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Abstract: The evolution of pathogens in the changing climate raises new challenges for wheat 
production. Yellow rust is one of the major wheat diseases worldwide, leading to an increased use 
of fungicides to prevent significant yield losses. The enhancement of the resistance potential of 
wheat cultivars is a necessary and environmentally friendly solution for sustainable wheat 
production. In this study, we aimed to identify the differentially expressed genes induced upon 
yellow rust infection in the field. Reference and de novo based transcriptome analysis was 
performed among the resistant and susceptible lines of a bi-parental population to study the global 
transcriptome changes in contrasting wheat genotypes. Based on the analysis, the de novo 
transcriptome analysis approach was found to be more supportive for field studies. Expression 
profiles, gene ontology, KEGG pathway analysis and enrichment studies indicated the relation 
between differentially expressed genes of wheat and yellow rust infection. The h0igh expression of 
genes related to non-race specific resistance along with pathogen-specific resistance might be a 
reason for the better resistance ability of a resistant wheat genotype in the field. The targeted 
metagenomic analysis of wheat samples revealed that Puccinia striiformis tritici was the most 
dominant pathogen along with other pathogens on the collected leaf material and validating the 
disease scoring carried out in the field and transcriptomics analyses. 
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1. Introduction  

Yellow (stripe) rust (YR) in wheat (Triticum aestivum L.) is caused by the biotrophic pathogen 
Puccinia striiformis f. sp. tritici (Pst) and is distinguished by the yellow pustules that occur on leaves. 
It is a major disease of wheat worldwide and if left uncontrolled, may cause 100% yield losses in 
highly susceptible wheat cultivars [1]. The disease is airborne and spread through urediniospores 
which can disperse over long distances by wind [2]. New evolving races are regularly identified in 
north-western Europe and have become a major concern in recent years [3]. Genetic resistance to 
yellow rust in wheat at the seedling stage is mainly through the major resistance (R) genes while at 
the adult-plant stage, the genetic resistance can be either from R genes or adult-plant resistance genes 
(APR) or both. R genes recognize and neutralize specific pathogen effectors in a gene-for-gene 
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interaction resulting in effector-triggered immunity (ETI) in plants leading to complete disease 
resistance [4]. R genes are easy to incorporate in breeding programs, and they can provide high-level 
resistance to YR. However, they are not durable due to the evolution of new virulent races [5]. Several 
historic epidemics were also observed in the past due to the breakdown of resistance to YR [6]. On 
the contrary, adult-plant stage resistance is due to the additive effects of several genes leading to 
partial quantitative resistance. Adult plant quantitative resistance is more durable due to its complex 
genetic nature and varieties with high and durable resistance can be developed by incorporating both 
R and APR genes [7]. Resistance genes for yellow rust are designated as Yr, and several of these are 
responsive mainly at the seedling stage while some are effective at the adult plant stage [7]. To date, 
82 Yr genes have been identified, and around 25 of them are related to APR or high temperature adult 
plant resistance, whereas the rest provide all stage resistance (ASR) [8]. Several of the ASR genes (Yr5, 
Yr15, Yr53, Yr61, Yr65 and Yr69) are still effective and can be used in breeding for YR resistance [9]. 
Although these Yr genes have been genetically mapped to wheat chromosomes, only a small number 
of them have been isolated to date [9]. More than 140 QTL (Quantitative trait locus) have been 
identified with partial quantitative resistance to yellow rust and are distributed throughout the wheat 
genome [10]. A daunting task is to identify the candidate resistance genes within these QTL regions. 

The transcriptome profiling and quantification of the differential expression of genes and 
proteins play a key role in the elucidation of regulatory pathways and gene-networks through wide 
transcripts coverage, high sensitivity, allele-specific differential expression and novel transcript 
identification [10–14]. Transcriptome analysis has facilitated the fine mapping of the Yr genes and in 
understanding the underlying regulatory mechanisms in several studies. Coram et al. (2010) 
identified 28 transcripts commonly induced upon race-specific resistance conferred by eight different 
Yr genes [15]. Hulbert et al. (2007) identified 59 putative rust-induced transcripts expressed in the 
flag leaves of the spring wheat Thatcher-Lr34/Yr18 isoline [16]. Chen et al. (2013) identified 102 and 
113 rust responsive wheat genes associated with Yr5 and Yr39 genes, respectively [17]. Comparative 
transcriptomics revealed distinct differences in the responsive genes upon yellow rust and powdery 
mildew infection [18,19]. Transcriptomics studies have a high potential for innovative and 
exploratory studies towards novel insights into molecular mechanisms. However, a large number of 
genes identified in large scale omics studies impose a hurdle to identify candidate genes for 
functional validation. A map-based cloning approach has been successful at cloning key Yr genes, 
and induced mutagenesis identified Lr34/Yr18 to be an ABC transporter [20]. Map-based cloning in 
4500 F2 plants followed by chemical mutagenesis and the screening of 1536 M2 lines led to the 
identification of a gene, Yr36, with a kinase and START domain [21]. Yr10 was identified as a CC-
NBS-LRR domain-containing protein from a mapping population of 874 BC2F3 individuals [22]. In 
this work, we evaluated the possibility to identify candidate genes for YR resistance at the adult plant 
stage in a winter wheat bi-parental population through transcriptomics approach and also performed 
the metagenomics analysis to identify major wheat pathogens in the field trial. 

