothesis that the SOM associated
with finer-sized soil particles decomposes the least, highlighting the significance of the fractionation
process for more accurate determination of the decomposition processes of SOM pools.

Keywords: carbon stabilization; *C labeling; fractionation; FT-IR spectroscopy; radiocarbon

1. Introduction

Soil organic matter (SOM) plays an important role in the functioning of land ecosystems. It regulates
many physical, chemical, and biological functions and processes in the soil. It maintains the soil
structure and porosity by aggregate formation and stabilization, increasing the water and air supply
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and retention in soils, and thereby enhancing the biological activity in soil environments. At the same
time SOM provides a habitat and nutrient source for microorganisms. It also enhances the buffer
capacity of the soil over a wide range of pH values due to the wide variety of functional groups and
organic compounds (such as carboxylic, hydroxy, amine, and amide) in SOM [1].

Litter and root deposition are the two natural sources of C in the soil. Once C enters into the
soil, it decomposes or stabilizes in different ways at different rates. The turnover of SOM, and thus
its stabilization, is determined by (i) the variable chemical structure of SOM components and (ii) the
physical protection against microbial attacks provided by aggregation and/or mineral bonding (by clay
minerals and pedogenic oxides) [2]. As a consequence, the various materials making up SOM have
different levels of resistance to microbial degradation. The residence time (the time the C atom spends in
the soil system) of root exudates is a few hours, whereas plant residues decompose within a few weeks
or months, while certain organic compounds may remain untouched for even ten thousand years [3-5].

The physical fractionation of soils allows the separation of these chemically and physically diverse
pools. Soil fractionation results in SOM pools with different size, density, molecular, and aggregate
composition, thus having various physical and chemical properties to stabilize C [6]. In general,
sand-associated SOM (20 um-2 mm) represents the active pool, whereas the silt and clay-sized fractions
typifies the relatively stable C domains [7-9], though, several studies have produced contradictory
results [10-12]. For example, Leifeld and Fuhrer [13] found that the mean residence time (MRT) of
the S + A (sand and stable aggregate) fraction was more than 100 years, whereas the MRT of the
POM (particulate organic matter) fraction was 5—7 years in meadow and pasture topsoils. In contrast,
Dondini et al. [14] reported a smaller proportion of fresh carbon in the POM fraction than in the
S + A fraction.

A better understanding of the properties and dynamics of SOM decomposition and sequestration
is critical for predicting ecosystem responses to global change. The MRTs of the SOM fractions
derived from fractionation are not just important parameters of soil ecosystem functioning, but are also
significant input parameters for coupled climate-carbon models (e.g., Earth System Models), with which
the size of terrestrial carbon sinks can be predicted more precisely [15,16]. In addition, the appropriate
SOM management is crucial for agroecosystem health due to the above mentioned positive effects
of SOM (e.g., water retention, nutrient supply, and aggregation). Nevertheless, as pointed out by
Lehmann and Kleber [17] the investigation of SOM turnover is more important to gain the fertility of
the soils then just to increase the number of passive carbon stocks.

The aim of this study was to quantify the stability of different SOM fractions based on the turnover
characteristics derived from the 13C natural abundance and *C methods. The C/N ratio, aromaticity,
§13C value, proportion of new maize-derived C, proportion of bomb-derived *C, and MRT of the
SOM fractions were used to test the hypothesis that the clay-sized (s + c¢) and the chemically resistant
soil organic carbon (rSOC) fractions are the most stabile fractions. In addition, FI-IR spectroscopy
was applied to characterize differences in the chemical structure of the organic matter in the separated
soil fractions.

2. Materials and Methods

2.1. Sampling and Laboratory Measurements Before Incubation

A soil sample was taken from a Haplic Luvisol [18] with loamy soil texture (of the A horizon)
(upper 0—20 cm) in the Sopron Mountains, Hungary (N 47°40°14.6”, E 16°33’53.6”) in November 2015
with a spade from a 0.5 X 0.5 m? area. The vegetation cover at the study site is dominated by deciduous,
mainly beech (Fagus sylvatica) forest. The mean annual temperature in the area is 9.2 °C and the annual
precipitation is 700-750 mm.

In the laboratory, the soil sample was air-dried, homogenized, passed through a 2-mm sieve,
and stored at room temperature.
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The soil texture was determined with the sieve-pipette method [19] and was classified as silt loam
(with 29% sand, 54% silt, and 17% clay content). The pH was 4.31 in distilled water and 3.27in 1 M
KClI solution.

