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Abstract: The desert locust, Schistocerca gregaria, is a major migratory pest that causes substantial
agricultural damage. Flying adult swarms disperse widely during the daytime, but they densely
roost on plants at night. Swarm control operations are generally conducted during the daytime,
but night-time control is a significant potential alternative. However, the night-roosting behavior of
swarms is poorly understood. We determined night-roosting plant preferences of migrating sexually
immature swarms of S. gregaria at four different sites in the Sahara Desert in Mauritania during winter.
The night-roosting sites were divided into two types based on presence or absence of large trees.
Swarms tended to roost on the largest trees and bushes at a given site. Swarms used medium-sized
plants when large trees were not locally available, but the same medium-sized plant species were
hardly used when large trees were available. Plant choice influenced roosting group size—large locust
groups roosted on larger plants. Night-roosting locusts rarely fled from approaching observers.
These results suggest that swarms of S. gregaria exhibit plasticity in their utilization patterns of
night-roosting plants depending on the plant community encountered and they selectively use
larger plants. We propose that this predictable plant-size dependent night-roosting can be used to
particularly ease locust swarm control and to generally adopt anti-locust night control strategy.

Keywords: aggregation; density-dependent phase polyphenism; migration; night-roosting site choice;
Schistocerca gregaria

1. Introduction

The desert locust, Schistocerca gregaria (Forskål, 1775), is one of the most destructive migratory
pests in the world [1–3]. Locust outbreaks are irregular and can cause serious agricultural damage
over a wide range across West Africa, the Middle East, and southwest Asia [4–8]. Understanding the
biology and ecology of wild locusts can help improve locust management [9,10].

Locusts are polyphenic grasshopper species that show density-dependent phase polyphenism in
behavioral, morphological, and physiological characteristics [11–13]. Solitarious locusts occurring at
low densities are usually dispersed across the landscape, while gregarious locusts at high densities
aggregate together and migrate over long distances as a group [14,15]. Nymphal and adult groups are
traditionally called “bands” and “swarms”, respectively. Swarm sizes vary greatly and sometimes cover
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several hundred square kilometers [7,15]. Preventive control has been promoted, where the nymphal
stages are treated before they reach adulthood and can fly as swarms to agricultural areas, because
control of highly mobile, gigantic swarms is costly and ineffective [1,5,9,10,16]. Although desert locust
management systems have been developed by the Food and Agriculture Organization of the United
Nation (FAO), locust affected countries, and researchers by using chemical pesticides and biopesticides,
swarms often occur at remote and inaccessible habitats due to geography and insecurity issues and
then invade cultivated areas near human activity [17]. This may be one of the reasons why we still face
desert locust problems in 2020 [18,19]. Therefore, improving control techniques and methods against
swarms is important.

Surveys and control operations are usually conducted during the daytime and consider
environmental factors such as wind, temperature, plant community, time of day, and locust behavior [20].
Swarms show various diel-cycling behavioral activities such as migratory flying, settling on the ground
for basking, feeding, and resting during the daytime, and roosting on plants at night [15]. Aerial
spraying using aircrafts is one of the few control techniques against flying swarms [21–23], but the flying
locusts become hazardous to low-flying aircraft. When swarms settle on the ground, ground control
measures can be used, which involve less pesticides than control measures against actively flying
swarms [23]. However, the settling period is relatively short and irregular during the daytime [20,22].
Therefore, the efficacy of night-time control as an additional management strategy should be explored.
As a first step, knowledge of night-roosting behaviors of swarms is essential.

Swarms roost for the night in trees or bushes. Locust densities in roosting swarms are much higher
than that in migrating swarms [15]—the ratio between the area taken up by a swarm in flight and that
by a swarm when settled can range from 12:1 to 900:1 [22]. Therefore, night-roosting swarms may be
a suitable target for control. However, little is known about the night-roosting plant preference of
swarms at a fine scale [24]. Our previous studies observed that both solitary adults and small-grouped
gregarious adults selectively roosted on large trees [25,26]. Habitats of S. gregaria are diverse in terms of
topography and plant communities, including vast plains with a variety of soil types such as rocky dry
soils, dunes, and playas [27–29]. Some areas lack large trees and only have small bushes [30,31]. Highly
mobile swarms of S. gregaria could encounter a variety of plant communities during migration [6,21,32],
thus it is likely that they sometimes cannot reach favorable plant communities until night. However,
they can access favorable plants by flying within the local areas. Accordingly, we hypothesized that
migratory swarms of S. gregaria exhibit plasticity in their night-roosting plant utilization patterns
depending on local plant communities and preferentially use relatively large plants. Previous studies
have suggested that night-roosting plant choice influenced locust group size—gregarious nymphs
selectively roosted on the largest plants and formed large groups [33]. Accordingly, we also tested the
hypothesis that night-roosting swarms of S. gregaria form larger groups on larger plants.

