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Abstract: Rapeseed (Brassica napus L.) is an important crop worldwide, due to its multiple uses,
such as a human food, animal feed and a bioenergetic crop. Traditionally, its cultivation is based on
the use of chemical fertilizers, known to lead to several negative effects on human health and the
environment. Plant growth-promoting bacteria may be used to reduce the need for chemical fertilizers,
but efficient bacteria in controlled conditions frequently fail when applied to the fields. Bacterial
endophytes, protected from the rhizospheric competitors and extreme environmental conditions,
could overcome those problems and successfully promote the crops under field conditions. Here,
we present a screening process among rapeseed bacterial endophytes to search for an efficient
bacterial strain, which could be developed as an inoculant to biofertilize rapeseed crops. Based on
in vitro, in planta, and in silico tests, we selected the strain Pseudomonas brassicacearum CDVBN10
as a promising candidate; this strain produces siderophores, solubilizes P, synthesizes cellulose
and promotes plant height in 5 and 15 days-post-inoculation seedlings. The inoculation of strain
CDVBN10 in a field trial with no addition of fertilizers showed significant improvements in pod
numbers, pod dry weight and shoot dry weight. In addition, metagenome analysis of root endophytic
bacterial communities of plants from this field trial indicated no alteration of the plant root bacterial
microbiome; considering that the root microbiome plays an important role in plant fitness and
development, we suggest this maintenance of the plant and its bacterial microbiome homeostasis
as a positive result. Thus, Pseudomonas brassicacearum CDVBN10 seems to be a good biofertilizer to
improve canola crops with no addition of chemical fertilizers; this the first study in which a plant
growth-promoting (PGP) inoculant specifically designed for rapeseed crops significantly improves
this crop’s yields in field conditions.
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1. Introduction

The FAO estimates that there will be 2.3 billion more people on the Earth in 2050, in a world
already struggling to combat poverty and hunger. Thus, we need to increase our capability to produce
food using the limited natural resources of our planet more efficiently while fighting climate change.
Chemical fertilizers increase crop yields, but they have negative effects for human and animal health,
contaminate soils and water, and their fabrication, which requires huge amounts of energy, contributes
to resource depletion and global warming [1]. Moreover, the excessive or repetitive use of chemical
fertilizers usually presents low efficiency in their use by plants because the soil biogeochemical cycles
is often altered [2].

Alternatively, plant growth-promoting bacteria (PGPB), which are naturally occurring microbes
that modulate plant growth due to their metabolic activities, can enhance crop yields when applied as
biofertilizers [3–5]. PGPB can fix atmospheric nitrogen, produce siderophores and/or phytohormones,
solubilize phosphorous and/or potassium and inhibit the growth of pathogenic microorganisms [6].
Within PGPB, endophytes are particularly interesting because, once inside the plant, they do not need
to compete with the dense population of bacteria in the rhizosphere and they are protected from
extreme abiotic conditions, so they have more chances to succeed when applied in the fields [7,8].

Endophytes are part of the plant microbiome and play essential roles for its fitness and survival [9].
Many of these microorganisms are non-cultivable in routine laboratory conditions and thus, culture
independent methods allow us to unravel the complete microbial diversity living within the plants.
These endophytic microbiomes, as occurs in animals, interact with their host in essential functions [10–12];
hence, plant microbiome research highlights the importance of indigenous microbial communities for
host phenotypes such as growth and health [13].

Brassica napus L. (rapeseed, canola) is an important crop due to its cultivation not only as a food
resource (human and animal), but also for biodiesel production, being one of the most significant
oilseed crops in temperate climates [14]. In Europe, rapeseed seeds are the primary source of oil for
biodiesel production, its by-product being a high protein source for animal feeding [15]. However,
rapeseed cultivation requires important amounts of chemical fertilizers [16], and therefore, alternatives
that enable the reduction in chemical fertilization for a more sustainable crop are very desirable.
This implies the use of biofertilizers, which include endophytic PGPB.

Thus, the design of an efficient bacterial endophytic inoculant for rapeseed crops which could
increase rapeseed crop yields with no addition of chemical fertilizers is very desirable. For that
purpose, it is necessary to study the members of the bacterial endophytic population, those members
of the endophytic community which can be artificially cultured and thus biotechnologically produced
and formulated.