2. Materials and Methods 

2.1. Field Experiments and Sampling 

A winter wheat bi-parental population of 109 lines obtained from the cross (Nimbus/3/SW, 
2081221/2/SW2-7/Kranich) was sown in the field in Svalöv, Sweden, in the autumn of 2013. Scoring 
for yellow rust resistance was done at the booting stage (Zadoks stage 41–49) in the spring of 2014 
with a scale of 1 (high resistance) to 9 (highly susceptible). On the basis of scoring, leaf materials from 
resistant and susceptible lines were collected from penultimate leaves pooled from three plants from 
each breeding line of the segregating population at the booting stage (Zadoks stage 41–49). Leaves 
were flash-frozen in liquid nitrogen and stored at −80 °C until further processing. Total RNA was 
extracted with the RNeasy Plant Mini kit (Qiagen, Hilden, Germany) including DNase treatment 
(RNase-free DNase set, Qiagen Inc. Santa Clarita, CA, USA). 
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2.2. RNAseq Library Preparation Sequencing and Quality Control 

The concentration and quality of the RNA were estimated in ExperionTM Automated 
Electrophoresis System (Bio-Rad Laboratories, Hercules, CA, USA) and RIN values above seven were 
used to construct separate cDNA libraries. Paired-end sequencing was performed for 25 wheat lines 
on Illumina HiSeq 2500 instrument at the SciLifeLab (Stockholm, Sweden) with 300 base-pairs (bps) 
average fragment length. The FastQC program was used to analyse the quality of the raw sequencing 
reads [23]. Adapter sequences and low-quality reads were removed using trimmomatic [24]. 

2.3. De Novo and Reference Transcriptome Assembly and Validation 

All the clean reads were mapped to the 13 known wheat pathogens (Zymoseptoria tritici 
(Desmazières) Quaedvlieg & Crous, Pyrenophora tritici-repentis (Diedicke) Drechsler, Bipolaris sorokiniana 
(Ito & Kuribayashi) Dastur, Puccinia graminis Persoon, Puccinia striiformis Westendorp, Puccinia triticina 
Eriksson, Phaeosphaeria nodorum (Berkeley) Quaedvlieg, Verkley & Crous, Pyrenophora tritici (Diedicke) 
Drechsler, Fusarium culmorum (W.G.Smith) Saccardo, Fusarium graminearum Schwabe, Fusarium 
oxysporum Schlechtendal, Fusarium verticil (Saccardo) Nirenberg and Magnaporthe oryzae Cavar) and un-
aligned reads derived from individual lines were pooled to construct reference and de novo 
assemblies. De novo assembly was generated by using the Trinity assembler (version 2.5.1) [25]. 
Trinity pipeline was followed for the detection of differentially expressed genes. To facilitate a more 
in-depth comparison of the two different genotypes, reference-based transcriptome assembly was 
also generated through the alignment of all clean reads from each line to the reference wheat genome 
by using HiSat2 and Stingtie software [26]. The BUSCO software (version 2.4) was used to evaluate 
the quality of the two transcriptome assemblies [27]. Generated transcripts were clustered on 100% 
sequence identity through CD-HIT software [28]. Quality check of samples were also performed 
through  expression abundance estimation of lines, PCA and MDS plot and YR field scoring of lines 
were also compared. High scoring (susceptible) and low scoring (resistant) lines were used as 
replicate for differential gene expression analysis. 

2.4. Identification of Differentially Expressed Genes (DEGs), Annotation and Gene Ontology (GO) Analysis 

The de novo and reference assembled transcriptome was then used as a reference to map the 
individual reads using the Bowtie2 program [29]. The transcript abundance, raw, transcript per 
million (TPM) and fragments per kilobase (kb) of the transcript sequence per million mapped reads 
(FPKM) was measured by using RSEM version 1.1.1131 for each sequenced line [30]. The DESeq2 
package was employed to identify of differentially expressed genes (DEGs) from raw read counts at 
a false discovery rate (FDR) of 0.05 [31]. The heatmap of DEGs was generated through Pheatmap R 
package by using euclidean distance and hierarchical clustering algorithm [32]. The annotation of the 
DEGs was performed using the BLAST search program. Initially, BLASTx was performed with an e-
value threshold of 1e-10 against wheat coding sequences (CDS) and Uniprot database. The Gene 
Ontology (GO) classification of DEGs in the genotypes were generated using the WEGO program 
[33]. The GO enrichment analysis was performed through AgriGO webserver by using 
hypergeometric statistical test methods and Yekutieli multiple test correction at a p-value of 0.05 [34], 
and visualization was done through REVIGO [35]. A KEGG pathway analysis was performed with 
the KOBAS program [36]. 