2.2. Incubation Experiment

Sieved, air-dried soil samples weighing 200 g were placed in 1 L Duran® glass bottles.
After preincubation at 50% field capacity at 20 °C for two weeks, the soil was amended with
maize residues (5'3C = —13.33 + 0.04%o). One gram of the air-dried, cut into pieces, and sieved (2-mm)
maize residues was thoroughly mixed with 200 g preincubated soil. There were three replicates of
amended soil and one subsample for control with no residue addition. The samples were kept in an
incubator (KBW400 E5.1, Binder, Tuttlingen, Germany) at 20 °C for 163 days at 70% field capacity,
as this moisture content allowed the handling and compaction of the soil without the collapse of small
soil aggregates [20].

2.3. Soil Fractionation

After incubation, 30 g was weighted from the amended, control, and native (without incubation and
maize addition) samples and fractionated following the recommendations of Zimmermann et al. [21].
Figure 1 shows the steps of the fractionation procedure applied. The 30 g sieved soil samples were
added to 150 mL distilled water and dispersed in an ultrasonic shaker with 22 ] mL~! energy for 10s.
After dispersion the suspension was wet-sieved over a 63-um sieve until the rinsing water was clear.
Of the two fractions separated by wet sieving, the >63 pm portion was dried at 40 °C and separated by
Nal at a density of 1.6 g cm~>. The centrifugation (at 2275 rpm for 15 min) of the suspension resulted in
a light fraction represented the POM fraction (with fresh plant residues having visible plant structure),
whereas the heavy fraction contained the S + A (sand and stable aggregate) fraction. The POM and
S + A parts were cleaned with distilled water to remove the Nal, dried, weighed, and subjected to
further analysis.

disruption with ultrasound (22 J m1™)
wet sieving (< 63 pm)

+ density separation (1.6 g cm )

il

Figure 1. Schematic diagram of the fractionation procedure applied after Zimmermann et al. [21].

-l

POM = particulate organic matter; S + A = sand and stable aggregate fraction; DOC = dissolved organic
carbon; s + ¢ = silt- plus clay-sized fraction; rSOC = chemically resistant SOC fraction.

A 0.5-pm aperture glass filter was used to filter the <63 pum fraction. The fraction retained on
the filter representing the s + c (silt- and clay-associated) fraction was dried at 40 °C and weighted.
The filtered suspension, which represents the dissolved organic carbon (DOC), was frozen for use
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in other measurements, which are not included in this paper. One gram of the s + ¢ fraction was
added to 50 mL of 6% NaOCl and kept undisturbed for 18 h at 25 °C to separate the rSOC (chemically
resistant soil organic carbon) fraction from the s + ¢ fraction. The oxidation residue was centrifuged at
2275 rpm for 15 min, decanted, washed with distilled water and centrifuged. The oxidation step was
repeated twice and the residue was dried to obtain the rSOC fraction. The s + c and rSOC fractions
were subjected to further analysis.

2.4, Total C, N, and 6'3C Measurements

The SOM fractions were analyzed with a Flash 2000 Elemental Analyzer (Thermo Scientific,
Rhodano, Italy) using an internal TCD detector to determine the elemental percentages of C
and N. The SOM fractions were also analyzed with the Flash 2000 Organic Elemental Analyzer
(Thermo Scientific, Rhodano, Italy) coupled to a continuous flow isotope ratio mass spectrometer
(Delta V Advantage, Thermo Finnigan, Bremen, Germany) to measure the stable carbon isotopes.
The stable carbon isotope data are presented using the 5§!3C notation [22], where differences in the
13C/12C isotope ratio are expressed as per mil (%o) relative to the Vienna-PDB international standard.
The IAEA-CH-7 (§'3C = —32.51%0) and IAEA-CH-6 (6'3C = —10.45%o) reference standards [23] were
used for calibration. Samples were measured in three replicates.

The proportion of new added carbon (maize residues) to the total C content was calculated using
§13C values in a mixing model for the separated SOM fractions as follows [24]:

F=(8AB — 0A)/08 — 0A), @

where F is the proportion of C derived from maize residues, 4 and dzp is the §13C value of the control
and maize-amended soils, respectively, and &g is the §!'3C value of maize residues.
The mean residence time (MRT) of C in the separated fractions was calculated from F as follows [25]:

MRT = —t/In(1 - F), (2)
where t is the incubation time.

