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Abstract: The evolution of pathogens in the changing climate raises new challenges for wheat
production. Yellow rust is one of the major wheat diseases worldwide, leading to an increased use of
fungicides to prevent significant yield losses. The enhancement of the resistance potential of wheat
cultivars is a necessary and environmentally friendly solution for sustainable wheat production.
In this study, we aimed to identify the differentially expressed genes induced upon yellow rust
infection in the field. Reference and de novo based transcriptome analysis was performed among the
resistant and susceptible lines of a bi-parental population to study the global transcriptome changes
in contrasting wheat genotypes. Based on the analysis, the de novo transcriptome analysis approach
was found to be more supportive for field studies. Expression profiles, gene ontology, KEGG pathway
analysis and enrichment studies indicated the relation between differentially expressed genes of
wheat and yellow rust infection. The h0igh expression of genes related to non-race specific resistance
along with pathogen-specific resistance might be a reason for the better resistance ability of a resistant
wheat genotype in the field. The targeted metagenomic analysis of wheat samples revealed that
Puccinia striiformis tritici was the most dominant pathogen along with other pathogens on the collected
leaf material and validating the disease scoring carried out in the field and transcriptomics analyses.
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1. Introduction

Yellow (stripe) rust (YR) in wheat (Triticum aestivum L.) is caused by the biotrophic pathogen
Puccinia striiformis f. sp. tritici (Pst) and is distinguished by the yellow pustules that occur on leaves.
It is a major disease of wheat worldwide and if left uncontrolled, may cause 100% yield losses in highly
susceptible wheat cultivars [1]. The disease is airborne and spread through urediniospores which can
disperse over long distances by wind [2]. New evolving races are regularly identified in north-western
Europe and have become a major concern in recent years [3]. Genetic resistance to yellow rust in
wheat at the seedling stage is mainly through the major resistance (R) genes while at the adult-plant
stage, the genetic resistance can be either from R genes or adult-plant resistance genes (APR) or both.
R genes recognize and neutralize specific pathogen effectors in a gene-for-gene interaction resulting
in effector-triggered immunity (ETI) in plants leading to complete disease resistance [4]. R genes are
easy to incorporate in breeding programs, and they can provide high-level resistance to YR. However,
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they are not durable due to the evolution of new virulent races [5]. Several historic epidemics were
also observed in the past due to the breakdown of resistance to YR [6]. On the contrary, adult-plant
stage resistance is due to the additive effects of several genes leading to partial quantitative resistance.
Adult plant quantitative resistance is more durable due to its complex genetic nature and varieties with
high and durable resistance can be developed by incorporating both R and APR genes [7]. Resistance
genes for yellow rust are designated as Yr, and several of these are responsive mainly at the seedling
stage while some are effective at the adult plant stage [7]. To date, 82 Yr genes have been identified,
and around 25 of them are related to APR or high temperature adult plant resistance, whereas the
rest provide all stage resistance (ASR) [8]. Several of the ASR genes (Yr5, Yr15, Yr53, Yr61, Yr65 and
Yr69) are still effective and can be used in breeding for YR resistance [9]. Although these Yr genes have
been genetically mapped to wheat chromosomes, only a small number of them have been isolated to
date [9]. More than 140 QTL (Quantitative trait locus) have been identified with partial quantitative
resistance to yellow rust and are distributed throughout the wheat genome [10]. A daunting task is to
identify the candidate resistance genes within these QTL regions.

The transcriptome profiling and quantification of the differential expression of genes and
proteins play a key role in the elucidation of regulatory pathways and gene-networks through
wide transcripts coverage, high sensitivity, allele-specific differential expression and novel transcript
identification [10–14]. Transcriptome analysis has facilitated the fine mapping of the Yr genes and
in understanding the underlying regulatory mechanisms in several studies. Coram et al. (2010)
identified 28 transcripts commonly induced upon race-specific resistance conferred by eight different
Yr genes [15]. Hulbert et al. (2007) identified 59 putative rust-induced transcripts expressed in the
flag leaves of the spring wheat Thatcher-Lr34/Yr18 isoline [16]. Chen et al. (2013) identified 102 and
113 rust responsive wheat genes associated with Yr5 and Yr39 genes, respectively [17]. Comparative
transcriptomics revealed distinct differences in the responsive genes upon yellow rust and powdery
mildew infection [18,19]. Transcriptomics studies have a high potential for innovative and exploratory
studies towards novel insights into molecular mechanisms. However, a large number of genes
identified in large scale omics studies impose a hurdle to identify candidate genes for functional
validation. A map-based cloning approach has been successful at cloning key Yr genes, and induced
mutagenesis identified Lr34/Yr18 to be an ABC transporter [20]. Map-based cloning in 4500 F2 plants
followed by chemical mutagenesis and the screening of 1536 M2 lines led to the identification of a gene,
Yr36, with a kinase and START domain [21]. Yr10 was identified as a CC-NBS-LRR domain-containing
protein from a mapping population of 874 BC2F3 individuals [22]. In this work, we evaluated the
possibility to identify candidate genes for YR resistance at the adult plant stage in a winter wheat
bi-parental population through transcriptomics approach and also performed the metagenomics
analysis to identify major wheat pathogens in the field trial.