2.5. Metagenomic Analysis of Selected Wheat Pathogens 

Targeted metagenomics analysis was performed to explore wheat-associated pathogen species 
in the samples. The trimmed RNA libraries were mapped to 13 selected wheat pathogens with 
Bowtie2 mapping software. The statistical significance of mapped reads were evaluated for 
pathogens with respect to resistant and susceptible groups. 
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3. Results 

3.1. RNAseq Data Analyses 

The resistant and susceptible lines were sequenced and analysed by the reference and de novo 
transcriptome assembly. A total number of 307 million read pairs (2x150 bps) were generated from 
the 20 lines. After quality control, 207 million high-quality reads of average length 126 bps were used 
in the construction of transcriptome assemblies. Library size, gene expression in lines, principal 
component analysis (PCA) plot and multidimensional scaling (MDS) plots of the samples are given 
in Figure 1. All the high quality wheat reads were pooled for the construction of reference and de 
novo assemblies and generated assemblies were clustered at 100% sequence identity. After clustering, 
219,435 (N50 of 1835 bps) and 511,926 (N50 of 1420 bps) contigs were found for reference and de novo 
assemblies respectively. The longest contig sizes were 22,462 and 15,387 bps, respectively (Table 1). 
In BUSCO analysis, reference and de novo transcriptome assemblies achieved the 94.7 and 78.5% 
completeness, respectively. The percentage of partially complete BUSCO ranged from 99.1 to 94.0%, 
while the percentage of missing BUSCO was 0.9 and 6.0%, respectively (Table 2). The wheat lines, 
disease scoring, read count per line, high quality read, and mapping percentage are given in 
Supplementary Table S1. 

 
Figure 1. Quality evaluation of the samples: (A) library size of the sequenced wheat lines; (B) boxplot 
of logCPM expression values across the samples; (C) principal component analysis (PCA); and (D) 
multidimensional scaling (MDS) plot of the Trimmed Means of M-values (TMM) normalized 
expression values of samples. Resistance, susceptible and control lines are represented through red, 
green and blue colours, respectively. Control lines (cont): blue, resistant lines (Res): red, susceptible 
lines (Sus): green. 
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Table 1. Assembly metric of the reference and de novo transcriptome assemblies. 

Transcriptome Contigs N50 Avg. 
Length 

Assembly 
Size 

Longest 
Contig size 

Contig Size >10 
KB 

Contig Size 
>1 KB 

Reference 219,435 1835 1477 324,000,551 22,462 58 140,664 

De novo 511,926 1420 953 488,058,762 15,387 30 175,517 

Table 2. Results of the BUSCO analysis for the transcriptome assemblies’ validation. 

BUSCO Description Reference De Novo 

Complete BUSCOs (S+D) 1302 (94.7%) 1079 (78.5%) 

Complete and single-copy BUSCOs (S) 69 (5.0%) 229 (16.7%) 

Complete and duplicated BUSCOs (D) 1233 (D: 89.7%) 850 (D: 61.8%) 

Fragmented BUSCOs (F) 61 (4.4%) 213 (15.5%) 

Missing BUSCOs (M) 12 (0.9%) 83 (6.0%) 

3.2. DEGs Identified by De Novo and Reference-Based Methods 

To quantify the transcriptomic variations in a sequenced line, we aligned the clean reads from 
each sample against the wheat reference and de novo transcriptome assemblies by using Bowtie2 
with default parameters and RSEM software was used to quantify the transcript abundance to 
compare the expression level within and between different samples. The DEGs identified in the 
reference and de novo assembled transcriptome by DESeq2 software in pairwise comparisons 
between the resistance and susceptible lines were 141 and 8680, respectively, with a false discovery 
rate (FDR) <0.05 (Table S2). To find wheat genes in the reference and de novo based analysis, 
identified DEGs were searched against wheat CDS sequences through BLAST similarity search, 
including up and downregulated transcripts (Figure 2). To determine the sample relations, 
differential expression data from the DESeq2 program were used to generate heat maps. Resistant 
and susceptible lines were grouped together in a different order with respect to reference and de 
novo transcriptome. However, most of the susceptible and resistant lines were grouped in the same 
clusters in both transcriptomes (Figure 3A and 3B). The expression heatmap of differentially 
expressed genes was clearly indicating a fewer number of upregulated genes in resistant lines than 
susceptible lines in their respective assemblies. 

 
Figure 2. Summary of differential gene expression and comparison: (A) the number of differentially 
expressed transcripts identified using reference-based assembly and de novo based assembly; (B) 
Venn diagrams of the number of differentially expressed transcripts for pairwise comparisons at a 
false discovery rate (FDR) of <0.05. 
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Figure 3. Heat maps of the expression pattern of differentially expressed genes by using (A) 141 
reference and (B) 8680 de novo assemblies. Red and cyan represent the resistant and susceptible lines, 
respectively. 

3.3. Differentially Expressed Genes Annotation and GO Enrichment 

A BLASTX similarity search was performed for all the identified DEGs against the Uniprot 
database. Approximately 53% of the DEGs had BLASTX hits. The majority of the top BLASTX hit 
species in the reference-based DEGs belonged to Arabidopsis thaliana, Oryza sativa subsp. Japonica, and 
were followed by other cereal crops. In the de novo based analysis, DEGs were identified in 
approximately 17% of plant species, mainly: Arabidopsis thaliana, Oryza sativa janonica, Zea mays, 
Triticum aestivium, and Nicotiana benthamiana; 35% Schizosaccharomyces prombe and cerevisiae; 20% of 
fungal species, such as Puccinia gramine, Ustilago maydis, Cryptococcus neoformans and neoformans sp., 
Dictyostelium discoideum, Neurospora crassa, Candida glabrata and albicans sp., Neosartorya fischeri, 
Pneumocystis carinii, Solanum bulbocastanum, Trichosporon cutaneum, Agaricus bisporus, Aspergillus niger, 
flavus, terreus and oryzae, Chaetomium thermophilum and globosum sp., Pseudomonas aeruginosa, 
Eremothecium gossypii, Debaryomyces hansenii, Phanerochaete chrysosporium, Uromyces fabae, Laccaria 
bicolor, Kluyveromyces sp., Bacillus subtilis, Yarrowia lipolytica, Emericella nidulans. All the reference and 
de novo assembled transcripts were annotated against wheat genome and wheat annotated 
differentially expressed transcripts were considered for further downstream analysis. Wheat 
annotation for transcripts can be found in Table S3 and Table S4. 