2.5. 14C Measurements

14C analysis was carried out on the native samples (bulk soil and SOM fractions) before incubation.
Since the pH of the bulk soil was 4.31 (distilled water) and 3.27 (KClI solution), no other carbonate
removal was applied, but the pH of the samples was adjusted to 3 with 4% HCI prior to analysis.
A two-step combustion method was applied for the bulk soil sample: first, combustion at low
temperature (at 400 °C for 40 min, “L” fraction), followed by high temperature combustion on the
same sample (at 800 °C for 20 min, “H” fraction) in the presence of high-purity oxygen gas in a
quartz tube [26,27]. Because of the low organic content of the sample (2.97%), 1-2 g of sample had
to be combusted in the on-line combustion system to provide at least 0.2 mg C/sample, allowing the
production of graphite targets and normal accelerator mass spectrometry (AMS) analysis. The resulting
CO; gas was then collected and purified separately to form “L” and “H” fractions using an on-line
combustion system line and then converted to graphite using the sealed tube Zn-graphitization
method [28]. IAEA—-C9 (fossil wood) standards were treated and measured parallel to the sample to
check the quality of sample preparation.

The separated SOM fractions were dried at 50 °C. Then, CO, was generated from the samples by
combustion at 550 °C for at least 12 h in the presence of MnO, [29]. A specially designed vacuum line
was used for the extraction and purification of the resulting CO, gas. The pure CO; gas was sealed
by flame in glass tubes (with Zn and TiH catalysts and iron powder) and graphitized [28]. Finally,
the graphitized samples were pressed into aluminum targets and subjected to EnvironMicadas AMS
analysis to measure the carbon isotopic composition of the samples [30]. The “Bats” data reduction
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software was used [31] for data evaluation, and percent Modern Carbon (pMC) units were used in
the calculations [32]. The radiocarbon data were expressed in AC units (%o) according to Stuiver
and Polach [33]:

A™C = (Agn/Aaps — 1) x 1000, (3)

where Agy is the activity of C in the sample, normalized for 5!*C isotopic fractionation and
decay-corrected between 1950 and the time of analysis (2018) and A4ps is the absolute international
standard activity of oxalic acid.

2.6. FT-IR Measurements

All the fractionated samples were powdered and dried at 40 °C directly before FT-IR measurement
to remove the absorbed water which can significantly affect the vibration of OH groups and H,O
molecules [34]. The FT-IR measurements were carried out on a Bruker Vertex 70 spectrometer with
an RT-DLaTGS detector. For each sample a spectral range of 4000-400 cm™?, a resolution of 4 cm~!,
16 scans, and three replicates were recorded. The spectra were corrected (atmospheric water and CO2
correction), normalized, subjected to 17-point smoothing, and baseline corrected.

For the detection of relative changes in the spectra and spectral comparison, an aromaticity index
(Iar) and relative absorbances (rA) were calculated. The aromaticity index derived from Inbar et al. [35]
was calculated by dividing the intensity of absorption at 1640 cm™ (aromatic C = C) by the intensity of
absorption at 2920 cm ™! (aliphatic C-H) as follows:

IaR = A -1/A

1640 cm 2920 cm ™ 4)

Relative absorbances [36-38] were calculated by dividing the peak height of each of the peak of
the six peaks (2920, 2850, 1730, 1640, 1515, or 1420 cm_l) by the sum of the absorbances of all six peaks
and multiplying it by 100. For example:

I'A1420 = (A1420/ZA2920_1420 Cm—l) x 100. (5)

2.7. Statistical Analysis

Statistical analysis was conducted using IBM SPSS Statistics 22.0 (Armonk, NY, USA). One-way
analysis of variance (ANOVA) with post hoc Tukey’s HSD test was used to evaluate differences among
the treatment categories—(i) native soil without incubation and maize addition; (ii) maize-amended
soil with incubation; and (iii) control soil with incubation but without maize residue addition—within
the SOM fractions (POM, S + A, s + ¢, and rSOC).

3. Results and Discussion

3.1. Total C and N Concentration in the Soil Fractions

The total C and N concentrations in the different fractions are presented in Table 1, which shows
that the POM fraction had the highest and the rSOC fraction the smallest C and N concentrations in
the native, amended, and control samples. The S + A and s + ¢ fractions had similar C and N values in
all the samples with concentrations between those of the POM and rSOC fractions.