Mauritania is a major breeding and recession area for the desert locust [27,30,34,35]. In 2013,
swarms invaded the Banc d’Arguin National Park in Northwestern Mauritania, where plants are
abundant and natural conditions are preserved. This ecological Park is nationally strictly protected
from any chemical pesticides or alternative pest control strategies, only mechanical methods are
allowed. We used this opportunity to test our hypotheses. We investigated the night-roosting plant
preference and group formation of migratory swarms of S. gregaria at a fine scale. This work will
contribute to developing better locust swarm survey and control methods.

2. Materials and Methods

2.1. Study Area

Mauritania, in West Africa, is an important area for desert locust outbreaks [27,30,34]. Our study
sites were located in the Banc d’Arguin National Park, midway between Nouakchott and Nouadhibou,
in north-western Mauritania. The area is a vast plain with a variety of soil types including rocky
dry soils, dunes, playas, and small hills along the coast of the Atlantic Ocean. The primary plant
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community of the survey sites were identified according to Duranton et al. [28]. Sparse, low-growing
desert annuals (grasses, herbs, vines, etc.) grow between the bushes and trees. We conducted field
surveys from December 22–25 and 29–31, during the winter of 2013, when we encountered migrating
sexually immature swarms. At this time, rain was rare and desert annuals were still partially green
but starting to dry. Sunrise and sunset occurred at about 07:30 and 18:30 h local time, respectively.
The mean temperature during the observation period (21:00–07:00) was 13.6 ◦C (SE: 0.2 ◦C, range:
8.6–19.5 ◦C) and the mean humidity was 44.4% (SE: 0.6%, range: 24.1–71.4%) at 50 cm above the
ground, measured using a thermo-hygro recorder (TR-72wf, ONDOTORI, Tokyo, Japan).

2.2. Study Species

We studied migratory swarms of sexually immature adult desert locusts, Schistocerca gregaria
(Forskål, 1775). Classical morphometric characteristics (hind femur length/head width) of locusts [36]
confirmed their gregarious-phase status. During our study, locusts moved and fed in a daily cyclical
rhythm—during the colder night and dawn period they roosted in trees and large bushes. After dawn
they warmed by solar basking, moved to the ground, and began alternatively feeding, migrating,
and resting, often on relatively bare ground. Near dusk, they flew or climbed into trees and large
bushes for nocturnal roosting. They mainly fed on low-growing annuals and used the bushes and trees
as refuges. Sexually mature gregarious locusts become yellow in body coloration [37]. Our population
were dark red in body coloration and no sexual behaviors were observed, indicating that our population
were sexually immature.

2.3. Sampling Regime

We followed migratory swarms encountered within the survey site without disturbing them until
they roosted at night (17:00–19:00). Field surveys were conducted at night (21:00–07:00). We established
25 × 2-m belt transects and recorded information on night-roosting plants (species and abundance)
and locust group size within each transect. We recorded the aggregation level of locusts on each bush
and tree based on visual estimation. At least 30 transects were surveyed during each sample period
and transects were separated by at least 10 m.