2. Materials and Methods

2.1. Field Experiments and Sampling

A winter wheat bi-parental population of 109 lines obtained from the cross (Nimbus/3/SW,
2081221/2/SW2-7/Kranich) was sown in the field in Svalöv, Sweden, in the autumn of 2013. Scoring
for yellow rust resistance was done at the booting stage (Zadoks stage 41–49) in the spring of 2014
with a scale of 1 (high resistance) to 9 (highly susceptible). On the basis of scoring, leaf materials from
resistant and susceptible lines were collected from penultimate leaves pooled from three plants from
each breeding line of the segregating population at the booting stage (Zadoks stage 41–49). Leaves
were flash-frozen in liquid nitrogen and stored at −80 ◦C until further processing. Total RNA was
extracted with the RNeasy Plant Mini kit (Qiagen, Hilden, Germany) including DNase treatment
(RNase-free DNase set, Qiagen Inc., Santa Clarita, CA, USA).
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2.2. RNAseq Library Preparation Sequencing and Quality Control

The concentration and quality of the RNA were estimated in ExperionTM Automated
Electrophoresis System (Bio-Rad Laboratories, Hercules, CA, USA) and RIN values above seven
were used to construct separate cDNA libraries. Paired-end sequencing was performed for 25 wheat
lines on Illumina HiSeq 2500 instrument at the SciLifeLab (Stockholm, Sweden) with 300 base-pairs (bps)
average fragment length. The FastQC program was used to analyse the quality of the raw sequencing
reads [23]. Adapter sequences and low-quality reads were removed using trimmomatic [24].

2.3. De Novo and Reference Transcriptome Assembly and Validation

All the clean reads were mapped to the 13 known wheat pathogens (Zymoseptoria tritici (Desmazières)
Quaedvlieg & Crous, Pyrenophora tritici-repentis (Diedicke) Drechsler, Bipolaris sorokiniana (Ito & Kuribayashi)
Dastur, Puccinia graminis Persoon, Puccinia striiformis Westendorp, Puccinia triticina Eriksson, Phaeosphaeria
nodorum (Berkeley) Quaedvlieg, Verkley & Crous, Pyrenophora tritici (Diedicke) Drechsler, Fusarium culmorum
(W.G.Smith) Saccardo, Fusarium graminearum Schwabe, Fusarium oxysporum Schlechtendal, Fusarium verticil
(Saccardo) Nirenberg and Magnaporthe oryzae Cavar) and un-aligned reads derived from individual lines
were pooled to construct reference and de novo assemblies. De novo assembly was generated by
using the Trinity assembler (version 2.5.1) [25]. Trinity pipeline was followed for the detection of
differentially expressed genes. To facilitate a more in-depth comparison of the two different genotypes,
reference-based transcriptome assembly was also generated through the alignment of all clean reads
from each line to the reference wheat genome by using HiSat2 and Stingtie software [26]. The BUSCO
software (version 2.4) was used to evaluate the quality of the two transcriptome assemblies [27].
Generated transcripts were clustered on 100% sequence identity through CD-HIT software [28].
Quality check of samples were also performed through expression abundance estimation of lines,
PCA and MDS plot and YR field scoring of lines were also compared. High scoring (susceptible) and
low scoring (resistant) lines were used as replicate for differential gene expression analysis.

2.4. Identification of Differentially Expressed Genes (DEGs), Annotation and Gene Ontology (GO) Analysis

The de novo and reference assembled transcriptome was then used as a reference to map the
individual reads using the Bowtie2 program [29]. The transcript abundance, raw, transcript per million
(TPM) and fragments per kilobase (kb) of the transcript sequence per million mapped reads (FPKM)
was measured by using RSEM version 1.1.1131 for each sequenced line [30]. The DESeq2 package
was employed to identify of differentially expressed genes (DEGs) from raw read counts at a false
discovery rate (FDR) of 0.05 [31]. The heatmap of DEGs was generated through Pheatmap R package
by using euclidean distance and hierarchical clustering algorithm [32]. The annotation of the DEGs
was performed using the BLAST search program. Initially, BLASTx was performed with an e-value
threshold of 1e-10 against wheat coding sequences (CDS) and Uniprot database. The Gene Ontology
(GO) classification of DEGs in the genotypes were generated using the WEGO program [33]. The GO
enrichment analysis was performed through AgriGO webserver by using hypergeometric statistical
test methods and Yekutieli multiple test correction at a p-value of 0.05 [34], and visualization was done
through REVIGO [35]. A KEGG pathway analysis was performed with the KOBAS program [36].

