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Abstract: Fruit tree pruning is an important part of orchard management. In this paper, the force
on and the wear of the pruner in the pruning process were studied with a canna-leaf biomimetic
convex-hull pruner. The pruner was formed by laser etching technology. The influence of laser power
and scanning speed on the geometric dimensioning of the micro texture was analyzed. The shear
force calculation model was built to obtain the positive pressure load during the pruning process,
while the model accuracy was verified in the static pressure shear test, and the wear mechanism was
analyzed in the wear test. The real pruning process was simulated to compare the worn areas of
the textured and non-textured pruners and the number of cuts in fixed wear condition, for proving
the wear reduction characteristics of the micro-textured pruner. The results show that: the optimal
forming parameters are 70 W 1.6 mm/s (10 mm-diameter branches), 80 W 2.4 mm/s (15 mm-diameter
branches) and 80 W 1.6 mm/s (20 mm-diameter branches), and the convex hull spacing is 300 µm.
Laser power affects the depth and width of the texture, while scanning speed affects the depth of the
texture. The positive pressure on the pruner is proportional to the modulus of elasticity, moment of
inertia, cut depth, and bevel angle, whilst it is inversely proportional to the distance from the fixed
point of the blade to the positive pressure. The wear test shows that the anti-wear performance
of the textured pruner is not obvious at the load of 300 g, while the anti-wear performance of the
textured pruner is significant at the loads of 1000 g and 2000 g. The wear mechanism shifts from the
abrasive wear in the early stage to more complex oxidative wear and adhesive wear. The actual shear
test shows that the textured pruner wears less than the non-textured pruner and enters the stable
shear faster.

Keywords: fruit tree pruning; biomimetic micro texture; laser processing; shear model;
wear mechanism

1. Introduction

China is a big country that grows fruits. As of 2018, China’s fruit yield (excluding melons) ranks
No.1 in the world [1]. Fruit tree pruning is an important process in orchard management, which can
effectively enhance the nutrient distribution of fruit trees and improve fruit quality and yield through
reasonable pruning during the fruiting period [2]. The traditional orchard pruning machinery is
mainly unpowered manual tools [3,4], which is associated with large labor intensity, low efficiency,
high labor cost and heavy burden on the fruit farmers; meanwhile, the manual pruning can easily
cause the branch epidermal to rupture with poor incision that heals slowly and is susceptible to pests
and diseases, seriously affecting fruit quality and yield [5]. At present, developing countries mainly
use electric pruning shears [6] to achieve orchard pruning mechanization, but as litchi and longan trees
are branch wood with high hardness that requires high strength to shear fibers [7,8]. In a high-intensity
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intensive working environment, given that the electric pruning shear head is squeezed and worn by
the fibers and branches, the blades are often turned or chipped, which reduces the service life of the
pruner and limits the pruning efficiency, hurting the application and promotion of orchard electric
pruners [9–11].

Etsion [12] studied the surface texture of the pruner formed with laser technology. The results
show that: due to the local cavitation of the pruner surface, the bearing capacity of the pruner is
increased with improved entrainment and retention of the lubricant, whilst the foreign matter or wear
debris is stored in the cavitation area to reduce the further damage to the surface. Gachot C [13] and
Shaofeng, Wu [14] and others found that the regular textured surface can effectively improve the wear
performance of the material. Wu, Ze [15] studied the friction and wear properties of a titanium alloy
surface with a lattice structure in the case of adding solid lubricants, and they found that reducing the
distance between lattices and increasing the depth of the lattice can effectively improve the anti-friction
and anti-wear performance of titanium alloys. Lattice distance and depth have over 90% effect on
wear rate. Janssen, Andreas [16] studied the tribological properties of micro-textured steels with oil
lubrication of 1–20 µm sand shale grains. The results show that the micro texture has 10–25% effect on
friction performance when the ratio of the size in the sliding direction to the depth is 1:10. A number of
experiments have shown that the geometry of the surface texture has a significant effect on the friction
and wear properties [17–19]. Braun, D [20] of the Karlsruhe Institute of Technology in Germany studied
the micro texture of uncoated cemented carbide pruners, and they found that the textured pruner
processed by laser surface forming technology can increase the stability of the blade and improve the
anti-wear performance of the pruner. Han Zhiwu et al. [21] used laser etching technology to form four
kinds of bionic non-smooth surface morphology on the material, analyzed the metallographic structure
of the textured surface, and studied the anti-wear performance. The results showed that a fine hard
metallographic structure is formed on the surface of the material by laser treatment, which can further
improve the anti-wear performance of the surface, and the laser-treated scale-shaped surface has the
optimal anti-wear performance.

The above studies show that the micro texture formed by the laser can enhance the wear
performance and improve the service life of the pruner, and at present they mainly focus on the
modification of cutting tools made of metal materials [22–27], while no studies have yet been reported
on the modification of the fruit tree pruner. In this paper, based on the existing fruit tree pruners
on the market, laser etching technology was used to form the canna-leave biomimetic convex-hull
micro texture on the main worn area of the pruner. The wear mechanism of the textured and common
pruners is analyzed by the friction and wear test. The anti-friction characteristics of the biomimetic
convex-bulk micro-textured pruner were verified by the actual shear test.

2. Experiment

2.1. Experimental Materials and Equipment

2.1.1. Pruner Materials and Processing Equipment

The cutting tool is SK-5 steel (high carbon steel), the tool size is 90 mm × 30 mm × 4 mm, the blade
inclination angle is 20◦ to take into account the tool force and longer service life. The hardness of SK-5
was 79HRA and the surface roughness was Ra1.25. The morphology is shown in Figure 1, and the
chemical composition is shown in Table 1. Figure 2 shows the selection of a GS301A industrial robot
laser manufacturing workstation (Guangzhou Numerical Control Equipment co., LTD., Guangzhou,
China) for convex hull cutter forming equipment. The laser processing parameters are shown in Table 2.
The laser processing parameters are: laser power is 60 W, 65 W, 70 W, 75 W, 80 W, scanning speed is
1.6 mm/s, 2.4 mm/s, 3.2 mm/s, 4.0 mm/s, 4.8 mm/s, protective gas is argon.
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Figure 1. SK-5 High-carbon steel pruner.

Table 1. Chemical component of SK-5 high-carbon steel.