In terms of plant growth-promoting (PGP) functionality, in vitro PGP mechanisms have been
analyzed in just a few rhizospheric [17] or endophytic bacteria associated with B. napus plants [18,19].
In addition, the information about the effects of PGPB in rapeseed plants is scarce [18,20–23]. Taking
advantage of next generation sequencing, PGPB genome sequence annotation and analysis allow in
silico studies of the genetic potential of a bacterium to promote plant growth, including the discovery
of specific PGP traits and/or pathways, such as tolerance to different biotic and abiotic stresses, heavy
metal detoxifying activity or biological control potential [24].

These massive parallel sequencing techniques are becoming even more interesting when applied
to elucidate the taxonomic composition and biological functions of the plant and soil microbiome when
plants grow under field conditions, where they can be used to recreate the microbial communities’
dynamics [25].

Based on the hypothesis that bacterial endophytes can be efficient biofertilizers when applied as
inoculants in the fields, the aim of this work was to isolate and select a rapeseed bacterial endophyte
with the potential to promote rapeseed growth and yields. For that, we obtained a collection of
rapeseed endophytic bacteria and analyzed the potential of our isolates as plant growth promoters,
through a screening of a few in vitro PGP mechanisms followed by the analysis of the in planta effect
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with several selected isolates, evaluating their capability to promote rapeseed seedling growth. Once
we had selected the best-performing strains in planta, we obtained the genome sequences of the
best PGP endophytic strains to deepen the study of their molecular machinery implicated in plant
colonization and growth promotion. The in silico and in vivo assays allowed us to select one particular
strain, which was inoculated in a field trial, showing for the first time a significant increase in rapeseed
yields using a PGP bacterium inoculum. As a novelty, we analyzed the impact of the inoculation of the
strain not only in the plant development and crop yields, but also on the root endophytic community.

2. Materials and Methods

2.1. Isolation and Identification of Bacterial Isolates

Rapeseed plants (B. napus cv rescator) in the phenological stage of rosette were collected in
February 2017 from two agricultural soils located in the municipalities of Castellanos de Villiquera
(CDV) (province of Salamanca) and Peleas de Arriba (PDA) (province of Zamora), both in Spain.
Plants were extracted from the soils, kept refrigerated and shipped to the laboratory, where they were
processed within two hours from the time of extraction.

To isolate rapeseed root bacterial endophytes, roots were excised carefully and washed in sterile
Petri dishes containing sterile distilled water (× 10 times) and then surface-disinfected by immersion
in sodium hypochlorite (2%) for 2 min. After that, surface-disinfected roots were washed 5 times in
sterile distilled water and dried with sterile filter paper. An aliquot of water from the last washing
step of each sample after the disinfection protocol and a few entire disinfected roots were plated as
disinfection controls. No bacterial growth was observed in those plates.

Surface-disinfected roots were smashed in a sterile mortar and the content was serially diluted
with sterile distilled water. Then, 100 µL of the 10−2, 10−3 and 10−4 dilutions were plated onto Petri
dishes containing different media to target the isolation of a wider biodiversity: Tryptic Soy Agar
(TSA; BD Difco, Franklin Lakes, NJ, USA), YMA (Laboratorios Microkit, Madrid, Spain), 869 medium
(Tryptone (10 g/L), yeast extract (5 g/L), NaCl (5 g/L), D-glucose (1 g/L), CaCl2 (0.345 g/L), and agar
(20 g/L)) and ten times diluted 869 medium.

Plates were incubated at 28 ◦C for 21 days. The emerging bacterial colonies were regularly isolated
to get pure cultures. Their names were composed by CDV or PDA, depending on the sampling origin,
followed by BN, from Brassica napus and a correlative number. Then, isolated strains were stored in a
sterile 20% glycerol solution at −80 ◦C for long-term storage.

For bacterial strain identification, DNA was obtained using the REDExtract-N-Amp™ PCR Ready
Mix (Sigma-Aldrich Co. LLC), following the instructions given by the manufacturer. Then, strains were
grouped at species or subspecies level based on their 879F-RAPD fingerprints, obtained as detailed
by Igual et al. [26] and grouped by means of the UPGMA algorithm (unweighted pair grouping
with mathematic average) using the software package BioNumerics version 4.5 (Applied Maths
NV, Sint-Martens-Latem, Belgium), with a threshold of 75% similarity. To identify a representative
bacterial isolate of each 879F-RAPD group, 16S rRNA gene sequences were amplified as described in
Rivas et al. [27] and processed as described in Poveda et al. [28]. Nearly complete (~1500 bp) sequences
were compared with those from type strains deposited in GenBank using BLASTn program [29] and
EzTaxon tool [30].