Incubation and maize addition had the least influence on the total C and N concentrations of the
POM fraction, whereas the other SOM fractions had significant total C and N concentration differences
(p < 0.05) between the native and the incubated samples (Table 1). The decrease in the C and N
concentrations of POM in the amended sample compared to the control sample (Table 1, p < 0.05) can
be attributed to the increased mineralization of C caused by the maize residues [39-41].

The fact that C/N ratios decreased from the POM to the s + ¢ fraction (Table 1) is consistent with
the literature [42-44] showing that the C/N ratio decreased as the density of the fractions increased.
The C/N ratio was found to be the widest in the rSOC fraction in the present study. Leifeld and
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Fuhrer [13] also recorded the widest C/N ratios (17.5-22.2) for the rSOC fractions at almost all soil
depths of two soils, which they explained by the presence of black carbon in the samples. Similar to
black carbon, the rSOC fraction consists high carbon content organic compounds most resistant to
oxidation, whereas N-containing carbohydrates and amino acids decompose most rapidly during
NaOCl oxidation [45], resulting in a C enrichment and a N depletion of this fraction.

Table 1. Total C and N content and C/N ratio of the different soil fractions in the Luvisol studied.

Fraction 1 Treatment 2 (ngSgg) " {;1) C/N Ratio
Native 245+ 254324 9.84 +1.28 ab 252+131a
POM Amended 229 + 164 a 8.02 +0.552 a 285 +0.43b
Control 341 +3.39b 11.9 £ 0.099 b 28.7+0.21b
Native 21.6 +£0.13b 1.53 +0.009 b 14.1+0.03 a
S+A Amended 175+ 0.36 a 1.12 +0.023 a 15.7 £ 0.05 ¢
Control 17.6 £0.11a 1.15 + 0.006 a 153 +0.11b
Native 23.0+0.18 ¢ 1.69 + 0.002 ¢ 13.6+0.10a
s+c Amended 194 +0.16 a 144 +0.011a 13.5+0.05a
Control 20.3 = 0.03 b 1.49 + 0.008 b 13.7 £ 0.06 a
Native 7.72 +0.07 ¢ 0.21 £0.001 b 36.5+0.49b
rSOC Amended 5.05+0.17 a 0.17 +£ 0.004 a 30.2+0.65a
Control 6.56 = 0.09 b 0.20 = 0.006 b 332+143a
Native 80.5+0.39a 113.6 £+ 0.33b
Bulk recovery (mass %) Amended 1343 +8.14b 101.6 + 3.28 a
Control 939+0.20a 98.0+0.31a

1 POM = particulate organic matter fraction; S + A = sand plus stable aggregate fraction, s + c = silt plus clay
fraction; rSOC = chemically resistant soil organic carbon fraction. 2 Native = native soil without incubation and
maize addition; amended = maize-amended soil with incubation; control = control soil with incubation but without
maize residue addition. 3 Mean + standard error. * Means with different letters indicate significant differences
(ANOVA, p < 0.05) among the treatment categories within an SOM fraction.

3.2. Quality Assessment of SOM Fractions Using FI-IR Spectroscopy

The FI-IR absorbance of the soil fractions (Figures S1-53) was evaluated by establishing the ratios
between the main absorbance peaks of the spectra and calculating relative absorbance values (Table 2).
The bands at 2920 and 2850 cm™!, associated with aliphatic C—H stretching [36,46], had the highest
relative absorbance in the POM fraction and the lowest in the s + ¢ and rSOC fractions in all the soils.

The POM fraction also had by far the highest relative absorbance for the carboxylic substituents of
aromatic esters in the band at 1730 cm™~! [46] in all the soil samples regardless of the treatment (Table 2),
indicating a high proportion of aromatic compounds. The relative absorbance of the band at 1640 cm™ 1
characteristic of aromatic C and carboxylic acid [47], was also high in the POM fraction. The relative
absorbance of the band at around 1515 cm™!, which is assigned to aromatic C = C vibrations [46],
was found to be the highest in the POM fraction and the lowest in the rSOC fraction in the native soil
spectrum (Table 2). The high proportion of aromatic compounds can be attributed to the fact that the
POM sample is composed of relatively undecomposed or partly degraded plant residues that contain
both aliphatic and aromatic (lignin-derived) structures.