Element C Si Mn P S Cr Ni Cu Fe

Weight
(%) 0.80–0.90 0.10–0.35 0.10–0.50 ≤0.030 ≤0.030 ≤0.250 ≤0.200 ≤0.300 Residual

Figure 2. Laser manufacturing workstation of industrial robot.

Table 2. Specific parameters of laser processing equipment.

Laser Model Central
Wavelengt (nm)

Modulation
Frequency (KHz)

Power
Range (W)

Fiber Core
Diameter (µm)

YLR-500-MM-WC 1070 ± 10 0–50 10–500 50

Longan branches that are often found in southern China were selected as twig samples, and the
surface roughness of the branch was Ra10. The fruit varieties chosen for sampling were Shi Xia,
the sampling time for the fruit tree pruning period was after fruit harvest, the branches were measured
by the uniform diameter change of the less straight section. They were cut off from branch to branch,
tailoring equidistant (240 mm) samples, as shown in Figure 3. Then they were put into the homemade
electric shear to test the shear platform in the hole within 10 min after branch collection.

Figure 3. Branch sample.
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2.1.2. Friction and Wear Test Materials and Equipment

A WD-E compact micro-control electronic universal tester, as shown in Figure 4 (shear force sensor
of 20 KN, test load speed of 250 mm/min, data sampling speed of 10/s), was used for a static pressure
shear test of various diameter branches. In order to improve the accuracy of the data collected by the
cutter when cutting branches, a branch fixture was made by ourselves based on 45# steel material,
as shown in Figure 5. The shear force equation was established to obtain the positive pressure in
shearing different branches, and then to derive the wear load. It can be known from [28] that to obtain
wear data of the pruner, the hardness of the upper grinding sample should be higher than that of
the lower grinding sample in the wear test. In actual practice, the electric pruner head is used to cut
branches, and the hardness of wood is less than that of the tool. When wood is used as the upper
grinding sample, the wood wears during the operation, and the friction coefficient is to characterize
the wood. Therefore, a tungsten steel ball with hardness of 92HRA was used as the upper grinding
sample (the parameters of YG6 are shown in Table 3), because its hardness is greater than that of the
SK-5 steel pruner (79HRA), meeting the test requirements for the wear process.

Figure 4. Shearing platform of universal tester.

Figure 5. Self-made fixture structure diagram.

Table 3. Main performance parameters of YG6 tungsten steel ball.

WC% Co% Density
(g/cm)

Hardness
(HRA)

Tensile Strength
(MPa)

Abrasion Resistance
(N/cm)

94 6 14.5–14.9 92 145 1380

The HT-500 high temperature friction and wear tester (developed by the Lanzhou Institute of
Chemical Physics, Chinese Academy of Sciences) is shown in Figure 6; a schematic diagram of friction
and wear test is shown in Figure 7. According to test environment requirements, the high temperature
furnace heated to the required temperature value within the sample temperature (room temperature
environment without heating), by the loading mechanism and to test the required load, driven by the
active motor sample rotation, with no rotation dual surface sliding friction (or bolt), calculated by the
master program in a computer, intuitively shows the experimental temperature, load value, the change
of the coefficient of friction values, and graphical display. The specific parameters of the wear testing
machine are shown in Table 4.
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Figure 6. HT-500 high temperature friction and wear tester.

Figure 7. Schematic diagram of the friction and wear test.

Table 4. Performance parameters of the friction and wear tester.

Spindle Speed of
Friction Pair

(r/min)

High-Temperature
Furnace Heating
Temperature (◦C)

Loading Range
(N)

Coefficient of
Friction

Display Accuracy
(FS)

200–2800 Room temperature-500 1–20 0.001–21.00 0.2%

2.1.3. Shear Test Materials and Equipment

A SUCA3601 electric pruning machine was selected, the SUCA3601 electric pruning machine
has a rated input power of 450 W, a maximum shear diameter of 30 mm, and can work continuously
for up to 8 h when fully charged, which is 8–10 times the efficiency of traditional manual pruning.
The electric shears were installed on the self-made electric shears platform (as shown in Figure 8) for
real shear tests to verify the wear resistance characteristics of the bionic convex hull microstructure.

Figure 8. Self-made electric pruning deck.



Agronomy 2020, 10, 1866 6 of 24

2.2. Verification Method

2.2.1. Forming of Biomimetic Convex-Hull Pruner

The canna-leaf texture (Figure 9a,b) proposed by Liu [29] has a convex-hull structure with spacing
of 300 um. The bionic convex hull morphology is etched on the SK-5 cutting tool and the shape of
the molding tool is shown in Figure 9c. The KQ-600DE numerically controlled ultrasonic cleaner was
adopted to remove carbides and oxides on surface of the pruner by cleaning the tool in absolute ethanol
for 20 min. An ultra-depth microscope (model: VHX-900F), laser confocal microscope (model: OLS4000)
and SEM were used for observation and measurement. Each depth and spacing of the convex hull
were measured three times and averaged.

Figure 9. Canna leaf and Convex-hull textured pruner: (a) Canna leaf; (b) enlarged structure of Canna
leaf; (c) convex-hull textured pruner. (Laser power: 70 W, scanning speed: 3.2 mm/s).

2.2.2. Wear Test

To determine the loads in the wear test, the WD-E universal tester was used in the shear test.
The 10/15/20 mm-diameter branches were fixed in the self-made fixture. The shearing interval of the
moving knife and the fixed knife was set as 0.1 mm, and the blades moved downward vertically and
uniformly to cut the branch, which was driven by the universal tension and compression tester, so as
to obtain the maximum shear force, and then derive the maximum positive pressure on the main
cutting surface.

The wear test was carried out by an HT-500 high temperature friction and wear testing machine.
The main parameters in the wear test are as follows: the loading load is 300/1100/2000 g, each tool
is worn for 60 min, the motor speed is 200 r/min, and it is carried out in a normal temperature
environment. The specific friction and wear test parameters are shown in Table 5. The loading load
of the wear test is a positive pressure load obtained by the static pressure shear test. After the wear
test, the surface morphology of the sample was observed by three-dimensional morphometry, a laser
confocal microscope, SEM and EDS.

Table 5. Wear test parameters.