2.4. Night-Roosting Plants

Plants were patchily distributed at the study site. In our previous studies we measured all
the plants within transects to examine plant size and locust group levels [31,33], but this was time
consuming. In the present study, we determined the maximum length, width, and height of individuals
of the dominant plant species at four survey sites within a strait belt transect until obtaining enough
sample size, according to Maeno et al. [31]. At least 35 individuals or, whenever possible, all plants
were measured and all data were pooled and analyzed to calculate mean size. The volume (m3) of each
plant species was calculated as maximum length×width× height. The abundance of each plant species
was calculated from the transects (50 m2). Maeno and Ould Babah Ebbe [33] reported that maximum
plant height rather than width and volume was the most important factor for night-roosting site choice
by gregarious late instar nymphs. Accordingly, we categorized relative plant size based on mean plant
height: small, <1.0 m; medium, 1.0–2.0 m; large, >2.0 m. At Site 1, some trees Euphorbia balsamifera and
bushes Nucularia perrini had started to dry out. Therefore, we also recorded plant states (green vs. dry)
based on leaves from the two plant species to test whether green plants attracted more locusts and
formed larger groups than dry ones.

2.5. Locust Group Size

We estimated the number of adults roosting on each plant by directly counting them after 20:00
when locusts were inactive. Each plant was given a score based on the number of roosting locusts
(i.e., group size): 0 (0 locusts), 1 (<10), 2 (10–100), 3 (100–1000), 4 (1000–10,000) and 5 (>10,000),
following the estimation method described by Maeno et al. [38].
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2.6. Defensive Response

To determine defensive behaviors of the swarms at night, their response to an approaching
observer carrying a light was recorded according to modified methods by Maeno et al. [39]. We carried
a low-intensity wide-angle headlight (Gentos, DPX-233H, Delta Peak) and walked within 1 m from
roosting locusts, filming their behavior with a video camera (Panasonic, HC-V520, Tokyo, Japan).
This was only done for locusts in groups of size 5 and was repeated for seven night-roosting groups
(i.e., >70,000 individuals). This observation was conducted on 30 December 2013.

2.7. Statistical Analysis

The effect of plant species on the percentage of plants roosted by locusts were determined using a
post hoc Fisher’s exact test after Bonferroni correction. To analyze differences in plant size (maximum
length, height, and volume) and abundance between different plant species, Tukey–Kramer HSD tests
were conducted. Percentages of plants roosted by locusts were arc-sine transformed and analyzed
using Tukey–Kramer HSD tests. Two-way analysis of variance (ANOVA) was used to analyze the
effects of plant species and presence of trees on locust group size. Differences in plant sizes between
green and dry plants were analyzed using t-tests. The proportions of different group sizes were
analyzed using a χ2-test. Statistical analyses were conducted using the software package R, version
4.0.1 [40] and JMP (SAS Institute, Cary, NC, USA).

3. Results

3.1. Plant Characteristics

In the present study, only Site 4 had three large tree species (Figure 1a,b, Table 1). Large trees
were relatively scarce (Tables 1 and 2: Tukey–Kramer HSD test, p < 0.05). Smaller plants were more
abundant than trees (Tukey–Kramer HSD test, p < 0.05).

3.2. Daily Cyclical Movement and Night-Roosting Plant Preference

During our study, swarms migrated, fed, settled and roosted on plants in a daily cyclical rhythm.
During the colder night and dawn periods, they roosted in relatively large plants including trees and
bushes (Figure 1c–e). After dawn they displayed solar basking on the plants or ground by orientating
perpendicular to the sun’s rays to maximize the body surface (Figure 1f,g). They began alternating
between feeding and resting, often on relatively bare ground (Figure 1h). At mid-day they usually
migrated downstream (Figure 1i) and sometimes settled on the ground (Figure 1j). When swarms
reached the coast, they avoided the ocean and returned inland. As a result, migrating locust density
apparently increased (Figure 1k). Near dusk, they flew or climbed into trees and larger bushes
for nocturnal roosting. No locusts were observed on the bare ground at night during any of the
150 belt surveys conducted, suggesting that locusts avoid habitats that lack plants. Locusts roosting
on large trees rarely flew away from approaching observers with lights (i.e., when we tested their
defensive response) (Figure 1l).