2.5. Metagenomic Analysis of Selected Wheat Pathogens

Targeted metagenomics analysis was performed to explore wheat-associated pathogen species in
the samples. The trimmed RNA libraries were mapped to 13 selected wheat pathogens with Bowtie2
mapping software. The statistical significance of mapped reads were evaluated for pathogens with
respect to resistant and susceptible groups.
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3. Results

3.1. RNAseq Data Analyses

The resistant and susceptible lines were sequenced and analysed by the reference and de novo
transcriptome assembly. A total number of 307 million read pairs (2 × 150 bps) were generated from the
20 lines. After quality control, 207 million high-quality reads of average length 126 bps were used in the
construction of transcriptome assemblies. Library size, gene expression in lines, principal component
analysis (PCA) plot and multidimensional scaling (MDS) plots of the samples are given in Figure 1.
All the high quality wheat reads were pooled for the construction of reference and de novo assemblies
and generated assemblies were clustered at 100% sequence identity. After clustering, 219,435 (N50 of
1835 bps) and 511,926 (N50 of 1420 bps) contigs were found for reference and de novo assemblies
respectively. The longest contig sizes were 22,462 and 15,387 bps, respectively (Table 1). In BUSCO
analysis, reference and de novo transcriptome assemblies achieved the 94.7% and 78.5% completeness,
respectively. The percentage of partially complete BUSCO ranged from 99.1 to 94.0%, while the
percentage of missing BUSCO was 0.9 and 6.0%, respectively (Table 2). The wheat lines, disease scoring,
read count per line, high quality read, and mapping percentage are given in Supplementary Table S1.
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Figure 1. Quality evaluation of the samples: (A) library size of the sequenced wheat lines;
(B) boxplot of logCPM expression values across the samples; (C) principal component analysis
(PCA); and (D) multidimensional scaling (MDS) plot of the Trimmed Means of M-values (TMM)
normalized expression values of samples. Resistance, susceptible and control lines are represented
through red, green and blue colours, respectively. Control lines (cont): blue, resistant lines (Res): red,
susceptible lines (Sus): green.

Table 1. Assembly metric of the reference and de novo transcriptome assemblies.

Transcriptome Contigs N50 Avg. Length Assembly Size Longest Contig Size Contig Size >10 KB Contig Size >1 KB

Reference 219,435 1835 1477 324,000,551 22,462 58 140,664
De novo 511,926 1420 953 488,058,762 15,387 30 175,517
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Table 2. Results of the BUSCO analysis for the transcriptome assemblies’ validation.

BUSCO Description Reference De Novo

Complete BUSCOs (S+D) 1302 (94.7%) 1079 (78.5%)
Complete and single-copy BUSCOs (S) 69 (5.0%) 229 (16.7%)
Complete and duplicated BUSCOs (D) 1233 (D: 89.7%) 850 (D: 61.8%)

Fragmented BUSCOs (F) 61 (4.4%) 213 (15.5%)
Missing BUSCOs (M) 12 (0.9%) 83 (6.0%)

3.2. DEGs Identified by De Novo and Reference-Based Methods

To quantify the transcriptomic variations in a sequenced line, we aligned the clean reads from
each sample against the wheat reference and de novo transcriptome assemblies by using Bowtie2 with
default parameters and RSEM software was used to quantify the transcript abundance to compare the
expression level within and between different samples. The DEGs identified in the reference and de
novo assembled transcriptome by DESeq2 software in pairwise comparisons between the resistance
and susceptible lines were 141 and 8680, respectively, with a false discovery rate (FDR) < 0.05 (Table S2).
To find wheat genes in the reference and de novo based analysis, identified DEGs were searched against
wheat CDS sequences through BLAST similarity search, including up and downregulated transcripts
(Figure 2). To determine the sample relations, differential expression data from the DESeq2 program
were used to generate heat maps. Resistant and susceptible lines were grouped together in a different
order with respect to reference and de novo transcriptome. However, most of the susceptible and
resistant lines were grouped in the same clusters in both transcriptomes (Figure 3A,B). The expression
heatmap of differentially expressed genes was clearly indicating a fewer number of upregulated genes
in resistant lines than susceptible lines in their respective assemblies.
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Figure 2. Summary of differential gene expression and comparison: (A) the number of differentially
expressed transcripts identified using reference-based assembly and de novo based assembly; (B) Venn
diagrams of the number of differentially expressed transcripts for pairwise comparisons at a false
discovery rate (FDR) of <0.05.