Load (g) Wear Time
(min)

Radius of Steel
Ball (mm)

Wear Radius
(mm)

Rotating
Speed (r/min)

Test Temperature
(◦C)

300/1100/2000 60 2.5 2 200 26

2.2.3. Shear Test

In the shear test, the hardness and anti-wear performance of the electric pruner were much higher
than that of the branches. To increase the significance of the test results, the rake face of the pruner was
uniformly painted in the test. On the self-made electric smart pruning deck, the 10/15/20 mm-diameter
branches were pruned on the deck. The wear condition of the pruner surface was measured once every
10 cuts by photographing, recording times, and calculating the worn area, until the worn area of the
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pained surface became stable. The worn area of the painted surface was obtained by image processing
software ImageJ. The relationship between the number of cuts and the worn area of the non-textured
and textured pruners when cutting branches of different diameters was comparatively analyzed.

3. Experimental Results and Analysis

3.1. Surface Topography Analysis of Biomimetic Convex-Hull Micro-Textured Pruner

As shown in Figure 10a, at the same scanning speed, the texture width increases as the laser
power increases. At the same power, scanning speed has lesser effect on the texture width. Figure 10a
shows that when the power is 60 W, the texture width is at least 115 µm, and when the power is 80 W,
the texture width is up to 153 µm, up by 38 µm, or 33%. As shown in Figure 10a, when the laser power
is over 70 W, the texture average widths are over 130 µm. The texture average width is 153 µm at a
scanning speed of 3.2 mm/s and a power of 80 W, followed by a texture average width of 150 µm at a
scanning speed of 2.4 mm/s and a power of 80 W, and a texture average width of 141 µm at a scanning
speed of 1.6 mm/s and a power of 70 W. It can be seen from Figure 10a that the change in laser power is
more likely to affect the change in texture average width. The higher the laser power, the greater the
texture average width.

Figure 10. Microtexture geometry change with laser power and scanning speed: (a) width; (b) depth.

With the increase in power, the morphology of the microtextured convex hull at 70 W power
is more clear and complete than that at 60 W power, and the slag on the surface is more obvious.
When the power reaches 80 W, the micro-texture convex hull is deeper and wider, and the convex hull
morphology and structure are more clear and complete. As the power increases, the micro-texture
becomes more complete and the surface becomes rougher.

As shown in Figure 10b, at the same scanning speed, the texture depth increases as the laser power
increases. At the same power, the texture depth decreases as the scanning speed increases. When the
laser power is 60 W, the texture depth is 5.117 µm at the scanning speed of 4.8 mm/s, and when the
laser power is 80 W, the maximum texture depth is up to 46.459 µm at the scanning speed of 1.6 mm/s,
up by 41.342 µm, or a factor of eight. As shown in Figure 10b, when the scanning speed is 1.6 mm/s,
2.4 mm/s, or 3.2 mm/s, all the maximum depths of texture are over 40 µm, and the texture depth is large
at the power of 80 W. When the laser power is 80 W, the maximum texture depth is 46.459 µm at the
scanning speed of 1.6 mm/s, followed by 41.441 µm at the scanning speed of 3.2 mm/s, and 39.703 µm
at the scanning speed of 2.4 mm/s. At the laser power of 80 W, the texture depth continues to decrease
as the scanning speed further increases. As shown in Figure 10b, the lower the speed, the higher the
laser power, and the deeper the texture.

Figures 10 and 11 show that the laser power has a great influence on the texture depth and width,
while the scanning speed has a small influence on the texture width and a great influence on the texture
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depth. The parameters of convex hull weaving are: the laser powers are 60 W, 70 W and 80 W, and the
scanning speeds are 1.6 mm/s, 2.4 mm/s and 3.2 mm/s.

Figure 11. Microtexture morphologies under different laser powers at 1.6 mm/s scanning speed:
(a) 60 W microtexture; (b) 70 W microtexture; (c) 80 W microtexture.

3.2. Force Analysis of the Main Blade

Branch pruning is a complex process in which branches interact with moving and fixed knives.
To obtain the force condition of the pruner in the real shear test and provide a basis for load in the wear
test, the force model of the main blade in the pruning process was constructed. It can be seen from [30]
that during the pruning process, the main blade of the moving knife moves downward at a constant
speed to cut branches under the action of the external load, and the force is shown in Figure 12.

Figure 12. Force diagram of the moving knife during pruning.

As shown in Figure 13, the main blade is mainly subjected to the resistance force Z of the branch
to the blade, the positive pressure N2 and the frictional force f2 on the blade from the branch on the left,
the positive pressure N1 and the frictional force f1 on the blade from the branch on the right, and the
external load F. The positive pressure N1 and the frictional force f1 on the blade from the branch on
the right can be combined into the whole reaction force FR, which is decomposed into the horizontal
direction force FRx and the vertical direction force FRy. The cross-section schematic diagram of the
branch sheared is shown in Figure 13.
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Figure 13. Schematic diagram of the pruned branch.

As can be seen from Figure 13, the area enclosed by the solid line below the circular cross section
is the uncut part. Let the radius of the branch be r(r = d/2) (mm), the cut depth be a (mm), the height
of the uncut part of the branch be t (mm), the centroid of the cross section of the uncut part be G,
the length of the contact line of the blade and the branch be L (mm), the area of the cut part of the
branch A (mm2), and the geometric relationship is as follows:

L = 2
√

2ra− a2 (1)

A = (a− r)
√

2ra− a2 + r2arcsin
a− r

r
+
πr2

2
(2)

When the blade cuts into the branches, the thickness of the blade itself will squeeze the branches
on both sides. If the uncut branches are viewed as the beam 1, the beam 1 will bend under the action of
the extruding force, as shown in Figure 14 below.

Figure 14. Beam bend under the action of the extruding force of the moving knife.