Plant utilization patterns by swarms varied. Figure 2 summarizes the percentage of each plant
species roosted by locusts at our four survey sites. Large trees, such as Capparis decidua, Acacia tortilis
and Maerua crassifolia, were relatively scarce, but most of them were roosted by locusts (post hoc
Fisher’s exact test after Bonferroni correction, p < 0.00091). More than 50% of Euphorbia balsamifera trees
(medium-sized), Panicum turgidum bushes (medium-sized), and Salsola imbricata bushes (small-sized)
were also utilized by locusts. The other small-sized plants (Stipagrostis plumosa, Crotalaria saharae and
Hyoscyamus muticus) were rarely used, except for Nucularia perrini.
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Table 1. Abundance of 11 dominant plant species in four survey sites. Mean (±SE) number of plants per belt transect (50 m2).

ID Site 1 Site 2 Site 3 Site 4

Data 2013/12/22 2013/12/23 2013/12/24 2013/12/29
Location 19◦55′ N, 16◦14′ W 19◦53′ N, 16◦18′ W 19◦53′ N, 16◦18′ W 19◦24′ N, 16◦13′ W

Plant Species Family Types of Plant Plant Form

Capparis decidua Capparaceae Perennial Tree - - - 0.2 ± 0.3 a
Acacia tortilis Fabaceae Perennial Tree - - - 0.2 ± 0.3 a

Maerua crassifolia Capparaceae Perennial Tree - - - 0.2 ± 0.3 a
Euphorbia balsamifera Euphorbiaceae Perennial Tree 4.2 ± 0.9 b - - 1.2 ± 0.3 a

Calotropis procera Poaceae Perennial Bush & tree - - - 0.2 ± 0.3 a
Panicum turgidum Apocynaceae Perennial Bush - 2.0 ± 0.9 a 6.6 ± 0.8 b -

Stipagrostis plumosa Poaceae Annual Bush - - - 6.8 ± 0.3 b
Salsola imbricata Amaranthaceae Annual Bush 2.7 ± 0.9 ab 10.5 ± 0.9 b 3.7 ± 0.8 ab -
Nucularia perrini Amaranthaceae Perennial Bush 17.0 ± 0.9 c 10.8 ± 0.9 b 6.3 ± 0.8 b 0.3 ± 0.3 a
Crotalaria saharae Fabaceae Perennial Bush - 2.0 ± 0.9 a 1.2 ± 0.8 a -

Hyoscyamus muticus Solanaceae Annual Bush 0.7 ± 0.9 a - - -

No. of
transects 30 30 30 60

Different letters after values indicate significant differences within each survey site (Tukey–Kramer HSD test, p < 0.05). “-” indicates the absence of the plant species at the study site.
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Night-roosting plant choice varied depending on plant community structure, i.e., the presence of
relatively large trees (Figure 3). Our survey sites could be roughly divided into either areas with trees
(Site 4) or without trees (Sites 1–3). For example, at Site 1, E. balsamifera trees, which are medium-sized,
were locally the largest plants and most of them were roosted by locusts, while the percentage of
E. balsamifera trees roosted by locusts was lower at Site 4. A similar tendency was also observed for
N. perrini between Site 2 and 4. The relatively small-sized plant, C. saharae, was rarely used by locusts
even at sites without trees. We could not analyze H. muticus due to a small sample size.Agronomy 2020, 10, x FOR PEER REVIEW 5 of 18 
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Figure 1. Habitats used by sexually immature swarms of Schistocerca gregaria for night-roosting sites and
various diel behaviors in a population in Northwestern Mauritania during winter. (a) Habitats without
trees and (b) with trees. (c) At night, locusts roosted on large trees (Capparis decidua), (d) medium-sized
trees (Euphorbia balsamifera) and (e) small bushes (Salsola imbricata). (f) In the morning, locusts moved
to the top of night-roosting trees or (g) to the open bare ground for basking. (h) Swarms feeding on low
vegetation, (i) flying swarms, (j) settled swarms on the bare ground, (k) flying swarms along a coast,
and (l) an observer staying near night-roosting swarms on a tree at night.
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Table 2. Mean (±SE) plant sizes of 11 dominant plant species in the four survey sites.