The levels of carboxyl and aromatic carbon was found to be low in the NaOCl-resistant rSOC
fraction at 1660-1620 cm™! [45], in agreement with our results (Table 2). As shown in Table 2, there were
significant differences (p < 0.05) between the incubated samples and the native sample in all SOM
fractions (except for the rSOC fraction) in the relative absorbance at 1420 cm™!, which can be attributed
to the aromatic ring stretching of COO™ [35]. The rAj4p of the rSOC fraction showed high values and
no difference (p < 0.05) between the treatments, which can be attributed to the fact that NaOCl has
high pH (~10), which may cause the deprotonation of most of the carboxylic groups in organic matter
in every treatment.
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Table 2. Relative absorbance as a % of the sum of all selected peak heights, and aromaticity index (Isgr) derived from the FT-IR spectra of the soil fractions in the

Luvisol studied.

Fraction 1 Treatment 1rA2920 rAss50 rA1730 rA1640 rA1s1s rA1420 IAR
Native 12.7 +0.892 a3 8.7+0.62a 24.7 + 0.87 ab 23.1+0.33Db 11.2+093b 109+16Db 19+0.15b
POM Amended 13.6 +0.15a 8.8 +0.07 a 241 +054a 235+0.22Db 7.0+030a 6.8+041a 1.7+0.02b
Control 17.8 £0.18 b 126 £0.21b 26.4+0.33b 20.7 £ 0.36 a 85+0.18a 54+051a 1.2+0.03a
Native 108 +0.11b 6.7+ 0.09b 71+031a 21.6+0.22a 57+030a 12.7 + 057 a 20+0.01a
S+A Amended 8.9+0.37a 55+0.26a 6.5+031a 22.2 +0.22 ab 8.5 +0.70 ab 19.8+16Db 25+0.10b
Control 8.1+040a 49+024a 6.2+032a 235+0.72b 90+12b 20.7+1.7b 29+0.14c
Native 7.9 +0.19 ab 45+0.13ab 70+0.18a 247 +£0.29 a 75+0.74b 20.7+13b 3.1+0.08a
s+c Amended 84+023b 5.0+0.16 b 6.4+0.19a 244 + 048 a 51+029a 13.0+0.78 a 29+0.12a
Control 74+029a 44 +0.18a 6.9 +0.26a 245+ 0.67 a 54+043a 155+15a 3.3+0.16a
Native 83+021b 53+0.13b 40+040c 18.0+0.28 a 11.3+0.37 a 219+1.0a 22 +0.03a
rSOC Amended 35+0.14a 2.5+0.09 a 21+0.13a 20.0+0.74a 153 +0.37b 187+21a 5.8+0.30b
Control 74+052b 49+0.36b 32+0.16b 20.2+0.75a 111+ 049 a 182+19a 28+0.24a

1 POM = particulate organic matter fraction; S + A = sand plus stable aggregate fraction, s + ¢ = silt plus clay fraction; rSOC = chemically resistant soil organic carbon fraction.

Mean =+ standard error. > Means with different letters indicate significant differences (ANOVA, p < 0.05) among the treatment categories within an SOM fraction.

2



Agronomy 2020, 10, 1944 8of 13

The aromaticity index of the soil fractions differed among the fractions (Table 2). The POM fractions
had the lowest aromaticities, while the s + ¢ and rSOC fractions had high values. Baldock et al. [48] also
found that the content of aromatic carbon was highest in the intermediate-sized fractions (2-53 pum).
Incubation had a great effect on the aromaticity of the soil fractions: the aromaticity of rSOC increased
(p < 0.05) during incubation in the amended soil, probably due to the enhanced biological activity,
which may have caused a decrease in aliphatic compounds.

3.3. Evaluation of C Isotope Changes in SOM Fractions and Turnover Time of the SOM Fractions

Based on the results of stable C isotope measurements, it can be seen that the 513C values of the S+ A
fraction (—26.32 + 0.04%o for the native soil, —26.48 + 0.03%o for the control soil, and —25.98 + 0.09%o
for the amended soil) were closest to that of the unfractionated bulk soil (—26.28 + 0.06%o for the
native soil, —26.50 + 0.09%o for the control soil, and —25.94 + 0.08%o for the amended soil) in all
the soils (Figure 2). The s + c fraction was slightly enriched in *C compared to the bulk soil in all
the soils. In contrast, '3C was depleted in the POM and rSOC fractions compared to the bulk soil,
regardless of incubation or maize addition. The negative 5'>C values of the POM fractions in the
native (-27.47 + 0.01%o0) and control (—27.76 + 0.04%o) soils could be attributed to the fact that the
organic matter of fresh plant residues entering the soil under forest vegetation is depleted in 13C [49].
Since Fagus sylvatica is the main vegetation cover in the study site, the C isotopic signature of this tree
species may be reflected in the POM fraction. Keitel et al. [50] reported that the §'3C values of the total
leaf organic matter of Fagus sylvatica varied from —26.5 to —32%eo.