Sx stands for the area of the cross section of the beam 1 for the x-axis and can be expressed as follows:

Sx =

∫ r

a−r

√
r2 − y2dy (3)

yc for the distance from the centroid G to the x-axis:

yc =
Sx

a
(4)
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Ix for the moment of inertia of beam 1 can be expressed as:

Ix =

∫ r

r−t
2
√

r2 − y2(y− yc)
2dy (5)

Influenced by the bending, the arc length c and the branch height t are satisfied: as t decreases, c
decreases; if c = αt, α is coefficient, γ is the angle corresponding to the arc nn’, then:

αt + a tanθ =
γπ(ρ+ yc + r)

180
(6)

αt =
γπρ

180
(7)

From Equations (6) and (7), the radius of curvature corresponding to beam 1 can be obtained:

ρ =
αt

a tanθ
(yc + r) (8)

From the beam bending theory in [31]:

1
ρ
=

M
EIx

(9)

where E (Pa) is the modulus of elasticity along the grain of the branch, Ix (mm4) is the moment of
inertia of the beam 1, and M (N.m) is the bending moment acting on beam 1. The bending moment
M of the beam can be derived from the above Equations (5) and (8). If the height of the blade is j,
the distance l from the support point C of the fixed knife to the positive pressure N1 is obtained:

l =
a

2 cosθ
+ (2r− a) cosθ; a ≤ j (10)

l =
j

2 cosθ
+ (2r− a) cosθ; a > j (11)

l (mm) is the distance from the support point C of the fixed knife to the positive pressure N1,
and j (mm) is the height of the blade.

According to the Equations (8)–(11), the positive pressure N1 can be expressed as:

N1 =
M
l
=

EIxa tanθ
lαt(yc + r)

(12)

It can be derived from Equation (12) that the load is proportional to the modulus of elasticity,
moment of inertia, cut depth and bevel angle, and inversely proportional to the distance from the
support point of the fixed knife to the positive pressure.

The positive pressure values are calculated by the Equation (12) while cutting 10/15/20 mm-diameter
branches and the curve is as shown in Figure 15. It can be seen from Figure 15 that the force of the
moving knife increases first and then decreases as the cut depth increases. The theoretical peak shear
forces are 303/1066/2675N while cutting 10/15/20 mm-diameter branches.
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Figure 15. Force diagram of shear theory.

10/15/20 mm-diameter branches were selected for static pressure shear test on a WD-E universal
tester. The result details are shown in Figure 16. The trends in Figures 15 and 16 are almost the same
with the shear force first increasing and then decreasing. There is a significant inflection point while
the shear force is rising. Table 6 shows that the theoretically calculated value is smaller than the actual
shear force value while cutting the 10/15 mm-diameters branches, and the theoretical value is greater
than the actual value at the diameter of 20 mm. This is because the branches are not purely sheared in
the actual shear test. In the initial stage of static pressure shearing, due to the thickness of the pruner,
the branches undergo elastoplastic deformation after the surface is squeezed by the pruner, and the
crack appears and expands when the branches are torn once it exceeds the plastic deformation limit
with further increased pressure. Afterwards, the branches undergo approximately pure shear. At the
end of the cut, the part of the branches that is about to fall under the force of gravity, brings the bending
moment to the cutting surface, and the branches are broken. Therefore, the branches are subjected to
forces in various forms such as pressing, cutting and bending during static shearing. The shear model
established in this paper ignores the final bending force, and the larger the diameter of the branch,
the greater the bending force, so there is an error.

Figure 16. The actual force of static pressure shearing of branches.

Table 6. Theoretical and experimental shear data.

Parameter Data

Branch diameter 10 mm 15 mm 20 mm
Positive pressure 303 N 1066 N 2675 N

Test value 415 N 1632 N 1910 N
Wear test load 300 g 1100 g 2000 g

As the relationship between the pressure sensor and the actual force of the HT-500 high temperature
friction and wear tester satisfies FN = NG

10 , and the maximum load of the HT-500 is 2000 g, the load in
the friction and wear test for the 20 mm-diameter branch is 2000 g and the gravity G is 10.
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3.3. Wear Analysis

3.3.1. Friction and Wear Test Results and Analysis

The average friction coefficient at different loads is shown in Table 7. Figure 17 is a graph
showing the friction coefficient of the pruner surface with time at the loads of 300 g to 2000 g in a full
factor experiment.

Table 7. Average friction coefficients of all factor tests under different loads.

Pruner Type
Load/g

300 1100 2000

Average Friction Coefficient

Non-textured pruner 0.1685 0.3747 0.2392
60 W 1.6 mm/s 0.2757 0.4410 0.2477
60 W 2.4 mm/s 0.2190 0.3158 0.2099
60 W 3.2 mm/s 0.2290 0.3198 0.1983
70 W 1.6 mm/s 0.1667 0.2521 0.2836
70 W 2.4 mm/s 0.2364 0.2808 0.1709
70 W 3.2 mm/s 0.1771 0.2468 0.1405
80 W 1.6 mm/s 0.2313 0.2668 0.1209
80 W 2.4 mm/s 0.2505 0.2378 0.1335
80 W 3.2 mm/s 0.2367 0.2395 0.1262

Figure 17. Curves of the friction coefficient of different pruners over time under different loads:
300 g-load (a) laser power 60 W, (b) laser power 70 W, (c) laser power 80 W; 1100 g-load (d) laser power
60 W, (e) laser power 70 W, (f) laser power 70 W; 2000 g-load (g) laser power 60 W, (h) laser power
70 W, (i) laser power 80 W.
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At the load of 300 g, the friction coefficient at the power of 60 W–80 W first increases and then
decreases, and finally stabilizes. In Figure 17a–c, the friction coefficient increases first and then decreases
in the first 5–10 min, and then enters the stationary period after 10 min of wear. In Figure 17a,c,
the wear curve of the non-textured pruner is lower than that of the textured pruner, indicating that
the micro-textured pruner does not show an anti-friction effect at the powers of 60 W and 80 W at the
load of 300 g. In Figure 17b, after 15 min of wear, the wear curve of the non-textured pruner is higher
than that of the textured pruner at the speeds of 1.6 mm/s and 3.2 mm/s and power of 70 W, whilst the
friction reduction effect appears. In Table 7, the average friction coefficient of the non-textured pruner
at the load of 300 g is 0.1685, and the average friction coefficient of the textured pruner at the power of
70 W and speed of 1.6 mm/s is 0.1667, representing 1.5% lower than that of the non-textured pruner
and the lowest average friction coefficient. The surface friction coefficient of the textured pruner
fluctuates between 0.1610 and 0.2820. As the wear time increases, it finally stabilizes at 0.1930. At the
load of 300 g, only the micro-textured pruner at the power of 70 W and speed of 1.6 mm/s has a slight
anti-friction effect, which is 1.5%.