3.3. Differentially Expressed Genes Annotation and GO Enrichment

A BLASTX similarity search was performed for all the identified DEGs against the Uniprot
database. Approximately 53% of the DEGs had BLASTX hits. The majority of the top BLASTX hit
species in the reference-based DEGs belonged to Arabidopsis thaliana, Oryza sativa subsp. Japonica,
and were followed by other cereal crops. In the de novo based analysis, DEGs were identified in
approximately 17% of plant species, mainly: Arabidopsis thaliana, Oryza sativa janonica, Zea mays,
Triticum aestivium, and Nicotiana benthamiana; 35% Schizosaccharomyces prombe and cerevisiae; 20% of
fungal species, such as Puccinia gramine, Ustilago maydis, Cryptococcus neoformans and neoformans sp.,
Dictyostelium discoideum, Neurospora crassa, Candida glabrata and albicans sp., Neosartorya fischeri,
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Pneumocystis carinii, Solanum bulbocastanum, Trichosporon cutaneum, Agaricus bisporus, Aspergillus niger,
flavus, terreus and oryzae, Chaetomium thermophilum and globosum sp., Pseudomonas aeruginosa,
Eremothecium gossypii, Debaryomyces hansenii, Phanerochaete chrysosporium, Uromyces fabae, Laccaria bicolor,
Kluyveromyces sp., Bacillus subtilis, Yarrowia lipolytica, Emericella nidulans. All the reference and de
novo assembled transcripts were annotated against wheat genome and wheat annotated differentially
expressed transcripts were considered for further downstream analysis. Wheat annotation for
transcripts can be found in Tables S3 and S4.Agronomy 2020, 10, x FOR PEER REVIEW 6 of 17 
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The Gene Ontology (GO) classification of DEGs’ was represented in three main GO categories, i.e.,
the cellular component, molecular function and biological process in a histogram (Figure 4). In the
GO analysis, the cellular component, cell and cell part (80%), organelle (55%) and membrane (46%)
were highly represented compared to other components. Binding (64%) and catalytic activity (61%)
were most represented among the molecular functions. Cellular process (65%), metabolic process
(56%) and response to stimulus (36%) were the most dominant subcategories of biological processing.
Cellular biosynthetic process, metabolic process, i.e., macromolecule, organic substance, nitrogen
compound, aromatic compound metabolic process, and organic cyclic compound metabolic process
were highly enriched in GO analysis. The significantly enriched GO term of the biological process can be
further subcategorized into response to stress, response to stimulus, signal, methylation, multicellular
organismal processing, multi-organism process and reproductive process which can be seen clearly
in Figure 5A (Table S5), generated by REVIGO. In Figure 5A, the X and Y coordinates were based
on the multidimensional scaling of a matrix of the GO terms’ semantic similarities whereas bubbles
closeness on the plot were reflecting their closeness in the GO graph structure. It is clear that response
to stress, stimulus, signalling and molecular localization-related terms were among the enriched GO
terms. The KEGG database in KOBAS webserver was used to explore the networks of enriched
pathways and gene products (Table S6). An enriched pathway among differentially expressed genes
was provided as a scatter diagram with a degree of enrichment by the rich factor, p-adjust, and the
number of genes enriched in a pathway (Figure 5B). The richness factor represents the ratio of the
quantity of genes belonging to the pathway among differentially expressed genes to the total number
of genes belonging to the pathway among all annotated genes. The lower the p-value, the higher the
significance of metabolic pathways, whereas the size of bubbles represents the number of enriched
genes. Metabolic pathways, the biosynthesis of secondary metabolites, peroxisome, glycerolipid
metabolism, the mRNA surveillance pathway, plant–pathogen interaction, cutin, suberine and wax
biosynthesis, glycerophospholipid metabolism and ubiquitin-mediated proteolysis have appeared as
highly enriched pathways. To explore global transcriptome expression, RNAseq data of wheat resistant
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and susceptible lines were mapped on wheat genome. In general, genes in susceptible lines have a
higher average read depth per million base pairs than resistant lines and an approximately similar
trend has also been found at the genomic location of differentially expressed genes (Figure 6). However,
higher read depth in resistant lines for differentially expressed genes was also found on wheat genome
1A, 2A, 3A, 3D and 5A, compared to susceptible lines which might be helpful to understand the
molecular mechanism of resistance among the resistance lines.
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Figure 5. Gene ontology and pathways: (A) description of enriched GO terms associated with
differentially expressed genes through a scatterplot in a two-dimensional space derived by applying
multidimensional scaling to a matrix of the GO terms’ semantic similarities. The bubble colour indicates
significance (−log10 p-value) and size indicates the frequency of the GO terms in the underlying gene
ontology annotation database, such as a larger circle in blue which represents the most significant
enriched term. Red colour represent higher p-values (B) The KEGG enrichment of differentially
expressed genes as a scatter diagram with a degree of enrichment by the richness factor, p-adjust,
and the number of genes enriched in a pathway. The number of enriched DEGs in the pathway is
indicated by the circle area, and the circle colour represents the ranges of the p-adjust.
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Figure 6. Circos visualization of the RNAseq data at the wheat genome-wide level. From the outer
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genome mapping of the resistant (red) and susceptible (green) line; the genomic location of differentially
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To explore the field pathogenic factor association with the gene expression of wheat lines, targeted
metagenomic analysis was performed by read mapping of resistant and susceptible line samples to the
13 known wheat pathogens. The highest number of reads was mapped to P. striiformis genome in the
susceptible group (Figure 7). Significant differences in the read counts in the susceptible and resistant
groups were also found in between those of P. graminis and P. triticiana, however, none of the wheat
samples had more than 0.5% of total reads belonging to either of these two pathogens. RNA sequences
from the pathogens B. sorokiniana, F. culmorum and Z. tritici were also identified with read counts of at
least 1% of total reads in at least one sample. However, the read counts from these pathogens were not
significantly different between the resistant and susceptible groups.
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4. Discussion