Plant Species Relative Size Maximum
Width (m)

Maximum
Height (m) Volume (m3)

n Plants
Measured

Capparis decidua Large 9.34 ± 0.23 h 3.71 ± 0.08 h 331.5 ± 13.2 d 18
Acacia tortilis Large 7.08 ± 0.20 g 2.84 ± 0.07 g 117.5 ± 11.2 c 25

Maerua crassifolia Large 5.03 ± 0.25 f 2.29 ± 0.08 f 55.7 ± 14.0 b 16
Euphorbia balsamifera Medium 2.20 ± 0.11 e 1.26 ± 0.04 e 5.9 ± 6.0 a 87

Panicum turgidum Medium 2.10 ± 0.12 de 1.18 ± 0.04 e 4.9 ± 6.7 a 70
Calotropis procera Medium 0.71 ± 0.26 abc 1.03 ± 0.09 de 0.6 ± 15.0 ab 14

Stipagrostis plumosa Small 1.53 ± 0.17 cd 0.74 ± 0.06 dc 1.5 ± 9.5 ab 35
Salsola imbricata Small 1.23 ± 0.09 bc 0.54 ± 0.03 bc 0.8 ± 5.3 a 110
Nucularia perrini Small 1.00 ± 0.08 abc 0.43 ± 0.03 ab 0.5 ± 4.5 a 157
Crotalaria saharae Small 0.76 ± 0.12 ab 0.32 ± 0.04 a 0.2 ± 6.6 a 71

Hyoscyamus muticus Small 0.41 ± 0.22 a 0.34± 0.08 ab 0.1 ± 12.5 ab 20

Different letters after values indicate significant differences within each survey site (Tukey–Kramer HSD test,
p < 0.05). Relative plant size was based on mean plant height: small, <1.0 m; medium, 1.0–2.0 m; large, >2.0 m.Agronomy 2020, 10, x FOR PEER REVIEW 7 of 18 
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survey sites at night. Numbers above bars indicate sample sizes. Different letters above bars indicate
significant differences at p < 0.00091 (post hoc Fisher’s exact test after Bonferroni correction).
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Figure 3. Mean percentage of plants from 11 plant species roosted by swarms of Schistocerca gregaria at
night at four survey sites [Site 1: (a), Site 2: (b), Site 3: (c), and Site 4: (d)]. Each box plot displays the
median value with the ends of the boxes representing the 25th and 75th percentiles and the ends of
the lines representing the 10th and 90th percentiles. Crosses indicate mean values and open circles
are outliers. Different letters above each bar indicate significant differences at p < 0.05 based on a
Tukey-Kramer HSD test after arc-sine transformation. Numbers above bars indicate sample sizes
(numbers of transects which certain plant species were recorded). “NO” in the figure indicates absence
of the plant species at the study site.
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3.3. Group Size on Roosting Plants

At night, locust groups were rarely observed on the ground or on grass; they mainly aggregated
on relatively large plants. Figure 4 summarizes the different group sizes observed for 11 plant species
across the four survey sites. Group sizes ranged from size 0 to 5 for each plant species. Larger
groups (>10,000) tended to be formed on large trees, and medium-sized groups (3, 100–1000 locusts;
4, 1000–10,000 locusts) on medium-sized trees and bushes, while large-sized group was not formed on
small bushes. The 11 plant species differed significantly in the proportion of group sizes that roosted
on them (Figure 4: χ2 = 3861.814, d.f. = 10, p < 0.01).
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Plant community structure also influenced group size (Figure 5). The largest groups (>10,000 locusts
per single plant) were observed at Site 4, where there were trees, but not at Sites 1, 2 and 3.

Group sizes on night-roosting plants varied depending on local plant community structure.
For example, the size of E. balsamifera plants did not differ significantly between Site 1 and 4 (Figure 6a;
Wilcoxon rank sum test, z = −0.598, p > 0.05), but significantly more large locust groups were observed
on this species in Site 1 than in Site 4 (Figure 6b: χ2 = 121.170, d.f. = 4, p < 0.001).
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Numbers above bars indicate sample sizes (numbers of plants observed). “NO” in the figures indicates
absence of the plant species at the study site.
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Figure 6. Height of Euphorbia balsamifera plants (a) and the percentage of E. balsamifera plants roosted
by each group size of Schistocerca gregaria swarms (b) at a site without trees (Site 1) and one with trees
(Site 4). Each box plot displays the median value with the ends of the boxes representing the 25th and
75th percentiles and the ends of the lines representing the 10th and 90th percentile values. Crosses
indicate mean values and open circles are outliers. N.S. indicates no significant differences at p > 0.05
according to a Wilcoxon rank sum test. Numbers in figures indicate sample sizes. ***, significant
differences between the two groups (χ2-test, p < 0.001).