At the load of 1100 g, in Figure 17d–f, the wear curve at the power of 60 W/70 W/80 W increases
first and then decreases in the first 10 min, and it tends to be stable after 10 min. In Figure 17d, only the
wear curve of the micro-textured pruner at the power of 60 W and speed of 1.6 mm/s is above the
wear curve of the non-textured pruner. Among them, the wear curve of the non-textured pruner in
Figure 17e,f is much higher than the wear curve of the micro-textured pruner. After 20 min–30 min of
wear, the wear curves in Figure 17e,f show large fluctuations, because the wear becomes severe with
increasing load, and the increase in the friction coefficient caused by the surface roughness is weakened.
The wear curve of the micro-textured pruner at various scanning speeds is gradually moving close,
with reduced changes of the friction coefficient. In Table 7, at the load of 1100 g, the average friction
coefficient decreases as the laser power increases. Among them, the micro-textured pruner at the
power of 80 W and speed of 2.4 mm/s has the lowest average friction coefficient 0.2378, or 65.87% of
the friction coefficient of the non-textured pruner, and the friction reduction effect is obvious.

At the load of 2000 g, in Figure 17g–i, the wear curve increases first and then decreases with wear
time at the powers of 60 W/70 W/80 W, and finally tends to be stable. In Figure 17 g, after 40 min of
wear, the wear curve of the textured pruner at the power of 60 W and speeds of 1.6 mm/s and 2.4 mm/s
is higher than the wear curve of the non-textured pruner. When the laser power is 70 W, Figure 17 h
shows that only the wear curve of the textured pruner at the power of 70 W and speed of 1.6 mm/s
is higher than the wear curve of the non-textured pruner. When the laser power is 80 W, the wear
curve of the textured pruner is much lower than the wear curve of the non-textured pruner. In Table 7,
as the laser power increases, the average friction coefficient decreases. From Table 7 and Figure 17g–i,
we can see that the textured pruner at the power of 80 W and speed of 1.6 mm/s has the lowest average
friction coefficient 0.1209, or 50.54% of the friction coefficient of the non-textured pruner, and the
friction reduction effect is obvious.

At the load of 300 g, the pruner at the power of 70 W and speed of 1.6 mm/s has the lowest average
friction coefficient 0.1667, showing a slight anti-friction effect. At the load of 1100 g, the textured pruner
at the power of 80 W and speed of 2.4 mm/s has the lowest average friction coefficient 0.2378, and the
friction reduction effect is obvious. At the load of 2000 g, the textured pruner at the power of 80 W and
speed of 1.6 mm/s has the lowest average friction coefficient 0.1209, representing the lowest friction
coefficient in the wear test, or almost half of the friction coefficient of the non-textured pruner, and the
anti-wear characteristics are remarkable.

In Figure 17 and Table 7, the surface friction coefficient increases first and then decreases with
the wear time, and it tends to be stable. Except for the textured pruner at the power of 70 W and
speed of 1.6 mm/s, the surface friction coefficient of all pruners increases first and then decreases with
increasing load. At the small load of 300 g, the textured pruner enters into a wear-stable stage after
10 min of wear. Although the textured pruner has no obvious anti-friction advantage compared with
the non-textured tool, the textured pruner enters the wear-stable period faster. At the loads of 1100 g
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and 2000 g, the friction coefficient of the textured pruner is smaller than that of the non-textured pruner,
and the friction and wear plateau is half that of the non-textured pruner.

As the laser power increases, the friction coefficient decreases. This is because at higher power,
more energy enters the surface of the pruner to deepen the texture and increase the surface roughness.
As the load increases, the initial friction coefficient increases, and the initial wear progresses vigorously.
With increasing wear, the surface roughness has a weakened effect on the friction coefficient, while the
friction reduction effect of deep texture is excellent, and it enters the plateau more quickly.

3.3.2. Analysis of Volumetric Wear Loss of Pruner Surface at the Load of 300 g~2000 g

From [32], we know that the volumetric wear loss is:

∆V = L0 + [R2arcsin
D
2R
−

D
2R

√
R2 − (

D
2
)

2
] (13)

In the formula: L0 (mm) is the circumference of the wear scar, R (mm) is the radius of the YG6
tungsten steel ball, and D (mm) is the width of the wear scar.

The volumetric wear rate at different loads is:

Q = ∆V/vT (14)

In the formula: ∆V (mm/min) is wear linear velocity of the grinding ball, T (min) is the wear time,
v (mm/min) is wear line speed of the grinding ball.

The volumetric wear loss and rate of the samples in the test were calculated from Equations (13) and
(14), and the detailed morphology of the wear scars was observed using a super depth-of-field microscope
and a field emission scanning electron microscope. The detailed wear test data are shown in Table 8,
and the curve of volumetric wear loss of textured pruners with various loads is shown in Figure 18.

Figure 18. Curve of average volumetric wear loss with various loads.

From the Equations (13) and (14), we can see that the wear scar width, the volumetric wear loss
and the volumetric wear rate are positively correlated. Therefore, we mainly analyze the trend of
volumetric wear loss in this paper.

In Figure 18 and Table 8, for non-textured pruners, the volumetric wear loss increases with
increasing load. At the load of 300 g~1100 g, the volumetric wear loss increases greatly from
11.8189 mm3 to 35.8454 mm3, up by 203%. At the load of 300 g, the volumetric wear loss is the smallest
in the group of tests. At the load of 2000 g, the volumetric wear loss increases from 35.8454 mm3 to
42.2921 mm3, up by 18%, which is the largest volumetric wear loss in the group of tests. Compared with
the load of 300 g~1100 g, the increment is rather moderate.
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Table 8. Wear test data.