In the case of those bacterial strains selected for genome sequences, housekeeping gene sequences
(gyrB and rpoB) were retrieved from the genome and compared to those available in the GenBank
database using BLASTn for a more accurate taxonomic identification.

In the case of the strain inoculated in the field trials, a phylogenetic analysis of the 16S
rRNA gene sequence of the strain and those of the closely related species was done as detailed
in Jiménez-Gómez et al. [31].
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2.2. In Vitro Analyses of Plant Growth-Promoting Mechanisms and Biosynthesis of Polysaccharides

Bacterial siderophore production and solubilization of non-assimilable phosphates were evaluated
as detailed in Jiménez-Gómez et al. [31]. Briefly, siderophore production was evaluated by inoculating
in M9-CAS-agar medium plates [32] modified according to the suggestions given by Alexander and
Zuberer [33]. The solubilization of non-soluble phosphates into soluble assimilable ions was analyzed in
Pikovskaya medium plates [34], which contain bicalcium phosphate (CaHPO4) or tricalcium phosphate
[Ca3(PO4)2] as the P source. Polysaccharide (cellulose and cellulose-like polymers) biosynthesis ability
of each isolate was determined as described by Robledo et al. [35]. All plates were incubated for up to
21 days at 28 ◦C, recording the results every week. Nitrogen fixation was assayed in liquid medium as
detailed in Poveda et al. [28]. The method shows the ability of strains to grow in a N-free minimal
liquid medium. Indole acetic acid (IAA)-like compound production was measured by the colorimetric
method described in Khalid et al. [36].

2.3. Effects of Bacterial Isolates on Rapeseed Seedlings

Rapeseed seeds (cv rescator) were surface-disinfected with 70% ethanol for two min, followed by
soaking in an aqueous 5% sodium hypochlorite solution for ten minutes. Then, they were washed
five times with sterile water and pre-germinated on water-agar plates (1.5%) for 24 h. To prepare the
inoculum, bacteria were grown in their respective isolation media for 3 days at 28 ◦C; afterwards,
the Petri dishes were flooded with saline buffer (0.9% NaCl) in order to obtain the cell suspensions, which
were adjusted to an O.D. (600 nm) of 0.5, corresponding to final concentrations of ~108–109 CFU/mL (this
concentration was determined after counting the number of viable cells using the serial decimal dilution
method). After the pre-germination and inoculum preparation steps, Petri dishes containing the
seedlings were inoculated. Twelve plates per treatment with five seeds per plate were prepared for the
in vitro analyses. Thirty seedlings per treatment were collected at five and fifteen days post-inoculation,
respectively. Values of seedling height and root length were recorded at each collection time.

2.4. Draft Genome Sequencing and Annotation

The genome sequence was obtained from selected strains after the plant growth promotion tests
on rapeseed seedlings. For genome sequencing, the DNA was obtained from selected bacteria after
two days of growth at 28 ◦C using the Quick DNA Fungal/Bacterial Miniprep kit (Zymo Research,
Irvine, CA, USA) following the procedure described by the manufacturer.

The draft genome of selected isolates was sequenced on an Illumina MiSeq platform as described by
Saati-Santamaría et al. [37]. The sequence data were assembled using Velvet (v1.12.10) [38]. Gene calling,
annotation, and search for genes related to plant growth promotion- and colonization-related capabilities
was performed using RAST (v2.0) pipeline [39] and then re-checked by BLASTp against known
conserved proteins from phylogenetically related or closest relatives Pseudomonas strains. The Genome
Shotgun project for strains CDVBN10 and CDVBN20 has been deposited at DDBJ/EMBL/GenBank
under the accessions VDLV00000000 and VDLW00000000, respectively. The versions described in this
paper are versions VDLV01000000 and VDLW01000000.