In this study, resistant, susceptible and control wheat lines were sequenced. Control lines, common
filed trial lines were used to check disease pressure in field whereas resistant and susceptible lines were
selected on the basis of field scoring. To compare the transcriptomic variations among wheat lines
exposed to yellow rust disease in the field, leaf tissue samples were collected and used for the RNA-seq
analysis. On average, approximately 69% of reads were mapped to the wheat reference genome,
which indicates the sequencing of other field-related genetic resources such as wheat pathogens.
We performed the quality check of sequenced samples through gene expression data. The library
size of the sequenced wheat lines was observed to be variable. However, the logCPM normalisation
plot (Figure 1B) and gene expression level distributions both showed that the wheat lines had similar
expression patterns and variation ranges suggesting that the sequenced line and sequencing data were
comparable and suitable for downstream transcriptome analysis.

To know the effect of different biological and ecological factors of wheat field on wheat leaf
transcriptomes, we performed the PCA analysis of wheat lines through TMM normalized expression
counts for the wheat genome (Figure 1C). The first PCA component accounted for 71.01% of the total
variability, which in this case corresponds to the reference genome specific variance. The second PCA
component accounted for 12.76% of the overall variance which highlighted how the difference between
the wheat lines might have been caused by other field factors. For a better understanding of the
variation among the transcriptome of wheat lines, the MDS plot was used to check variations among
samples (Figure 1D). The MDS plot showed that the transcriptome of control lines were very close to
susceptible lines transcriptome. In order to identify the candidate genes of wheat among the resistant
and susceptible ones, the samples from the control lines were removed from further downstream
analysis. Moreover, susceptible and control lines transcriptome resemblance were also supported
by field scoring. Although it was clear from the PCA and MDS plots that wheat lines had a varying
expression in the field, it is challenging to make direct comparisons of field factors for transcriptomic
variation among wheat lines.

Reference-based transcriptome analysis has been considered more effective than a de novo
approach when the reference genome of organism is available [37]. However, very few studies
have compared the two strategies [38,39] to identify differentially expressed genes, and no similar
comparison has been found for field diseases. Thus, it is more important and interesting for field
disease studies to determine whether the de novo assembly can detect the same genes, isoforms
and the molecular responses as a reference genome-based analysis, and what else it was captured
in transcriptome. In the present transcriptome analysis of wheat, we compared both strategies.
The trinity de novo assembly has approximately twice the number of contigs than the reference
assembly, which may be due to allelic variation among wheat genotypes, the lack of strand-specific
information of genotypes or the sequencing of other unknown eukaryotic field environmental materials.
Several genomes and transcriptome assembly studies have used BUSCO for evaluating the quality of
assemblies. BUSCO detected the presence of 1347 extremely conserved core eukaryotic genes (CEGs)
and their coverage in transcriptome assemblies for the evaluation of the completeness of the assembly.
The BUSCO analysis showed that both assemblies were very close to complete in terms of gene
content, together with the identified fragments of core-genes. Overall, both assemblies captured high
percentages of ultra-conserved core eukaryotic genes (reference: 99.1%, de novo: 93.0%). However,
the number of complete and single copy BUSCO were found more in de novo assemblies (Table 2).
In the transcriptome analysis of wheat lines, the expression abundance and differential expression
were different in the de novo and the reference-based analyses. However, there is a larger number of
differentially expressed transcripts observed in the susceptible lines compared to the resistant lines
(Figures 2 and 3) in both assemblies. De novo and reference-based analysis indicated that the genes
expressed in the resistant and susceptible lines might play key roles in their differential resistance
abilities. This might be due to the presence of several external factors associated with susceptible lines
in the field.
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To understand the global trend of genomic variation among wheat lines exposed to different
biological and ecological factors in the field, we identified and analysed DEGs from both resistant
and susceptible lines in our study through generated reference-based and de novo transcriptome
assemblies. The number of identified DEGs in the reference and de novo assembled transcriptome was
very low in comparison to the total assembled transcripts, 141 and 8680, respectively, in the resistance
and susceptible groups. Gene expression is the primary source to know concerning genetic variation
among a population generated during a plant breeding process, and gene expression difference in
the population could contribute and represent some of the observed differences in plant phenotype
such as susceptibility to diseases. However, a low number of differentially expressed genes might
indicate the least genomic variation among resistance and susceptible lines [40] and directly indicate
the expression of key genes involved in disease resistance. To identify the potential genes involved in
resistance, we investigated upregulated DEGs generated by both transcriptome assemblies. A BLAST
similarity search was performed against wheat CDS sequences with the value 1e-10 to determine the
commonly expressed genes and unique genes expressed between assemblies. A large proportion
of transcript sequences failed to find homologous sequences in the wheat genome. With the used
criteria, 126,669 and 107,651 transcript sequences were annotated in de novo and reference assemblies,
respectively, in the similarity search of wheat CDS sequences (Tables S3 and S4). A large proportion
of transcripts sequences generated from wheat lines were failed to find homologous sequences in
wheat genome from both the assemblies. Huge number of un-annotating transcripts might be due to
inclusion of lot of non-coding RNA content which are missing in wheat gene model or mixing of reads
from other eukaryotic organisms.