Pruner Type Load (g) Wear Scar
Width (mm)

Volumetric Wear
Loss (mm3)

Volumetric Wear
Rate (%)

Non-textured pruner
300

1100
2000

0.134
0.397
0.422

11.8189
35.8454
42.2921

0.0350
0.1061
0.1251

60 W 1.6 mm/s
300

1100
2000

0.365
0.446
0.422

31.1930
37.8902
64.2311

0.0923
0.1121
0.1901

60 W 2.4 mm/s
300

1100
2000

0.307
0.423
0.665

24.0573
33.2013
77.2919

0.0712
0.0983
0.2288

60 W 3.2 mm/s
300

1100
2000

0.300
0.388
0.367

23.9707
30.3255
40.5797

0.0775
0.0898
0.1201

70 W 1.6 mm/s
300

1100
2000

0.382
0.400
0.503

26.1805
29.9472
50.1615

0.0775
0.0887
0.1485

70 W 2.4 mm/s
300

1100
2000

0.351
0.477
0.467

29.7963
34.7733
47.2318

0.0882
0.1029
0.1398

70 W 3.2 mm/s
300

1100
2000

0.354
0.390
0.343

39.7081
34.9197
52.5880

0.1175
0.1034
0.1557

80 W 1.6 mm/s
300

1100
2000

0.378
0.458
0.523

33.7938
42.9274
83.2349

0.1000
0.1270
0.2464

80 W 2.4 mm/s
300

1100
2000

0.367
0.445
0.574

30.3992
40.6048
69.7000

0.0899
0.1202
0.2063

80 W 3.2 mm/s
300

1100
2000

0.376
0.457
0.528

35.9052
39.5301
78.5542

0.1063
0.1170
0.2325

At the power of 60 W, the volumetric wear loss of the textured pruner increases with increasing
load. At the load of 300 g, the minimum volumetric wear loss is 23.9707 mm3 at the speed of 3.2 mm/s,
and the maximum volumetric wear loss is 31.1930 mm3 at the speed of 1.6 mm/s, up by 7.2223 mm3,
or 30.1%. At the load of 1000 g, the minimum volumetric wear loss is 30.3255 mm3 at the speed of
3.2 mm/s, and the maximum volumetric wear loss is 37.8902 mm3 at the speed of 1.6 mm/s, up by
7.5647 mm3, or 24.9%. At the load of 2000 g, the minimum volumetric wear loss is 40.5797 mm3 at the
speed of 3.2 mm/s, and the maximum volumetric wear loss is 77.2919 mm3 at the speed of 2.4 mm/s,
up by 36.7122 mm3, or 90.4%.

At the power of 70 W, the volumetric wear loss of the textured pruner increases gently with
increasing load. At the load of 300 g, the minimum volumetric wear loss is 26.1805 mm3 at the speed
of 1.6 mm/s, and the maximum volumetric wear loss is 39.7081 mm3 at the speed of 3.2 mm/s, up by
13.5276 mm3, or 51.7%. At the load of 1000 g, the minimum volumetric wear loss is 29.9472 mm3 at the
speed of 1.6 mm/s, and the maximum volumetric wear loss is 34.9197 mm3 at the speed of 3.2 mm/s,
up by 4.9725 mm3, or 16.6%. At the load of 2000 g, the minimum volumetric wear loss is 47.2318 mm3

at the speed of 2.4 mm/s, and the maximum volumetric wear loss is 52.5880 mm3 at the speed of
3.2 mm/s, up by 5.3562 mm3, or 11.3%.

At the power of 80 W, the volumetric wear loss of the textured pruner increases sharply with
increasing load. At the load of 300 g, the minimum volumetric wear loss is 30.3992 mm3 at the speed
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of 2.4 mm/s, and the maximum volumetric wear loss is 35.9052 mm3 at the speed of 3.2 mm/s, up by
5.506 mm3, or 18.1%. At the load of 1000 g, the minimum volumetric wear loss is 39.5301 mm3 at the
speed of 3.2 mm/s, and the maximum volumetric wear loss is 42.9274 mm3 at the speed of 1.6 mm/s,
up by 3.3973 mm3, or 8.6%. At the load of 2000 g, the minimum volumetric wear loss is 69.7000 mm3 at
the speed of 2.4 mm/s, and the maximum volumetric wear loss is 83.2349 mm3 at the speed of 1.6 mm/s,
up by 13.5390 mm3, or 19.4%.

At the load of 300 g, the maximum volumetric wear loss is 39.7081 mm3 at the power of 70 W and
speed of 3.2 mm/s. At the load of 1100 g, the maximum volumetric wear loss is 42.9274 mm3 at the
power of 80 W and speed of 1.6 mm/s. At the load of 2000 g, the maximum volumetric wear loss is
83.2349 mm3 at the power of 80 W and speed of 1.6 mm/s.

3.3.3. Analysis of Wear Scar Morphology

Figure 19 shows the wear scar morphology of the convex-hull textured pruner at different loads.
In Figure 19a, the wear scar morphology is not obvious at the load of 300 g, while the wear scar
morphology is obvious at the load of 1100 g–2000 g. At the lower load, the upper friction pair did not
deeply wear the pruner texture, but reciprocated sliding friction on the surface. As the load increases,
the pruner is squeezed by the upper friction pair, and the depth and width of the wear scar improve
significantly. As shown in Figure 19b, compared with the load of 300 g, the width of surface wear scar
changed clearly at the loads of 1100 g and 2000 g, while the wear scar width did not change greatly
below the loads of 1100 g and 2000 g. This is because, as the load increases, the contact area of the
pruner surface and the steel ball increases, and the wear is more significant at a heavy load than a
light load. However, when both are at a heavy load, the wear quickly enters the plateau without
obvious changes in the width of the wear scar. Therefore, in this paper, we introduce the wear loss
for explanation.

Figure 19. Wear scar morphology of convex-hull textured pruner at different loads: (a) wear scar at the
load of 300 g; (b) wear scar at the load of 1100 g; (c) wear scar at the load of 2000 g; (d) wear scar of
non-textured pruner at the load of 2000 g.
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In Figure 20a, the wear scar is shallow at the load of 300 g without obvious scratches and tears,
and no wear debris is found in the groove. Figure 20c is an enlarged view of Figure 20b. We can see that
the edge of the convex hull of the pruner is slightly damaged, and the friction coefficient approximates
that of the non-textured pruner, showing no friction reduction effect. Figure 20e EDS shows that the
main elements of the worn surface at the load of 300 g are Fe, W and O. Among them, elements like Fe,
W and O have clear fluctuations. In Figure 20d, the white granular structure contains more W which
mainly originates from the upper friction pair. During the wearing process, the upper friction pair is
worn away, and abrasive wear occurs. Figure 20f is a partially enlarged view of Figure 20c. We can see
that squeezing and peeling occur at the load of 300 g, and the plastic flow of the friction surface and
the nearby surface layer continued to accumulate, causing the secondary surface to crack and develop
parallel to the surface. Eventually the crack will further extend and cause the branch to fall off.