POM S+A s+c rSOC Bulk soil
83C(%o0)-24.0 -
-24.5 - \
-25.0 - N
—=25.5 -
-26.0 - M N b !
C b a a
-26.5 - a N b ¥
a a
-27.0 -
=-27.5 - b §
-28.0 a
b el
-28.5 - a a
=-29.0 -
M Native soil & Control soil @ Amended soil
Before incubation After incubation

Figure 2. 5'3C values of the bulk forest soil and of the soil fractions (POM = particulate organic matter;
S + A =sand and stable aggregate fraction; s +c = silt plus clay-sized fraction; rSOC = chemically resistant
SOC fraction) separated from the native soil before incubation and from the control and maize-amended
samples after the 163-day incubation. Line bars indicate standard error. Different letters indicate
significant differences (ANOVA, p < 0.05) among the treatment categories within an SOM fraction.

In general, 5!3C values increase with an increasing degree of mineral-organic association in soil
fractions [43,51-53]. This trend could be detected for the POM, S + A, and s + c fractions of native,
control, and amended soils in the present study. The most negative §'3C value recorded for the rSOC
fraction in all the soils (Figure 2) could be the consequence of chemical oxidation. Zimmermann et al. [45]
also revealed that NaOCl-resistant fractions were depleted in §'3C, which they explained by the fact
that oxidation with NaOCl dissolves *C-enriched compounds (cellulose, hemi-cellulose, carboxyl,
and amino acids) and leaves the rSOC fraction depleted in '3C. After incubation, the fractions of the
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control samples had more negative 'C values than the native samples, except for the s + ¢ fraction,
where the values were similar. This can be explained by the preferential use of 3 C-enriched substrates
(including sugars, starch, cellulose, etc.) by microorganisms during decomposition, resulting in the
depletion of '3C in the remaining SOM [54]. Microbial metabolism, taking place during the incubation,
results 13C—deple’red CO, and '3C-enriched SOM [55], which would cause more positive 513C value
of the SOM fractions. Thus the fractionation effect of the preferential use of 1*C-enriched substrates
and the microbial metabolism are contradictory, but according to Santrtickova et al. [56] the effect of
preferential substrate utilization is stronger than that of the microbial metabolism, which causes the
more negative 5'°C value of the SOM fractions of the control sample compared to the SOM fractions of
the native sample.

The A'C values of the fractions in the studied soil (Table 3) showed the highest values for the bulk
soil (78.2 + 1.7%o0) and the POM fraction (75.2 + 1.9%o), similar values for the S + A (51.0 + 2.1%o) and
s + ¢ (49.7 £ 1.9%o) fractions, and the lowest value for the rSOC fraction (=75.0 + 2.4%o), thus showing
the highest proportion of bomb-derived #C in the bulk soil and the POM fraction, as positive values of
A™C indicate the presence of bomb-derived *C [43,57]. The >100 pMC values of the bulk soil and
the POM, S + A, and s + ¢ fractions (Table 3) also suggested a significant amount of bomb-derived
14C [58]. The lowest and only negative A*C value measured in the rSOC fraction indicated that the
14C in the sample was not in contact with the atmosphere, so significant radioactive decay could have
occurred [57]. This is in accordance with the findings of Kdgel-Knabner et al. [59] who also reported
the smallest 4C activities (99.3 and 90.7 pMC) for the heavy (>1.6 g cm~3), NaOCl-resistant fractions
in the “A” horizons of a Cambisol and a Podzol, respectively.

Table 3. Proportion and mean residence time of C derived from the C4—C (maize residues) input, l4c
activity and A*C for the soil fractions separated from the Luvisol studied.