2.5. Field Experiment

The most promising PGP bacterium according to in vitro, in vivo, and in silico experiments, strain
Pseudomonas brassicacearum CDVBN10, was assayed in field conditions as a rapeseed biofertilizer.

The field trial was performed between September 2018 and May 2019 in the locality of Cañizal
(Zamora; NS/EW coordinates: 41.152627/-5.356508). The field has a crop history of rotations between
sunflower and barley. No rapeseed crops were sown previously in this soil. The soil is a non-saline soil
with loamy-sandy texture, with a good organic matter content (5.6%), showing a very slightly basic
pH (7.87) and a low EC (EC1:2 0.096 dS/m). The electrical conductivity and the pH were measured
according to Dellavalle [40]. The mineral content of the soil is as follows: total N < 0.045%; assimilable
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P 15 mg/kg, K 0.25%, Zn 21.9 mg/Kg, Fe 1.2%. The number of colony formation units (CFU) per gram
of soil (counted in Plate Counting Agar (PCA; Sigma-Aldrich Co. LLC, St. Louis, MO, USA) plates
incubated at 28 ◦C for 7 days) is 1.2 × 107.

The experimental field was divided in six rows with 5 m length by 2 m width (10 m2) with a 0.5 m
buffer non-cropped area between them to avoid the transfer of bacteria between plots. Plants were
grown in a density of 12 plants per linear meter in each row and they were rainfed.

The experiment was arranged in a randomized block design with three replicates per treatment.
No chemical fertilization was applied to the soil. One month after the seeding, once the seedlings had
emerged, a bacterial suspension with a cell density of 109 CFU/mL was prepared on sterile saline buffer
(0.9% NaCl), using 3 day old bacterial cultures grown at 28 ◦C in TSA. A total of 5 mL of the bacterial
suspension was added to each plant. For uninoculated control, equal volume of sterile saline buffer
was added per plant. Fifteen days after the inoculation of the plants, the application was repeated.

The rapeseed plants were collected at seed maturity stage, approximately 8 months after seeding.
Thirty randomly selected plants of each plot were harvested and kept separately. Plants were quickly
taken to the lab on ice, where we separated roots from shoots carefully. Roots were excised for further
amplicon sequencing. From each plant, grain yield and total shoot dry biomass (oven-dried at 60 ◦C)
were recorded. Dry plants were also used for the analysis of N, C, Fe, P, K at the Ionomics Service at
CEBAS-CSIC (Murcia, Spain), using an Elemental Analyst model TruSpec CN628 equipment (Leco,
St Joseph, MI, USA) for the N analysis, and ICP THERMO ICAP 6500DUO equipment (Thermo Fisher,
Waltham, MA, USA) for the analysis of the remaining elements.

2.6. Amplicon Sequencing and Sequence Analysis

Total genomic DNA was obtained from rapeseed roots collected as explained in the previous
section using the DNeasy Power Plant Pro Kit (Qiagen®, Venlo, Netherlands), following the instructions
given by the manufacturer. For each location, DNA from roots of three different plants of each treatment
was pooled and amplicons of the complete bacterial 16S rRNA gene (V1-V9 regions) were sequenced
on a PacBio Sequel system using a SMRT Cell 1M V3 LR. PacBio circular consensus sequences (CCS)
were used to obtain sequences with a low error rate in the consensus sequence resulting from the
alignment between all the subreads from the same molecule.

Sequences with lengths ≥800 nt to ≤1600 nt were filtered using SEED2 software package [41].
QIIME (v1.9) software [42] was used for amplicon data analysis. The sequences were aligned and
taxonomically classified (97% threshold) using the Greengenes 16S rRNA sequence database, release
13.8.97 [43] with an open-reference picking method for the OTU (Operational Taxonomic Units)
clustering, using the default settings of the UCLUST algorithm. Chimeric sequences were removed
using UCHIME (v6.1.544) [44]. Lineages belonging to chloroplast and mitochondria were removed
with QIIME scripts. PacBio reads were deposited in NCBI under the SRA accession PRJNA601164.