Figure 20. SEM and EDS images of the 70 W power group at 1.6 mm/s and at the load of 300 g: (a) wear
scar morphology; (b) enlarged view of wear scar; (c) enlarged view of worn convex hull; (d) enlarged
view of part of the worn area in Figure c; (e) elemental line analysis chart of Figure d; (f) enlarged view
of part of the worn area in Figure c.

Figure 21b is an enlarged view of the wear scar at the load of 1100 g. There is clear wear debris
in the convex-hull grooves. At a heavy load, the connection which occurs between the convex hulls
and the latter is ground flat. In Figure 21c, the surface has obvious tearing and adhesion areas.
Figure 21c corresponds to the EDS1 in Table 9, which shows that the convex hull surface is torn by
the upper friction pair at a heavy load, with the high carbon steel substrate exposed. The EDS1 has
high iron content, low oxygen content, and no element W. The wear is abrasive wear, during which
the base material is stripped away by the upper friction pair. Figure 21c corresponds to EDS2 and
EDS3 in Table 9, which shows that EDS2 and EDS3 have high oxygen content, and that oxidative
wear occurs during the wear process. Moreover, EDS2 and EDS3 also have high W content which
mainly originates from the upper friction pair and abrasive wear occurs during the wearing process.
Meanwhile, Figure 21c also shows that there is a little abrasive particle adhered to the obvious cracks
and peeling on the convex hull surface. It shows that the hard particles of the upper friction pair cause
the micro crack occurrence, expansion and fracture on and falling off from the surface layer of the
material, resulting in micro fracture and squeezed peeling. With increasing load, the wear strength
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increases, and a large amount of wear debris is transferred into the groove under the action of adhesive
force for cutting and wearing. The wear mechanism changes from abrasive wear to oxidative wear
and adhesive wear.

Figure 21. SEM image of wear of the 80 W power group at 2.4 mm/s at the load of 1100 g: (a) wear
scar morphology; (b) enlarged view of micro-textured wear; (c) enlarged view of; (b) texture wear and
tear image.

Table 9. Figure 20c EDS data.

Spectrum
Labels C O Si Fe W

EDS 1 0.23 1.54 0.23 98.00 —
EDS 2 0.62 28.75 — 60.73 9.90
EDS 3 0.15 27.78 — 60.80 11.27

At the load of 2000 g, the wear scar is more distinct, and the micro-textured surface is completely
worn away, as shown in Figure 22b. Furthermore, the surface adhesion and peeling are rather serious
as shown in Figure 22c, because as the load increases, cold welding occurs between the steel ball and
the textured surface, and the atoms of the upper friction pair and the lower friction pair are combined
due to the atomic bond. In the subsequent sliding, the adhesion point is sheared. Figure 22c has
obvious water ripple morphology attributable to the fact that the surface pressure at a heavy load is
large, and the upper friction pair and the substrate surface demonstrate a strong tearing. Meanwhile,
micro-fatigue occurs from continuous contact with surface under the action of heavy load, and strong
energy hits the surface adhered by cracks, causing cracks in the substrate and producing water ripple
morphology. At the same time, the layered or scale-like peeling debris on the surface of the material
also indicates that squeezed peeling has occurred. In Figure 22d, at the load of 2000 g, there is little wear
debris remaining on the surface during the wear process, and the abrasive wear has been alleviated.
As shown in Figure 22e, a large amount of wear debris is stored in the groove of the texture. As the
wear time and surface pressure increase, the depth of the furrow increases, resulting in cutting wear.
From Figure 22f, a partial enlarged view of Figure 22e, we can see that the storage of wear debris in the
groove is most obvious at a heavy load, followed by abrasive wear. Figure 22e shows that there are
clear white particles on the surface of the wear scar. The corresponding Table 10 shows that the wear
debris contains more O and W elements. It shows that the adhesion phenomenon is more serious when
the upper friction pair and the lower friction pair are combined at a heavy load. We randomly selected
some wear debris of Figure 22e, as shown in Figure 22f. We carried out EDS analysis of Figure 22f,
as shown in Figure 23. As the content of O, C, W, and Fe elements in Figure 22 fluctuates greatly,
there are fewer iron elements and more carbon and oxygen elements in white particles, indicating that
the white particles are abrasive oxides. Figure 22 further proves that with increasing load and wear
time, the wear mechanism changes from the abrasive wear in the early stage to the composite of
oxidative wear and adhesive wear.
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Figure 22. SEM image of the 80 W power group 1.6 mm/s at the load of 2000 g: (a) wear scar
morphology; (b) enlarged view of localized wear; (c–e) enlarged view of textured wear; (f) enlarged view
of (e) abrasive particles.

Table 10. EDS data of Figure 22e.

Spectrum Labels C O Fe W

EDS 0.35 24.43 63.55 11.68

Figure 23. It is the EDS data of Figure 22f.

3.4. Shear Test Analysis

From the above friction and wear test, it is can be seen that at the load of 300 g, the friction coefficient
of the textured pruner is the minimum at the power of 70 W and speed of 1.6 mm/s. At the load of
1100 g, the friction coefficient of the textured pruner is the minimum at the power of 80 W and speed of
2.4 mm/s, while at the load of 2000 g, the friction coefficient of the textured pruner is the minimum at the
power of 80 W and speed of 1.6 mm/s texture tool. According to the shear force analysis of the branches,
the 10/15/20 mm-diameters branches were cut at the load of 300 g/1100 g/2000 g, respectively.

Figure 24a–c are the curves of the painted worn area of the pruner with the increasing number of
cuts after cutting 10 mm-diameter branches and the actual pictures after cutting.
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Figure 24. Shear test on the 10 mm-diameter branch: (a) relationship between worn area and number
of cuts; painted worn area: (b) non-textured pruner, (c) textured pruner at the power of 70 W and speed
of 1.6 mm/s.