Approximately 41% of sequences were found to be common between the de novo and reference
assemblies, and approximately 29% of sequences were unique in assemblies which might indicate
the difference generated by the used assembly approaches, tools and the inclusion of genomic
material of other organisms in the wheat transcriptome. Furthermore, both methods identified many
similar candidate genes putatively involved in resistant and susceptible genotypes. Thus, this also
demonstrated the potential of the de novo method for the capturing of key genes even in the absence of
a reference genome which can be useful for researchers working with field diseases with orphan species.
In order to access expression difference in a wheat genotype, a list of upregulated differentially expressed
genes was generated by both assemblies (Table 3). Differentially expressed genes from reference and de
novo assemblies were annotated by the wheat genome and Uniprot database through BLAST similarity
search. It is clearly visible in Table 3 that most of the differentially expressed transcripts related to the
disease were identified through de novo transcriptome analysis approach. Cysteine-rich receptor-like
protein kinases (CRKs) are most highly differentially expressed in resistant lines among all potential
candidates. CRKs are transmembrane, and are involved in a wide range of receptor-like protein
kinase-dependent signalling networks including pathogen detection [41]. Seven different isoforms
of CRKs; six as CRK6 and one as CRK7 (Table 3) were expressed among resistant lines on different
genome locations. The Level of expression varies with respect to the genomic location. However,
all the CRKs possess a secretory signal. CRKs have shown a significant role in disease resistance such
as NPR1 and NH1 mediated immunity in Arabidopsis thaliana and Oryza sativa subsp. Japonica against
bacterial blight pathogen Xanthomomas oryzae pv. oryzae. Absence or low CRKs expression can make
plants more susceptible to infection [42]. Diacylglycerol kinase 5 (DAG5) is another gene among other
significant DEGs. DAG5 phosphorylates diacylglycerol (DAG) to produce a signalling molecule of
phosphatidic acid as a second messenger. Diacylglycerol kinases are key signalling enzymes which are
involved in phosphorylating diacylglycerol (DAG) to yield phosphatidic acid (PA). The biosynthesis
of PA plays a crucial role in a eukaryotic metabolic and signalling process such as the glycerolipid
metabolic process, intracellular signal transduction source, lipid phosphorylation, or the protein kinase
C-activating G protein-coupled receptor signalling pathway. Phosphatidic acid is highly required for
plant development, abiotic stress and pathogen attack. The presence of diacylglycerol kinase 5 (DAG5)
among highly significant DEGs may be an indicator of high resistance among resistant lines [43].
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Table 3. List of upregulated differentially expressed genes (p-value < 0.05) in de novo and reference
assemblies that can be considered as potential candidate genes involved in resistance. The table is sorted
according to p-values. FC: fold change. IWGSC: International Wheat Genome Sequencing Consortium

Reference/De Novo
log2FC Annotation UniprotIds

IWGSC
Signal

Transcript Chromosome Location

TRINITY_DN51078_c2_g4_i2 805.981 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 2D:189356990:189359834:1 Y

TRINITY_DN46223_c0_g1_i25 98.303 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 5A:546234176:546238163:−1 Y

TRINITY_DN46223_c0_g1_i31 82.836 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 5A:546238637:546241834:1 Y

TRINITY_DN46223_c0_g1_i17 52.416 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 5A:546238637:546241834:1 Y

TRINITY_DN38661_c1_g1_i1 38.481 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 2B:245784381:245787768:1 Y

TRINITY_DN45544_c0_g1_i24 16.282 Cysteine-rich receptor-like
protein kinase CRK6_ORYSJ 2D:20432763:20439635:1 Y

TRINITY_DN37687_c0_g2_i5 11.964 Cysteine-rich receptor-like
protein kinase CRK7_ARATH 5A:546306021:546309203:−1 Y

TRINITY_DN49928_c0_g1_i18 11.545 Diacylglycerol kinase 5 OS =
Arabidopsis thaliana DGK5_ARATH 2A:748963953:748967651:−1 N

TRINITY_DN35364_c0_g1_i3 2.971 Disease resistance protein RGA2 OS
= Solanum RGA2_SOLBU 1D:455752931:455755683:1 N

TRINITY_DN44057_c1_g5_i1 7.574 Disease resistance protein RPP8 OS
= Arabidopsis RPP8_ARATH 6B:662028638:662032091:−1 N

TRINITY_DN39548_c1_g3_i2 11.392 Leaf rust 10 disease-resistance
locus receptor-like LRL28_ARATH 3B:29721933:29735756:1 Y