The Gene Ontology (GO) classification of DEGs’ was represented in three main GO categories, 
i.e., the cellular component, molecular function and biological process in a histogram (Figure 4). In 
the GO analysis, the cellular component, cell and cell part (80%), organelle (55%) and membrane 
(46%) were highly represented compared to other components. Binding (64%) and catalytic activity 
(61%) were most represented among the molecular functions. Cellular process (65%), metabolic 
process (56%) and response to stimulus (36%) were the most dominant subcategories of biological 
processing. Cellular biosynthetic process, metabolic process, i.e., macromolecule, organic substance, 
nitrogen compound, aromatic compound metabolic process, and organic cyclic compound metabolic 
process were highly enriched in GO analysis. The significantly enriched GO term of the biological 
process can be further subcategorized into response to stress, response to stimulus, signal, 
methylation, multicellular organismal processing, multi-organism process and reproductive process 
which can be seen clearly in Figure 5A, generated by REVIGO. In figure 5A, the X and Y coordinates 
were based on the multidimensional scaling of a matrix of the GO terms’ semantic similarities 
whereas bubbles closeness on the plot were reflecting their closeness in the GO graph structure. It is 
clear that response to stress, stimulus, signalling and molecular localization-related terms were 
among the enriched GO terms. The KEGG database in KOBAS webserver was used to explore the 
networks of enriched pathways and gene products (Table S5). An enriched pathway among 
differentially expressed genes was provided as a scatter diagram with a degree of enrichment by the 
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rich factor, p-adjust, and the number of genes enriched in a pathway (Figure 5B). The richness factor 
represents the ratio of the quantity of genes belonging to the pathway among differentially expressed 
genes to the total number of genes belonging to the pathway among all annotated genes. The lower 
the p-value, the higher the significance of metabolic pathways, whereas the size of bubbles represents 
the number of enriched genes. Metabolic pathways, the biosynthesis of secondary metabolites, 
peroxisome, glycerolipid metabolism, the mRNA surveillance pathway, plant–pathogen interaction, 
cutin, suberine and wax biosynthesis, glycerophospholipid metabolism and ubiquitin-mediated 
proteolysis have appeared as highly enriched pathways. To explore global transcriptome expression, 
RNAseq data of wheat resistant and susceptible lines were mapped on wheat genome. In general, 
genes in susceptible lines have a higher average read depth per million base pairs than resistant lines 
and an approximately similar trend has also been found at the genomic location of differentially 
expressed genes (Figure 6). However, higher read depth in resistant lines for differentially expressed 
genes was also found on wheat genome 1A, 2A, 3A, 3D and 5A, compared to susceptible lines which 
might be helpful to understand the molecular mechanism of resistance among the resistance lines. 

 
Figure 4. Gene ontology classifications of the differentially expressed genes by the WEGO tool. 
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Figure 5. Gene ontology and pathways: (A) description of enriched GO terms associated with 
differentially expressed genes through a scatterplot in a two-dimensional space derived by applying 
multidimensional scaling to a matrix of the GO terms’ semantic similarities. The bubble colour 
indicates significance (−log10 p-value) and size indicates the frequency of the GO terms in the 
underlying gene ontology annotation database, such as a larger circle in blue which represents the 
most significant enriched term. Red colour represent higher p-values (B) The KEGG enrichment of 
differentially expressed genes as a scatter diagram with a degree of enrichment by the richness factor, 
p-adjust, and the number of genes enriched in a pathway. The number of enriched DEGs in the 
pathway is indicated by the circle area, and the circle colour represents the ranges of the p-adjust. 

 
Figure 6. Circos visualization of the RNAseq data at the wheat genome-wide level. From the outer to 
inner ring; karyotype of the wheat genome; average read depth per million base pair of wheat genome 
mapping of the resistant (red) and susceptible (green) line; the genomic location of differentially 
expressed genes for the resistant (red) and susceptible (green) line. Height of bars in outer and inner 
ring shows the average read depth per million base pair with respect to the genomic location. 
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To explore the field pathogenic factor association with the gene expression of wheat lines, 
targeted metagenomic analysis was performed by read mapping of resistant and susceptible line 
samples to the 13 known wheat pathogens. The highest number of reads was mapped to P. striiformis 
genome in the susceptible group (Figure 7). Significant differences in the read counts in the 
susceptible and resistant groups were also found in between those of P. graminis and P. triticiana, 
however, none of the wheat samples had more than 0.5% of total reads belonging to either of these 
two pathogens. RNA sequences from the pathogens B. sorokiniana, F. culmorum and Z. tritici were also 
identified with read counts of at least 1% of total reads in at least one sample. However, the read 
counts from these pathogens were not significantly different between the resistant and susceptible 
groups. 