3.4. Plant Conditions: Green vs. Dry

At Site 1, some E. balsamifera and N. perrini plants were still green but others were dry. We examined
whether greenness of plants influenced night-roosting plant choice of swarms. The utilization of green
and dry plants by swarms was compared for each species. Plant size did not differ between green
and dry plants for either plant species (Wilcoxon rank sum test, p > 0.05 for both). For E. balsamifera,
greenness did not affect roosting. Conversely, for N. perrini, green plants were roosted by locusts
significantly more than dry plants (Figure 7a; Wilcoxon rank sum test, z = −3.573, p < 0.01). Plant
greenness did not influence group size composition on E. balsamifera (Figure 7: χ2 = 0.8731, d.f. = 4,
p > 0.05). Conversely, for N. perrini, there were significantly more large locust groups on green plants
than on dry plants (Figure 7: χ2 = 24.5, d.f. = 4, p < 0.01).
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Figure 7. Percentage of green and dry plants roosted by Schistocerca gregaria swarms for Euphorbia
balsamifera and Nucularia perrini at Site 1 (a) and the percentage of each locust group size on each plant
(b). Each box plot displays the median value with the ends of the boxes representing the 25th and
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mean values and open circles are outliers. Numbers in figures indicate sample sizes. (a) **, p < 0.01;
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rank sum test. (b) **, p < 0.01; N.S. indicates no significant differences between the two groups at
p > 0.05 according to a χ2-test.
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4. Discussion

The present results support our hypothesis that migratory swarms of S. gregaria exhibit plasticity
regarding their utilization patterns of night-roosting plants depending on the plant community
encountered and they selectively use larger plants. Furthermore, we found that their night-roosting
plant choice influenced locust group size—larger groups were formed on larger trees, and night-roosting
locusts rarely fled from approaching observers. This knowledge not only aids our understanding
of night-roosting behaviors of swarms, but is also important for effective and easier locust control
by night. In the following, we will discuss night-roosting plant preference and group formation by
swarms of S. gregaria and how to apply this knowledge for improving locust control operations.

4.1. Night-Roosting Plant Preference

Many grasshopper species are known to roost on plants overnight [15]. In S. gregaria, swarms
are known to roost on large trees or bushes at night [15,22,24]. The present study confirmed this
trend for sexually immature swarms in Northwestern Mauritania during a winter season. Further,
we found plasticity in their night-roosting plant utilization—they preferentially used relatively larger
plants within local plant communities, but they used medium-sized trees and bushes as refuges when
large trees were not available. For example, swarms were observed on most of the E. balsamifera
trees, which are medium-sized, at Site 1, where this plant species was locally the largest. Conversely,
the percentage of E. balsamifera trees roosted by locusts at Site 4 was less than half that at Site 1, as large
trees were present in Site 4. Height of E. balsamifera trees was not significantly different between
the two sites, thus swarms might use relative plant size to select night-roosting plants. Swarms also
occupied medium-sized bushes at Site 2 and 3 where large trees were not available. To our best
knowledge, we are the first to report that swarms of S. gregaria change their night-roosting plant
preference depending on the local plant community, preferentially using the largest plants within
the local area. We have previously observed that marching gregarious nymphs of S. gregaria also
selectively roosted on the largest trees in the local plant community and plant height rather than
width and volume was the primary cue for night-roosting plant choice [33]. Solitarious adults and
gregarious adults at relatively low densities, and even solitarious nymphs, used relatively larger plants
as their night-roosting sites [25,26,31]. These results suggest that S. gregaria tend to use relatively larger
night-roosting plants irrespective of population density, developmental stage, and phase.