TRINITY_DN35553_c1_g1_i1 5.456 Leaf rust 10 disease-resistance
locus receptor-like LRL28_ARATH 6D:2047133:2050237:−1 Y

TRINITY_DN38577_c0_g1_i1 12.655 LRR receptor-like
serine/threonine-protein FLS2_ARATH 1D:466386615:466388390:−1 Y

TRINITY_DN38835_c1_g4_i13 4.145 LRR receptor-like
serine/threonine-protein FLS2_ORYSJ 6D:380568621:380572398:1 Y

TraesCS2B02G608600.1 59.366 Probable LRR receptor-like
serine/threonine-protein Y3475_ARATH 2B:788840706:788842030:−1 N

TRINITY_DN41813_c2_g5_i3 28.015 Probable LRR receptor-like
serine/threonine-protein Y3475_ARATH 2D:646488160:646491914:1 N

TRINITY_DN51069_c0_g2_i8 2.348 Protein TIFY 6b OS =
Oryza sativa subsp. TIF6B_ORYSJ 5B:369635031:369638011:−1 N

TRINITY_DN35330_c0_g3_i8 3.364 Putative disease resistance
protein RGA4 RGA4_SOLBU Un:47532810:47545586:1 N

TRINITY_DN51664_c0_g1_i11 3.269 Putative disease resistance
protein RGA4 RGA4_SOLBU Un:95706705:95715329:1 N

TRINITY_DN35364_c0_g4_i1 3.209 Putative disease resistance
protein RGA4 RGA4_SOLBU Un:234394428:234397967:1 N

TRINITY_DN51887_c1_g1_i1 4.127 Putative disease resistance RPP13-like R13L2_ARATH 7D:11663563:11672717:1 N

TRINITY_DN52456_c0_g2_i15 8.426 Rust resistance kinase Lr10 OS
= Triticum LRK10_WHEAT 1A:9359231:9363721:1 N

TraesCS6B02G091700.1 4.309 S-(+)-linalool synthase, chloroplastic
OS = Oryza LINS_ORYSJ 6B:67408283:67411671:−1 N

TRINITY_DN51301_c1_g1_i10 11.432 Vesicle-associated protein 1-1 OS
= Arabidopsis VAP11_ARATH 7B:717630687:717634406:−1 N

TRINITY_DN46935_c4_g2_i7 5.042 Vesicle-associated protein 1-1 OS
= Arabidopsis VAP11_ARATH 7B:717785488:717796197:1 N

TRINITY_DN52084_c1_g1_i8 19.697 Wall-associated receptor kinase 1 OS
= Arabidopsis WAK1_ARATH 5A:464158592:464170977:−1 Y

TRINITY_DN50322_c1_g1_i11 5.429 Wall-associated receptor kinase 3 OS
= Arabidopsis WAK3_ARATH 2B:657850507:657854763:−1 Y

TRINITY_DN39541_c5_g2_i2 11.016 Wall-associated receptor kinase 5 OS
= Arabidopsis WAK5_ARATH 6D:467856066:467860898:1 Y

TRINITY_DN38381_c2_g3_i6 5.209 Wall-associated receptor kinase 5 OS
= Arabidopsis WAK5_ARATH 6B:713458733:713462914:1 Y

TRINITY_DN52648_c2_g2_i1 7.132 Wall-associated receptor kinase-like 9 WAKLH_ARATH 6D:467856066:467860898:1 Y

TRINITY_DN51423_c2_g1_i4 12.889 Receptor-like cytoplasmic kinase
185 OS = Oryza RK185_ORYSJ 2B:104817628:104821546:−1 N

TRINITY_DN50690_c0_g4_i1 5.46 G-type lectin S-receptor-like
serine/threonine-protein Y1130_ARATH 2D:642197592:642202812:1 N

TRINITY_DN35935_c1_g1_i3 5.033 G-type lectin S-receptor-like
serine/threonine-protein CE101_ARATH 5B:690469413:690490270:−1 N