 
Figure 7. Metagenomic analysis of the selected wheat pathogens: (A) the percentage of pathogen 
reads that are mapped to each species (*** p < 0.001; ** p < 0.01); (B) the mapping percentage of reads 
for the pathogenic fungal genome. 

4. Discussion 

In this study, resistant, susceptible and control wheat lines were sequenced. Control lines, 
common filed trial lines were used to check disease pressure in field whereas resistant and susceptible 
lines were selected on the basis of field scoring. To compare the transcriptomic variations among 
wheat lines exposed to yellow rust disease in the field, leaf tissue samples were collected and used 
for the RNA-seq analysis. On average, approximately 69% of reads were mapped to the wheat 
reference genome, which indicates the sequencing of other field-related genetic resources such as 
wheat pathogens. We performed the quality check of sequenced samples through gene expression 
data. The library size of the sequenced wheat lines was observed to be variable. However, the logCPM 
normalisation plot (Figure 1B) and gene expression level distributions both showed that the wheat 
lines had similar expression patterns and variation ranges suggesting that the sequenced line and 
sequencing data were comparable and suitable for downstream transcriptome analysis. 

To know the effect of different biological and ecological factors of wheat field on wheat leaf 
transcriptomes, we performed the PCA analysis of wheat lines through TMM normalized expression 
counts for the wheat genome (Figure 1C). The first PCA component accounted for 71.01% of the total 
variability, which in this case corresponds to the reference genome specific variance. The second PCA 
component accounted for 12.76% of the overall variance which highlighted how the difference 
between the wheat lines might have been caused by other field factors. For a better understanding of 
the variation among the transcriptome of wheat lines, the MDS plot was used to check variations 
among samples (Figure 1D). The MDS plot showed that the transcriptome of control lines were very 
close to susceptible lines transcriptome. In order to identify the candidate genes of wheat among the 
resistant and susceptible ones, the samples from the control lines were removed from further 
downstream analysis. Moreover, susceptible and control lines transcriptome resemblance were also 
supported by field scoring. Although it was clear from the PCA and MDS plots that wheat lines had 
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a varying expression in the field, it is challenging to make direct comparisons of field factors for 
transcriptomic variation among wheat lines. 

Reference-based transcriptome analysis has been considered more effective than a de novo 
approach when the reference genome of organism is available [37]. However, very few studies have 
compared the two strategies [38,39] to identify differentially expressed genes, and no similar 
comparison has been found for field diseases. Thus, it is more important and interesting for field 
disease studies to determine whether the de novo assembly can detect the same genes, isoforms and 
the molecular responses as a reference genome-based analysis, and what else it was captured in 
transcriptome. In the present transcriptome analysis of wheat, we compared both strategies. The 
trinity de novo assembly has approximately twice the number of contigs than the reference assembly, 
which may be due to allelic variation among wheat genotypes, the lack of strand-specific information 
of genotypes or the sequencing of other unknown eukaryotic field environmental materials. Several 
genomes and transcriptome assembly studies have used BUSCO for evaluating the quality of 
assemblies. BUSCO detected the presence of 1347 extremely conserved core eukaryotic genes (CEGs) 
and their coverage in transcriptome assemblies for the evaluation of the completeness of the 
assembly. The BUSCO analysis showed that both assemblies were very close to complete in terms of 
gene content, together with the identified fragments of core-genes. Overall, both assemblies captured 
high percentages of ultra-conserved core eukaryotic genes (reference: 99.1%, de novo: 93.0%). 
However, the number of complete and single copy BUSCO were found more in de novo assemblies 
(Table 2). In the transcriptome analysis of wheat lines, the expression abundance and differential 
expression were different in the de novo and the reference-based analyses. However, there is a larger 
number of differentially expressed transcripts observed in the susceptible lines compared to the 
resistant lines (Figures 2 and 3) in both assemblies. De novo and reference-based analysis indicated 
that the genes expressed in the resistant and susceptible lines might play key roles in their differential 
resistance abilities. This might be due to the presence of several external factors associated with 
susceptible lines in the field. 

To understand the global trend of genomic variation among wheat lines exposed to different 
biological and ecological factors in the field, we identified and analysed DEGs from both resistant 
and susceptible lines in our study through generated reference-based and de novo transcriptome 
assemblies. The number of identified DEGs in the reference and de novo assembled transcriptome 
was very low in comparison to the total assembled transcripts, 141 and 8680, respectively, in the 
resistance and susceptible groups. Gene expression is the primary source to know concerning genetic 
variation among a population generated during a plant breeding process, and gene expression 
difference in the population could contribute and represent some of the observed differences in plant 
phenotype such as susceptibility to diseases. However, a low number of differentially expressed 
genes might indicate the least genomic variation among resistance and susceptible lines [40] and 
directly indicate the expression of key genes involved in disease resistance. To identify the potential 
genes involved in resistance, we investigated upregulated DEGs generated by both transcriptome 
assemblies. A BLAST similarity search was performed against wheat CDS sequences with the value 
1e-10 to determine the commonly expressed genes and unique genes expressed between assemblies. 
A large proportion of transcript sequences failed to find homologous sequences in the wheat genome. 
With the used criteria, 126,669 and 107,651 transcript sequences were annotated in de novo and 
reference assemblies, respectively, in the similarity search of wheat CDS sequences (Table S3 and S4). 
A large proportion of transcripts sequences generated from wheat lines were failed to find 
homologous sequences in wheat genome from both the assemblies. Huge number of un-annotating 
transcripts might be due to inclusion of lot of non-coding RNA content which are missing in wheat 
gene model or mixing of reads from other eukaryotic organisms. 