In Figure 24a above, while cutting 10 mm-diameter branches, the painted worn area of the
non-textured pruner increases from 37 mm2 to 81 mm2 with increasing number of cuts, up by 44 mm2.
The painted worn area grows slowly after 50~60 cuts, and it tends to be stable after 120~130 cuts.
As for the textured pruner at the power of 70 W and speed of 1.6 mm/s, the pained worn area increases
from 24 mm2 to 76 mm2 with increasing number of cuts, up by 52 mm2. The painted worn area grows
slower after 100 cuts, and it stabilizes after 120 cuts. Compared with non-textured pruners, the painted
worn area is reduced by 5 mm2 after stabilization. For 10 mm-diameter branches, the textured pruners
show slight anti-wear performance.

Figure 25a,b are the curves of the painted worn area of the pruner with the increasing number of
cuts after cutting 15 mm-diameter branches and the actual pictures after cutting.

Figure 25. Shear test on the 15 mm-diameter branch; (a) relationship between worn area and number
of cuts; painted worn area. (b) Non-textured pruner, (c) textured pruner at the power of 80 W and
speed of 2.4 mm/s.

In Figure 25a, the painted worn area increases as the cutting times of the non-textured pruner
and the textured pruner increase. For the non-textured pruner, the painted worn area increases from
62 mm2 to 130 mm2, up by 68 mm2. The increase in painted worn area slows down after 60~70 cuts,
and the painted worn area becomes stable after 150~160 cuts. As for the textured pruner at the power
of 80 W and speed of 2.4 mm/s, the pained worn area increases from 31 mm2 to 62 mm2 with increasing
number of cuts, up by 31 mm2. The painted worn area grows slower after 30 cuts, and it stabilizes
after 140 cuts. Compared with non-textured pruners, the painted worn area is reduced by 68 mm2,
or 52% after stabilization. When cutting 15 mm-diameter branches, the textured pruners enter the
wear plateau faster and the worn area is smaller, showing better anti-wear performance.
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Figure 26a,b are the curves of the painted worn area of the pruner with the increasing number of
cuts after cutting 20 mm-diameter branches and the actual pictures after cutting.

Figure 26. Shear test on the 20 mm-diameter branch: (a) relationship between worn area and number
of cuts; painted worn area. (b) Non-textured pruner, (c) textured pruner at the power of 80 W and
speed of 1.6 mm/s.

In Figure 26a, for the non-textured pruner, the painted worn area increases from 107 mm2 to
215 mm2, up by 108 mm2. The increase in painted worn area slows down after 70 cuts, and the painted
worn area becomes stable after 130 cuts. As for the textured pruner at the power of 80 W and speed of
1.6 mm/s, the pained worn area increases from 50 mm2 to 93 mm2 with the increasing number of cuts,
up by 43 mm2. The painted worn area stabilizes after 100 cuts. Compared with non-textured pruners,
the painted worn area is 122 mm2 less, and reduced by 57%, which shows better stability and excellent
anti-wear performance.

As the diameter of the branches increases, the depth of the moving blade cutting into the
branches increases, and the maximum worn area of the pruner and the number of stable cuts increase.
According to the growth of the worn area of the painted pruner, the painted worn area increases
rapidly and then increases slower, which indicates that the front edge of the moving blade is greatly
affected by the friction force while cutting into the branch, and is significantly affected by the increase
in the extruding force of the branch. With increasing depth of cutting, under the influence of the blade
inclination angle, the extruding force and friction force at the rear end of the moving blade decrease,
and the painted worn area increases slowly. As the diameter of the branches increases, the worn
area of the painted textured pruner is smaller than that of the non-textured pruner, because while
cutting branches with larger diameters, the cutting depth of the blade and the friction area increase,
and the surface of the textured pruner shows good anti-wear performance. Where the number of cuts
is same, the worn area of the painted textured pruner is smaller. The more the diameter of the branches
increases, the more obvious the anti-wear performance is, and the longer the service life of the pruner.

3.5. Analysis of Anti-Friction Theory Model

Figure 27 shows the cutting mechanism of ordinary and micro-textured pruners during the
cutting process. For ordinary pruners, as shown in Figure 27a, during the cutting process, the pruner
and the surface of the tree branch are squeezed by each other, generating a force to break the cutter.
For textured pruners, as shown in Figure 27b, as there are grooves on the surface of the pruner,
the contacting area of the pruner and branch is smaller, and the extruding force is less than that of
ordinary pruners, the friction between the pruner and the branch is smaller. During the cutting process,
for the textured pruner, the fine convex hull texture edge will squeeze part of the surface of the branch
into the groove. The branch in the groove is affected by the direction of the groove during the cutting
process, which changes the direction of the cutting movement, effectively increases the rake angle and
reduces the shear force [33]. At the same time, because pressure on the pruner is directly proportional
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to the contact point, the micro texture reduces the contact length of the pruner and reduces the cutting
force of the pruner [34].

Figure 27. The cutting process of ordinary pruners and micro-textured pruners: (a) the cutting process
of ordinary pruners; (b) the cutting process of textured pruners.

4. Conclusions

In this paper, we mainly studied the forming parameters and anti-friction and anti-wear
performance of the convex hull micro-textured pruner. The major conclusions are as follows:
The forming parameters with the smallest friction coefficient in the trimming of 10/15/20 mm-diameter
branches include the power of 70 W and speed of 1.6 mm/s, power of 80 W and speed of 2.4 mm/s,
and power of 80 W and speed of 1.6 mm/s, respectively, as well as the convex hull spacing of
300 µm. The laser power affects the depth and width of the texture. The scanning speed has a strong
influence on the texture depth only; in the calculation of shear theory, the positive pressure on the
pruner is proportional to the modulus of elasticity, the moment of inertia, and the bevel angle, and is
inversely proportional to the distance from the support point of the fixed knife to the positive pressure.
The anti-wear performance of the textured pruner is not obvious at the load of 300 g, which is significant
at the loads of 1000 g and 2000 g. The wear mechanism changes from the abrasive wear in the early
stage to the oxidative wear and adhesive wear. When cutting 10 mm-diameter branches, the painted
worn area of the textured pruner is 6% less than that of the non-textured pruners. When cutting
15 mm-dimeter branches, the painted worn area of the textured pruner is 52% less than that of the
non-textured pruner. When cutting 20 mm-diameter branches, the painted worn area of the textured
pruner is 57% less than that of the non-textured pruners. In all shear tests, the textured pruners enter
the plateau faster than the non-textured tools.
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