Plant height seems to be a useful criterion not only for ground-dwelling locust nymphs but also
for flying adults, likely because they can visually recognize tall plants from all directions and they are
comparable and available in all locust habitats. In fact, plant height is frequently used by insects as a
cue for selecting aggregation sites, known as a “hill-topping” behavior [41]. At Site 3 where the ground
was almost flat and there were no large trees, our car (TOYOTA, Land Cruiser, 5 m × 2 m × 2 m) was
the largest object at the site. We observed that some flying locusts tried to land on our car around dusk
(18:20–18:50). This observation also suggested that locusts preferred relatively large plants (or objects)
within the local area and provided a hint for developing an artificial trapping system which can be
used as an environmentally friendly control option. The simple criterion of plant height seems to be
useful for migratory locusts as they encounter various habitats characterized by different vegetation
cover, plant species, and plant sizes [24,27,28].

Plants are frequently used as a refuge by prey animals [42]. Greenness, i.e., the amount of leaves on
refuge plants, may influence detectability by predators [42]. In the present survey sites where trees were
not available, greenness of medium-sized plants such as E. balsamifera did not influence night-roosting
site choice by swarms of S. gregaria, but more green plants of small-sized plants (N. perrini) were used
than dry ones. Plant size of N. perrini did not differ depending on greenness, thus this may suggest
that greenness is an important factor for small-sized plants. These plants are mainly used as a shelter
rather than as food during a night. However, larger dry E. balsamifera plants attracted more locusts
than green N. perrini plants, thus attraction of greenness could be masked by plant size. Although
plant height was almost similar between the small bushes S. plumosa and S. imbricata, the former were
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rarely used by locusts. The stem and leaves of S. plumosa are thin and soft, thus they seem to have an
unstable structure. This observation suggests that morphological characteristics of plants could be
another factor for night-roosting plant choice.

Anti-predatory strategies are usually associated with microhabitat selection [42]. In the present
survey area, ambient temperature can fall below 20 ◦C at night. Because escaping performance is
temperature-dependent in grasshoppers [43,44], adult locusts cannot escape quickly from approaching
predators below 20 ◦C [39]. This is most likely why locusts roost in large trees and bushes at
night, away from nocturnal ground-foraging mammals. Morphological structures of medium-sized
P. turgidum bushes and small-sized N. perrini bushes, which locusts used in the present study, were
complex and apparently prevented access of relatively large predators. Some smaller plants such as
S. plumosa and C. saharae had enough space for many locusts to roost, but the percentages used by swarm
were small, probably because they did not provide shelter. Furthermore, aggregation with conspecifics
could reduce the risk of predation through a dilution effect, or the “selfish herd effect” [45], as suggested
for lubber grasshoppers, Romelea guttata [46], and Mormon crickets, Anabrus simplex [47]. Therefore,
using refuges and grouping on the night-roosting plants might jointly serve as an anti-predator strategy.
Interestingly, night-roosting locusts sometimes responded to an approaching observer by dropping
and moving their hind legs, but they usually remained in place. It remains unclear how darkness
(i.e., intensity of moon light) and low temperature influence escaping behaviors of night-roosting
locusts, but this reduction of escaping performance may be useful, because sprayers can closely
approach swarms.

4.2. Local Locust Group Size on Night-Roosting Plants

The present results supported our hypothesis that migratory swarms of S. gregaria would form
larger groups on larger night-roosting plants. We found that larger locust groups (>10,000 individuals)
roosted on large trees (>2 m tall), while medium- and smaller-sized locust groups (10–10,000 individuals)
roosted on medium- and small-sized trees and bushes. This variation cannot be explained by plant size
as a capacity of roosting space alone. Of course, large trees have more roosting space than small bushes,
but the presence of large trees influenced the locust group size on other roosting plants. Locust group
size on medium-sized plants significantly decreased when large trees were nearby, as observed for the
medium-sized tree E. balsamifera at Site 1 and 4. This suggests that larger trees attracted more locusts
from surrounding smaller plants. This spatial pattern was similar to that observed in gregarious late
instar nymphs of S. gregaria—marching bands formed one large group on the largest plant with several
smaller groups scattered at the local level [33]. This trend could be associated with plant distribution
patterns and sizes in the semi-arid area. In the desert plant community, resource competition for water
often results in heterogeneous patchy distributions [48], as was observed in the present survey area.
The largest trees in a local area were conspicuous, because no other large plants existed near them.
This may allow swarming locusts to see the roosting tree from afar without the need to evaluate other
potential roosting plants.