Approximately 41% of sequences were found to be common between the de novo and reference 
assemblies, and approximately 29% of sequences were unique in assemblies which might indicate 
the difference generated by the used assembly approaches, tools and the inclusion of genomic 
material of other organisms in the wheat transcriptome. Furthermore, both methods identified many 
similar candidate genes putatively involved in resistant and susceptible genotypes. Thus, this also 
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demonstrated the potential of the de novo method for the capturing of key genes even in the absence 
of a reference genome which can be useful for researchers working with field diseases with orphan 
species. In order to access expression difference in a wheat genotype, a list of upregulated 
differentially expressed genes was generated by both assemblies (Table 3).Differentially expressed 
genes from reference and de novo assemblies were annotated by the wheat genome and Uniprot 
database through BLAST similarity search. It is clearly visible in Table 3 that most of the differentially 
expressed transcripts related to the disease were identified through de novo transcriptome analysis 
approach. Cysteine-rich receptor-like protein kinases (CRKs) are most highly differentially expressed 
in resistant lines among all potential candidates. CRKs are transmembrane, and are involved in a 
wide range of receptor-like protein kinase-dependent signalling networks including pathogen 
detection [41]. Seven different isoforms of CRKs; six as CRK6 and one as CRK7 (Table 3) were 
expressed among resistant lines on different genome locations. The Level of expression varies with 
respect to the genomic location. However, all the CRKs possess a secretory signal. CRKs have shown 
a significant role in disease resistance such as NPR1 and NH1 mediated immunity in Arabidopsis 
thaliana and Oryza sativa subsp. Japonica against bacterial blight pathogen Xanthomomas oryzae pv. 
oryzae. Absence or low CRKs expression can make plants more susceptible to infection [42]. 
Diacylglycerol kinase 5 (DAG5) is another gene among other significant DEGs. DAG5 phosphorylates 
diacylglycerol (DAG) to produce a signalling molecule of phosphatidic acid as a second messenger. 
Diacylglycerol kinases are key signalling enzymes which are involved in phosphorylating 
diacylglycerol (DAG) to yield phosphatidic acid (PA). The biosynthesis of PA plays a crucial role in 
a eukaryotic metabolic and signalling process such as the glycerolipid metabolic process, intracellular 
signal transduction source, lipid phosphorylation, or the protein kinase C-activating G protein-
coupled receptor signalling pathway. Phosphatidic acid is highly required for plant development, 
abiotic stress and pathogen attack. The presence of diacylglycerol kinase 5 (DAG5) among highly 
significant DEGs may be an indicator of high resistance among resistant lines [43]. 

Table 3. List of upregulated differentially expressed genes (p-value < 0.05) in de novo and reference 
assemblies that can be considered as potential candidate genes involved in resistance. The table is 
sorted according to p-values. FC: fold change. IWGSC: International Wheat Genome Sequencing 
Consortium 

Reference/De Novo 
log2FC Annotation UniprotIds 

IWGSC 
Signal 

Transcript Chromosome Location 

TRINITY_DN51078_c2_g4_i2 805.981 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

2D:189356990:189359834:1 Y 

TRINITY_DN46223_c0_g1_i25 98.303 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

5A:546234176:546238163:−
1 

Y 

TRINITY_DN46223_c0_g1_i31 82.836 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

5A:546238637:546241834:1 Y 

TRINITY_DN46223_c0_g1_i17 52.416 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

5A:546238637:546241834:1 Y 

TRINITY_DN38661_c1_g1_i1 38.481 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

2B:245784381:245787768:1 Y 

TRINITY_DN45544_c0_g1_i24 16.282 
Cysteine-rich 
receptor-like 

protein kinase 

CRK6_ORY
SJ 

2D:20432763:20439635:1 Y 

TRINITY_DN37687_c0_g2_i5 11.964 
Cysteine-rich 
receptor-like 

protein kinase 

CRK7_ARA
TH 

5A:546306021:546309203:−
1 

Y 

TRINITY_DN49928_c0_g1_i18 11.545 
Diacylglycerol 
kinase 5 OS = 

Arabidopsis thaliana 

DGK5_ARA
TH 

2A:748963953:748967651:−
1 

N 
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TRINITY_DN35364_c0_g1_i3 2.971 
Disease resistance 

protein RGA2 OS = 
Solanum 

RGA2_SOL
BU 

1D:455752931:455755683:1 N 

TRINITY_DN44057_c1_g5_i1 7.574 
Disease resistance 
protein RPP8 OS = 

Arabidopsis 

RPP8_ARAT
H 

6B:662028638:662032091:−1 N 

TRINITY_DN39548_c1_g3_i2 11.392 
Leaf rust 10 

disease-resistance 
locus receptor-like 

LRL28_ARA
TH 

3B:29721933:29735756:1 Y 

TRINITY_DN35553_c1_g1_i1 5.456 
Leaf rust 10 

disease-resistance 
locus receptor-like 

LRL28_ARA
TH 

6D:2047133:2050237:−1 Y 

TRINITY_DN38577_c0_g1_i1 12.655 
LRR receptor-like 
serine/threonine-

protein 

FLS2_ARAT
H 

1D:466386615:466388390:−
1 

Y 

TRINITY_DN38835_c1_g4_i13 4.145 
LRR receptor-like 
serine/threonine-

protein 
FLS2_ORYSJ 6D:380568621:380572398:1 Y 

TraesCS2B02G608600.1 59.366 

Probable LRR 
receptor-like 

serine/threonine-
protein 

Y3475_ARA
TH 

2B:788840706:788842030:−1 N 

TRINITY_DN41813_c2_g5_i3 28.015 

Probable LRR 
receptor-like 

serine/threonine-
protein 

Y3475_ARA
TH 

2D:646488160:646491914:1 N 

TRINITY_DN51069_c0_g2_i8 2.348 
Protein TIFY 6b 

OS = Oryza sativa 
subsp. 