Comparison between control and bacteria-treated samples and plots summarizing taxa were made
following QIIME scripts. The alpha diversity was measured with the Phylogenetic Diversity (PD),
Chao1, Shannon’s, Simpson´s and Good´s coverage indexes. Comparisons between treatments were
made using the Kruskal–Wallis statistic test [45] applying the Benjamini–Hochberg false discovery rate
(FDR) procedure for multiple comparisons [46]. OTU tables were rarefied using the lower sequence
count among all samples as maximum rarefaction depth. The beta diversity of the samples was
measured using weighted and unweighted UniFrac distances. Beta diversity comparison of treatments
was made through nonparametric p-values with the Bonferroni correction [47], calculated after 999
Monte Carlo permutations. A value of p > 0.05 was used as a threshold for statistical significance of
OTU correlation to a control or treated samples.

2.7. Statistical Analysis of Plant Parameters

Statistical comparisons of plant growth assays, including parameters recorded of the plants
collected from the field assay, were carried out using the StatView 5.0 (SAS Institute, Inc., Cary,
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NC, USA) [48] and performed using one-way analysis of variance (ANOVA). P values of 0.05 or less
(p ≤ 0.05) were considered statistically significant. Fisher’s protected least significant differences (LSD)
test was used as post hoc test.

3. Results

3.1. Bacterial Culturome Shows the High Diversity of B. Napus Associated Endophytic Bacteria

Using a combination of rich and minimal media to target the isolation of a wider biodiversity, we
obtained 112 bacterial isolates from surface-disinfected rapeseed roots collected in the same Spanish
locations previously mentioned. From them, 31 strains were isolated from plants collected in PDA and
81 from plants collected in CDV (Table 1).

We used 879F-RAPD fingerprints to group the strains at infraspecific level in order to select
representative strains for their identification. The 31 strains from the location of PDA (Zamora)
clustered into 20 different 879F-RAPD groups, while the 81 bacterial isolates from the locality of CDV
(Salamanca) clustered into 56 different groups (Table 1).

Afterwards, we chose a representative strain (marked in Table 1 with an asterisk) from each
879F-RAPD group to obtain its 16S rRNA gene sequence. Then, we compared the obtained sequences
with those of the type strains of described species. The closest related species to each isolate is shown
in Table 1. The bacterial community analysis of the culturable bacterial endophytes of the rapeseed
roots of plant collected in the two agricultural lands of this study revealed the presence of 39 different
species within 27 different genera (Table 1).

The dominant genera were Pseudomonas, Pseudoarthrobacter and Bacillus, with 49, 12 and 10 strains
belonging to 29, 4 and 6 different 879F-RAPD groups, respectively. In addition, strains belonging to
these three genera were found in plants cultivated in both locations of this study, while all the other
genera were location specific.

3.2. In Vitro Analyses of Plant Growth-Promoting Mechanisms

The in vitro tests of PGP potential include the analyses of phosphorous (P) solubilization,
siderophores production and cellulose biosynthesis.

The results of the in vitro analyses of the PGP traits performed in this study are summarized
in Table 1. A total of 77.4% and 67.9% of the isolates associated with plants from PDA and CDV,
respectively, solubilize phosphate. Concerning siderophores, 38.7% of the strains isolated from PDA
showed siderophore production, whereas 55.5% of the bacterial isolates from CDV produced these
iron-chelating molecules. Finally, more than half of the strains from this study showed capability to
synthesize cellulose or cellulose-like polymers.

Regarding PGP traits of the bacteria selected for the in planta experiments, all strains but one
synthesized IAA-like molecules, all but one solubilized tricalcium phosphate and only Bacillus simplex
CDVBN6 was able to grow with no addition of a nitrogen source in the medium.

3.3. Plant Growth Promotion in Rapeseed Seedlings under Controlled Conditions and Additional PGP Traits

Those strains showing the best results in the in vitro test of PGP traits (grey-highlighted name in
Table 1) were used to evaluate their PGP capability in planta, using rapeseed seedlings. These strains
were also assayed for IAA-like production, nitrogen fixation and Ca3(PO4)2 solubilization. The results
for the PGP ability of these strains are summarized in Table 2.
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Table 1. Identification of strains isolated in this study and in vitro plant growth-promoting mechanisms.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN92A 869 1/10 I Pseudarthrobacter
oxydans ATCC 14358T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN98 * 869 1/10 I Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN100 * 869 1/10 II Isoptericola nanjingensis
H17T 97.42