. Frnaize 2 MRT 3 14C activit AC
Eraction ! %) (Years) (pMO) Y (%o)
POM 117254 3.6 108.4 +0.19 752+ 1.9
S+A 38+28 115 106.0 + 0.21 510+ 2.1
st 27£30 16.1 105.8 + 0.19 49719
1S0C 0.18 £ 2.5 2497 93.3 + 0.24 750 + 2.4
Bulk soil 43+29 10.2 108.7 +0.17 782+ 17

1 POM = particulate organic matter fraction; S + A = sand plus stable aggregate fraction; s + ¢ = silt plus clay
fraction; rSOC = chemically resistant soil organic carbon fraction. 2 Frnaize = proportion of C derived from the C4—C
(maize residues) input. 3 MRT = mean residence time of C derived from the C4—C (maize residues) input. 4 Means
with + standard error.

The fraction of C derived from the maize residues was the highest (11.7 + 2.5%) for the POM fraction,
followed by 3.8 + 2.8 and 2.7 + 3.0% for the S + A and s + c fractions, respectively, and 0.18 + 2.5% for
the rSOC fraction (Table 3). The fact that the POM fraction had the highest proportion of maize-derived
C and the highest 4c activity/ AC value with the fastest turnover (Table 3) confirmed that this fraction
was the most labile C pool in the Luvisol investigated in the present study. This is consistent with the
statement that this fraction is predominantly plant-derived and sensitive to soil disturbances such as
land use and management [21]. Further evidences are the following: (1) the aliphatic and aromatic
(lignin-derived) structures of the POM fractions, determined by FT-IR spectroscopy, showed that these
fractions were composed of partly degraded plant residues; (2) the '>C value of POM was similar to
that of plant litter; and (3) the MRT determined for POM in the present study was (3.6 years) in the
MRT range (2-5 years) reported by Gaudinski et al. [60] for recognizable leaf litter.

The MRTs of the S + A (11.5 years) and s + ¢ (16.1 years) fractions were similar, as were the
proportions of maize-derived C and the C values (Table 3). The fast turnover of the S + A fraction
can be explained by the fact that this fraction also contains POM particles attached to sand grains [61].
In addition, fresh C imbedded in aggregates represents an active pool with short turnover, while the
size of the aggregates plays a significant role in C stabilization. For example, Yamashita et al. [62]
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reported that occluded POM with a density of 1.6-2.0 g cm™ within the aggregates had considerably
shorter MRTs (20-34 years) for the mega- and large macroaggregates than for the microaggregates
(51 years) or <53 um aggregates (166 years).

The oxidation using NaOClI (resulted in the rSOC fraction) changed the C isotope values of the s
+ c fraction in the present study. Although Poeplau and Don [61] found that the rSOC fraction was
almost as sensitive to land use changes as the total SOC, the highest MRT of 249.7 years was found for
the rSOC fraction in the present study. It could be explained by the fact that this fraction was free of
plant residues, POM, and aggregates [21]. Many studies [11,63] demonstrated that NaOCl oxidation
can be used to obtain a stable C pool with high MRTs and radiocarbon ages.

4. Conclusions

The results from the use of combined physical and chemical fractionation, in combination
with FT-IR data and stable and radioactive isotope measurements, agree with the consensus about
SOM fractions representing different stabilities. The results revealed that the POM fraction in this
Luvisol was the most labile C pool, with easily degradable chemical structures (e.g., aliphatic, O-alkyl,
and polysaccharides), depleted 'C values, the highest proportion of new C, and the fastest turnover
rate, confirming that this fraction contained non-stabilized organic matter which was easily available
for decomposition. The analysis of the POM, S + A, and s + ¢ fractions showed that, in general, with
decreasing grain size distribution: (1) the C/N ratio decreases; (2) the aromaticity increases; (3) the
§13C value increases; (4) the proportion of new maize-derived C decreases; (5) the proportion of
bomb-derived *C decreases; and (6) the MRT of C increases, suggesting an increasing degree of
mineral-organic association, leading to decreased degradability and greater resistance to decomposition.
Therefore, the hypothesis that the smallest fraction is the most stabile was confirmed. In addition,
the fact that the rSOC fraction represents a relatively inert C pool was also demonstrated by the much
smaller proportion of maize-derived C and bomb-derived *C and by far the longest MRT, confirming
the ability of NaOCl oxidation to separate a C fraction which is less transformed by microorganisms in
the native forest soil investigated. Nevertheless, the fact that the rSOC fractions unexpectedly had the
widest C/N ratio, a decrease in relative aromaticity and the most negative 5'>C value, regardless of
incubation or maize addition, highlighted the effect of chemical oxidation by NaOCL
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