TIF6B_ORY
SJ 

5B:369635031:369638011:−1 N 

TRINITY_DN35330_c0_g3_i8 3.364 
Putative disease 

resistance protein 
RGA4 

RGA4_SOL
BU 

Un:47532810:47545586:1 N 

TRINITY_DN51664_c0_g1_i11 3.269 
Putative disease 

resistance protein 
RGA4 

RGA4_SOL
BU 

Un:95706705:95715329:1 N 

TRINITY_DN35364_c0_g4_i1 3.209 
Putative disease 

resistance protein 
RGA4 

RGA4_SOL
BU 

Un:234394428:234397967:1 N 

TRINITY_DN51887_c1_g1_i1 4.127 
Putative disease 

resistance RPP13-
like 

R13L2_ARA
TH 

7D:11663563:11672717:1 N 

TRINITY_DN52456_c0_g2_i15 8.426 
Rust resistance 

kinase Lr10 OS = 
Triticum 

LRK10_WH
EAT 1A:9359231:9363721:1 N 

TraesCS6B02G091700.1 4.309 

S-(+)-linalool 
synthase, 

chloroplastic OS = 
Oryza 

LINS_ORYS
J 

6B:67408283:67411671:−1 N 

TRINITY_DN51301_c1_g1_i10 11.432 
Vesicle-associated 
protein 1-1 OS = 

Arabidopsis 

VAP11_AR
ATH 

7B:717630687:717634406:−1 N 

TRINITY_DN46935_c4_g2_i7 5.042 
Vesicle-associated 
protein 1-1 OS = 

Arabidopsis 

VAP11_AR
ATH 

7B:717785488:717796197:1 N 

TRINITY_DN52084_c1_g1_i8 19.697 
Wall-associated 

receptor kinase 1 
OS = Arabidopsis 

WAK1_ARA
TH 

5A:464158592:464170977:−
1 

Y 

TRINITY_DN50322_c1_g1_i11 5.429 
Wall-associated 

receptor kinase 3 
OS = Arabidopsis 

WAK3_ARA
TH 

2B:657850507:657854763:−1 Y 

TRINITY_DN39541_c5_g2_i2 11.016 
Wall-associated 

receptor kinase 5 
OS = Arabidopsis 

WAK5_ARA
TH 

6D:467856066:467860898:1 Y 
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TRINITY_DN38381_c2_g3_i6 5.209 
Wall-associated 