In S. gregaria, it has been reported that heterogeneous plant distributions promote local
crowding leading to gregarization, whereas a uniform distribution promotes scattering [29,30,49–53].
Cisse et al. [29] reported that vegetation cover and greenness influenced the threshold of gregarization
in adults—low vegetation cover and dry vegetation led to a low density threshold of gregarization.
Drying or dry vegetation forces locusts to meet on the few usable resources of a given area. Ould Babah
and Sword [30] showed that specific plant communities promoted gregarization in nymphs. The present
results suggest that not only plant distribution, communities, greenness, and cover, but also relative
plant size, particularly the presence of large trees, and plant community structure played an important
role in aggregation and local locust density.

Physical contact with conspecifics is the primary factor inducing gregarization in locusts [54–57],
but flying locusts stay at a distance from conspecifics [15]. This raises the questions of when and
where swarms aggregate and maintain gregariousness during migration. Microhabitat preferences
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are critical to recruit scattered conspecifics to a particular site [58], and individual attraction, group
basking behavior and microhabitat preferences jointly lead conspecifics to concentrate within a limited
area [49]. In S. gregaria, some scattered swarming members were also attracted to the large roosting
trees, suggesting that scattered swarms can fuse to form an aggregation via night-roosting behaviors.
Local crowding in the habitat has been observed on discrete resources such as host plants, basking,
or shelter sites [49,59]. It is reasonable to assume that night-roosting plant preference of gregarious
locusts may concentrate them in limited areas where they would receive physical contact while roosting
and ground basking, leading to the maintenance of gregariousness.

4.3. Applications and Future Directions

The present study suggests that future locust control methods could also target night-roosting
swarms for the following reasons: (1) night-roosting was a regular event and predictable, (2) locusts
densely aggregated on large plants, which were patchily distributed, instead of on the ground or in the
air, (3) roosting locusts were relatively immobile and escaping performance was low, thus sprayers
could approach roosting locusts even using lights, (4) large trees or bushes are easily located in the
habitat. Conversely, it may be difficult to conduct aerial spraying of night-roosting locusts due to the
following: (1) a large proportion of the locusts were often inside trees and so would be sheltered if
spraying was done from the air, (2) locusts roosted so densely that they would shield one another from
aerial spraying, and (3) night-roosting locust swarms are not easily visible from aircraft in addition
to the spatial dispersion of trees which make full coverage spraying not rational. To overcome these
disadvantages, we suggest the following: (a) ground survey teams should follow migratory swarms
until roosting time to determine roosting areas, (b) spraying should be done from the ground by car or
by man with backsprayers, (c) sprayers should target night-roosting locusts and control them directly.
(d) an eventual trapping system based on high similar object of the trees could be created to attract
swarm before they roost, (e) although night-time control operations have been poorly documented,
we are planning to test the efficacy of spraying from the ground at night. In 2013, the Mauritanian
National Anti-locust centre (CNLA) have collected adults in bags by hands in the early morning within
the natural park.

In addition, although the present study did not show any data about locust density of migratory
swarms, their density was apparently high when they migrated along the coast. Migratory swarms
avoid the polarization of oceans [60], thus members of swarms could be locally concentrated due
to such a natural barrier. Therefore, remote sensing techniques and historical survey data could
be used in the future to predict night-roosting areas [27,34,61–63]. As suggested by multi-agent
models [19,64], the spatial conditions and accessibility of locusts should be considered to improve
preventive control system.

In the future, if we can develop techniques to repel and attract swarms, a combination of these
two techniques can concentrate swarms in a limited area. At the present, unfortunately, we have
not developed such techniques, but integrating various information such as night-roosting site
preference, natural barriers such as water, and meteorological and topographical information can
help to inform which areas are suitable for extensive control operations. The present study identified
factors potentially influencing locust group size on night-roosting plants such as site, plant type,
plant conditions (green/dry), plant relative size, plant abundance and plant community. We should
determine major parameters by using appropriate statistical models. It will be necessary to repeat this
exercise with data from other countries and seasons in order to broaden our understanding.

Local people and field workers have empirically known that swarms roost on large trees at night,
but this has yet to be sufficiently reported in the scientific literature. It is important to share field and
local observations, not only to inspire scientists but also to improve control methods.
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