Actinobacteria,
Actinobacteria,
Micrococcales,

Promicromonosporaceae

PDABN24A * YMA IV
Dermacoccus

nishinomiyaensis DSM
20448T

99.35

Actinobacteria,
Actinobacteria,
Micrococcales,

Dermacoccaceae

CDVBN92B * 869 1/10 V Agromyces ramosus DSM
43045T 99.45

Actinobacteria,
Actinobacteria,
Micrococcales,

Microbacteriaceae

CDVBN29 * YMA VI Clavibacter capsici LMG
29047T 99.93

Actinobacteria,
Actinobacteria,
Micrococcales,

Microbacteriaceae

CDVBN34 TSA VI Clavibacter capsici LMG
29047T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Microbacteriaceae

CDVBN89* 869 1/10 VII Microbacterium yannicii
DSM 23203T 98.95

Actinobacteria,
Actinobacteria,
Micrococcales,

Microbacteriaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN50 * 869 1/10 VIII Microbacterium yannicii
G72T 100

Actinobacteria,
Actinobacteria,
Micrococcales,

Microbacteriaceae

CDVBN46A 869 1/10 IX Arthrobacter humícola
KV-653T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN60 * 869 1/10 IX Arthrobacter humícola
KV-653T 99.71

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN84 * TSA X Arthrobacter pascens
DSM 20545T 98.73

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

PDABN28 * 869 1/10 XI Micrococcus yunnanensis
YIM 65004T 99.57

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN49 * 869 1/10 XII Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN42 * 869 1/10 XIII Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN43 869 1/10 XIII Pseudarthrobacter
oxydans ATCC 14358T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN44 869 1/10 XIII Pseudarthrobacter
oxydans ATCC 14358T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN53 * 869 1/10 XIV Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN73 869 1/10 XIV Pseudarthrobacter
oxydans ATCC 14358T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN57 * 869 1/10 XV Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN61 869 1/10 XV Pseudarthrobacter
oxydans ATCC 14358T -

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN51 * 869 1/10 XVI Pseudarthrobacter
oxydans ATCC 14358T 99.58

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN33 * TSA XVII
Pseudarthrobacter
siccitolerans LMG

27359T
99.44

Actinobacteria,
Actinobacteria,
Micrococcales,

Micrococcaceae

CDVBN72 * 869 1/10 XVIII Nocardioides cavernae
YIM A1136T 99.36

Actinobacteria,
Actinobacteria,

Propionibacteriales,
Nocardioidaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN90 * 869 1/10 XIX Nocardioides cavernae
YIM A1136T 99.36

Actinobacteria,
Actinobacteria,

Propionibacteriales,
Nocardioidaceae

CDVBN101 869 1/10 XIX Nocardioides cavernae
YIM A1136T -

Actinobacteria,
Actinobacteria,

Propionibacteriales,
Nocardioidaceae

CDVBN102 * 869 1/10 XX Micromonospora coxensis
DSM 45161T 99.86

Actinobacteria;
Actinobacteria;

Micromonosporales;
Micromonosporaceae

PDABN18 * 869 1/10 XXI Flavobacterium
pectinovorum DSM6368T 99.09

Bacteroidetes,
Bacteroidetes,
Flavobacteriia,

Flavobacteriales,
Flavobacteriaceae

PDABN27 * 869 XXII
Staphylococcus cohnii
subsp. cohnii ATCC

29974T
100

Firmicutes, Bacilli,
Bacillales,

Staphylococcaceae

CDVBN19 * 869 XXIII
Staphylococcus cohnii
subsp. cohnii ATCC

29974T
99.93

Firmicutes, Bacilli,
Bacillales,

Staphylococcaceae

CDVBN54 869 1/10 XXIV Bacillus aryabhattai JCM
13839T - Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN55 869 1/10 XXIV Bacillus aryabhattai JCM
13839T - Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN58 869 1/10 XXIV Bacillus aryabhattai JCM
13839T - Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN68 * YMA XXIV Bacillus aryabhattai JCM
13839T 99.86 Firmicutes, Bacilli,

Bacillales, Bacillaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN9 * 869 1/10 XXV Bacillus megaterium
NBRC 15308T 100 Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN91 * 869 1/10 XXVI Bacillus niacini IFO
15566T 99.38 Firmicutes, Bacilli,

Bacillales, Bacillaceae

PDABN29 * 869 1/10 XXVII Bacillus safensis FO-36BT 99.93 Firmicutes, Bacilli,
Bacillales, Bacillaceae