receptor kinase 5 
OS = Arabidopsis 

WAK5_ARA
TH 

6B:713458733:713462914:1 Y 

TRINITY_DN52648_c2_g2_i1 7.132 
Wall-associated 
receptor kinase-

like 9 

WAKLH_A
RATH 

6D:467856066:467860898:1 Y 

TRINITY_DN51423_c2_g1_i4 12.889 
Receptor-like 

cytoplasmic kinase 
185 OS = Oryza 

RK185_ORY
SJ 

2B:104817628:104821546:−1 N 

TRINITY_DN50690_c0_g4_i1 5.46 

G-type lectin S-
receptor-like 

serine/threonine-
protein 

Y1130_ARA
TH 

2D:642197592:642202812:1 N 

TRINITY_DN35935_c1_g1_i3 5.033 

G-type lectin S-
receptor-like 

serine/threonine-
protein 

CE101_ARA
TH 

5B:690469413:690490270:−1 N 

Plant disease resistance in genes encodes two main classes of nucleotide-binding site leucine-
rich repeat (NBS-LRR) proteins; TIR-domain-containing (TNL) and CC-domain-containing (CNL). 
TNLs and CNLs regulate plant resistance through different downstream pathways by inducing a 
series of defence responses, such as the activation of an oxidative burst, mitogen-associated protein 
kinase cascade, the induction of pathogenesis-related genes, and the hypersensitive response. In our 
study, four RGA isoforms; one for RGA2 and three for RGA4, were found among significant DEGs. 
All four RGAs were found at different genomic locations (Table 3), but all isoforms were having a 
relatively low but consistent gene expression. RGA isoforms are having an RX-like_CC motif 
(IPR038005), NB-ARC, LRR domains and belong to the CNL family. The consistent expression of the 
CNL type of RGAs indicates the “non-race specific” disease resistance and also the activated 
alternative non-race specific resistance induced by disease resistance proteins RPP8 and RPP13 which 
indicate a high presence of non-host-specific pathogens in the growing field [44]. LRR receptor-like 
serine/threonine-protein kinases such as FLS2, Y3475, leaf rust and rust resistance kinases determine 
the specific perception of pathogen-associated molecular patterns and initiate the innate immune 
MAP kinase signalling for enhanced resistance against pathogens. The expression of receptor-like 
cytoplasmic kinase (RLCK185) is clear evidence of the innate immunity triggered by fungal chitin 
signalling pathways through MAP kinases. Chitin recognition by CERK1 receptor triggers the MAP 
kinase (MPK3 and MPK6) cascade to search for a host protein that can interact with effector proteins 
and participates in the activation of defence genes during response to microbial peptidoglycans and 
chitin [45]. A plasma membrane-associated G-type lectin S-receptor-like serine/threonine-protein 
kinase (CES101) was also expressed among the significantly expressed DEGs and its involvement 
was suggested in innate immune response, protein phosphorylation and response to fungus which 
might have role in the recognition of the lectin-associated molecular pattern of fungus [46]. All RGAs 
were expressed in the resistant genotypes. Perhaps, the functionality of these RGAs was suppressed 
by pathogens or lost molecular function due to several genomic modifications in the susceptible 
genotype. The presence of the RGA4 isoform under an unclassified genome needs to be re-
investigated in order to be used as a marker for plant breeding purposes [47]. The expression of 
protein-like TIFY 6b, known as a repressor of jasmonate responses, is suggesting that plants may be 
reducing the developmental and metabolic processes for better resource utilization under a biotic 
stress such as salt tolerance, dehydration and wounding [48]. In general, susceptible cultivars were 
shown to have a higher gene expression level than the resistant cultivars at the global transcriptome 
level, which might be due to the higher production and resources allocation against infection and 
diseases (Figure 6). 

The mechanism of cell wall communication to the cytoplasm is not very well known for plant 
resistance. Wall-associated kinases (WAKs) have the potential to provide clues for the cell wall and 
the cytoplasm crosstalk. It has been found that WAKs were expressed at organ junctions of shoot, 
root and leaf in response to wall disturbances, and the expression of an antisense WAK gene in leaves 
reduced the WAK protein levels and exhibited a loss of cell expansion. The presence of WAKs on the 
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cell wall is providing the evidence that the receptor-like kinase may have a significant role in the 
control of cell expansion, morphogenesis and development [49]. In our study, five transcripts were 
found to be related to wall-associated receptor kinases viz. WAK1, WAK3, WAK5 and WAK9. WAK1 
and WAK3 were found on chromosomes 5A and 2B on reverse strands, respectively. The higher 
expression of WAK1 might show the reduced cell expansion during infection and disease. WAK5 
and WAK9 were found on chromosomes 6B and 6D in the forward strand, respectively, which might 
indicate their involvement in the control of cell expansion, morphogenesis and development under 
normal circumstances. 

The differential gene expression data analysis of wheat lines has increased our understanding 
of plant defence mechanism in the field and shown evidence for a pathogen-specific and broad-
spectrum disease resistance mechanism. Metagenomics analysis of the RNA libraries of samples has 
also provided evidence for a pathogen-specific disease resistance mechanism along with broad-
spectrum disease resistance (Figure 7). In metagenomics analysis, P. striiformis was found as the most 
dominant pathogen among susceptible wheat lines which indicates the susceptibility of wheat lines 
for this pathogen. The significant differential expression of genes involved in non-race-specific 
disease resistance among resistant wheat lines provides the evidence for the activation of PAMP-
triggered innate immunity (PTI). The presence of other fungal pathogens such as B. sorokiniana, F. 
culmorum and Z. tritici were supporting the cause of the high activation of innate immunity in the 
field. 

5. Conclusions 

In the present study, transcriptome analysis was conducted between a resistant and susceptible 
wheat genotype with a different level of resistance in the field, and several differentially expressed 
genes were identified through reference and de novo transcriptome assembly. In the transcriptome 
analysis, the key challenge was the handling of cross-species eukaryotic molecular content of field 
samples, especially during field infection. In our comparative transcriptome study, the de novo 
approach was found to be more explorative than the reference assembly process due to high 
dependency on the reference genome, and the gene expression of similar genes from cross eukaryotic 
species like fungus has a high chance of influencing the gene expression quantification process due 
to short reads. In this study, many genes related to plant defence were upregulated in resistant wheat 
lines in the field. A significant number of genes involved in non-race specific resistance were 
overrepresented in resistant lines, which might be a reason for the good resistance ability of resistant 
wheat lines. Expression ofcysteine-rich receptor-like protein kinases, CNL type kinases and wall-
associated kinases (WAKs) are suggesting their role in determining broad-spectrum plant defence in 
the field. GO enrichment and pathway analysis further confirmed that PTI triggered the innate 
immunity-related genes which were overrepresented in the wheat resistant lines. Potential candidate 
genes found in this study might provide a basis for future functional host–pathogen genomics 
research for field wheat. Molecular techniques such as RNA interference can be further used to 
understand the role of these genes in the field plant resistance. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4395/10/12/1888/s1, Table 
S1: Wheat lines, disease scoring, read count per line, high quality reads and mapping percentage; Table S2: 
Number of differentially expressed genes among lines with respect to reference and de novo transcriptome; 
Table S3: Reference transcriptome annotation for wheat genome; Table S4: De novo transcriptome annotation 
for wheat genome; Table S5: GO enrichment analysis of DEGs; Table S6: Pathway enrichment analysis of DEGs. 
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