Agronomy 2020, 10, 1888 12 of 16

Plant disease resistance in genes encodes two main classes of nucleotide-binding site leucine-rich
repeat (NBS-LRR) proteins; TIR-domain-containing (TNL) and CC-domain-containing (CNL). TNLs
and CNLs regulate plant resistance through different downstream pathways by inducing a series of
defence responses, such as the activation of an oxidative burst, mitogen-associated protein kinase
cascade, the induction of pathogenesis-related genes, and the hypersensitive response. In our study,
four RGA isoforms; one for RGA2 and three for RGA4, were found among significant DEGs. All four
RGAs were found at different genomic locations (Table 3), but all isoforms were having a relatively low
but consistent gene expression. RGA isoforms are having an RX-like_CC motif (IPR038005), NB-ARC,
LRR domains and belong to the CNL family. The consistent expression of the CNL type of RGAs
indicates the “non-race specific” disease resistance and also the activated alternative non-race specific
resistance induced by disease resistance proteins RPP8 and RPP13 which indicate a high presence
of non-host-specific pathogens in the growing field [44]. LRR receptor-like serine/threonine-protein
kinases such as FLS2, Y3475, leaf rust and rust resistance kinases determine the specific perception of
pathogen-associated molecular patterns and initiate the innate immune MAP kinase signalling for
enhanced resistance against pathogens. The expression of receptor-like cytoplasmic kinase (RLCK185)
is clear evidence of the innate immunity triggered by fungal chitin signalling pathways through
MAP kinases. Chitin recognition by CERK1 receptor triggers the MAP kinase (MPK3 and MPK6)
cascade to search for a host protein that can interact with effector proteins and participates in the
activation of defence genes during response to microbial peptidoglycans and chitin [45]. A plasma
membrane-associated G-type lectin S-receptor-like serine/threonine-protein kinase (CES101) was also
expressed among the significantly expressed DEGs and its involvement was suggested in innate
immune response, protein phosphorylation and response to fungus which might have role in the
recognition of the lectin-associated molecular pattern of fungus [46]. All RGAs were expressed in the
resistant genotypes. Perhaps, the functionality of these RGAs was suppressed by pathogens or lost
molecular function due to several genomic modifications in the susceptible genotype. The presence of
the RGA4 isoform under an unclassified genome needs to be re-investigated in order to be used as a
marker for plant breeding purposes [47]. The expression of protein-like TIFY 6b, known as a repressor
of jasmonate responses, is suggesting that plants may be reducing the developmental and metabolic
processes for better resource utilization under a biotic stress such as salt tolerance, dehydration and
wounding [48]. In general, susceptible cultivars were shown to have a higher gene expression level than
the resistant cultivars at the global transcriptome level, which might be due to the higher production
and resources allocation against infection and diseases (Figure 6).

The mechanism of cell wall communication to the cytoplasm is not very well known for plant
resistance. Wall-associated kinases (WAKs) have the potential to provide clues for the cell wall and
the cytoplasm crosstalk. It has been found that WAKs were expressed at organ junctions of shoot,
root and leaf in response to wall disturbances, and the expression of an antisense WAK gene in leaves
reduced the WAK protein levels and exhibited a loss of cell expansion. The presence of WAKs on
the cell wall is providing the evidence that the receptor-like kinase may have a significant role in
the control of cell expansion, morphogenesis and development [49]. In our study, five transcripts
were found to be related to wall-associated receptor kinases viz. WAK1, WAK3, WAK5 and WAK9.
WAK1 and WAK3 were found on chromosomes 5A and 2B on reverse strands, respectively. The higher
expression of WAK1 might show the reduced cell expansion during infection and disease. WAK5
and WAK9 were found on chromosomes 6B and 6D in the forward strand, respectively, which might
indicate their involvement in the control of cell expansion, morphogenesis and development under
normal circumstances.

The differential gene expression data analysis of wheat lines has increased our understanding of
plant defence mechanism in the field and shown evidence for a pathogen-specific and broad-spectrum
disease resistance mechanism. Metagenomics analysis of the RNA libraries of samples has also provided
evidence for a pathogen-specific disease resistance mechanism along with broad-spectrum disease
resistance (Figure 7). In metagenomics analysis, P. striiformis was found as the most dominant pathogen
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among susceptible wheat lines which indicates the susceptibility of wheat lines for this pathogen.
The significant differential expression of genes involved in non-race-specific disease resistance among
resistant wheat lines provides the evidence for the activation of PAMP-triggered innate immunity
(PTI). The presence of other fungal pathogens such as B. sorokiniana, F. culmorum and Z. tritici were
supporting the cause of the high activation of innate immunity in the field.

5. Conclusions

In the present study, transcriptome analysis was conducted between a resistant and susceptible
wheat genotype with a different level of resistance in the field, and several differentially expressed genes
were identified through reference and de novo transcriptome assembly. In the transcriptome analysis,
the key challenge was the handling of cross-species eukaryotic molecular content of field samples,
especially during field infection. In our comparative transcriptome study, the de novo approach was
found to be more explorative than the reference assembly process due to high dependency on the
reference genome, and the gene expression of similar genes from cross eukaryotic species like fungus
has a high chance of influencing the gene expression quantification process due to short reads. In this
study, many genes related to plant defence were upregulated in resistant wheat lines in the field.
A significant number of genes involved in non-race specific resistance were overrepresented in resistant
lines, which might be a reason for the good resistance ability of resistant wheat lines. Expression
ofcysteine-rich receptor-like protein kinases, CNL type kinases and wall-associated kinases (WAKs)
are suggesting their role in determining broad-spectrum plant defence in the field. GO enrichment
and pathway analysis further confirmed that PTI triggered the innate immunity-related genes which
were overrepresented in the wheat resistant lines. Potential candidate genes found in this study might
provide a basis for future functional host–pathogen genomics research for field wheat. Molecular
techniques such as RNA interference can be further used to understand the role of these genes in the
field plant resistance.
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