PDABN11 TSA XXVIII Bacillus siamensis
PD-A10T - Firmicutes, Bacilli,

Bacillales, Bacillaceae

PDABN19B * TSA XXVIII Bacillus siamensis
PD-A10T 99.86 Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN6 * 869 III Bacillus simplex LMG
25856T 99.93 Firmicutes, Bacilli,

Bacillales, Bacillaceae

CDVBN18 * 869 XXIX Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN66 * YMA XXX Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN28 * YMA XXXI Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN2 YMA XXXII Pseudomonas baetica
A390T -

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN4 * YMA XXXII Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN8 * 869 XXXIII Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN41 * 869 1/10 XXXIV Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN45 869 1/10 XXXIV Pseudomonas baetica
A390T -

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN38 * 869 1/10 XXXV Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN39 869 1/10 XXXV Pseudomonas baetica
A390T -

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN37 869 1/10 XXXV Pseudomonas baetica
A390T -

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN22 * YMA XXXVI Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN23 * YMA XXXVII Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN70 YMA XXXVIII Pseudomonas baetica
A390T -

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN71 * YMA XXXVIII Pseudomonas baetica
A390T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN13 * TSA XXXIX
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

99.72

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN14 TSA XXXIX
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN62 * YMA XL
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN47 * 869 1/10 XLI
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN25 * YMA XLII
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN27 YMA XLII
Pseudomonas

brassicacearum subsp.
brassicacearum DBK11T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN52 * 869 1/10 XLIII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN64 * YMA XLIV

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN26 * YMA XLV

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN108 TSA XLVI

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN21 * TSA XLVI

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN10 * 869 XLVII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN17 869 XLVII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN24 YMA XLVII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN11 TSA XLVII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN15 TSA XLVII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN1 * YMA XLVIII

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN69 * YMA XLIX

Pseudomonas
brassicacearum subsp.
neoaurantiaca ATCC

49054T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN65 * YMA L Pseudomonas orientalis
CFML96-170T 99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN3 * YMA LI Pseudomonas orientalis
CFML96-170T 99.65

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN20 * 869 LII Pseudomonas orientalis
CFML96-170T 99.79

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

PDABN1 * TSA LIII Pseudomonas poae DSM
14936T 100

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN14 * YMA LIV Pseudomonas poae DSM
14936T 100

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN5 * 869 LV
Pseudomonas

thivervalensis DSM
13194T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN12 YMA LV
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN3 * 869 1/10 LVI
Pseudomonas

thivervalensis DSM
13194T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN4 869 LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN6 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN7 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

PDABN8 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN13 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN15 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN2 YMA LVI
Pseudomonas

thivervalensis DSM
13194T

-

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

CDVBN16 * 869 1/10 LVII
Pseudomonas

thivervalensis DSM
13194T

99.86

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Pseudomonadaceae

PDABN26 * YMA LVIII Bosea lathyri DSM
26656T 99.22

Proteobacteria,
Alphaproteobacteria,

Rhizobiales,
Bradyrhizobiaceae

CDVBN78 * 869 1/10 LIX Devosia psychrophila
Cr7-05T 99.09

Proteobacteria,
Alphaproteobacteria,

Rhizobiales,
Hyphomicrobiaceae

CDVBN77 * 869 1/10 LX Microvirga aerophila
KACC 12743T 97.64

Proteobacteria,
Alphaproteobacteria,

Rhizobiales,
Methylobacteriaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

PDABN20 * YMA LXI Neorhizobium alkalisoli
CCBAU 01393T 99.76

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN21 YMA LXI Neorhizobium alkalisoli
CCBAU 01393T -

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN21B * 869 1/10 LXII Agrobacterium nepotum
39/7T 100

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN22B * 869 1/10 LXIII Agrobacterium nepotum
39/7T 100

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN19A * 869 LXIV Shinella kummerowiae
CCBAU 25048T 98.53

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN23 * 869 1/10 LXV Shinella kummerowiae
CCBAU 25048T 98.76

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN24B YMA LXV Shinella kummerowiae
CCBAU 25048T -

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN32 * TSA LXVI Shinella kummerowiae
CCBAU 25048T 99.76

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

PDABN23A * TSA LXVII Shinella kummerowiae
CCBAU 25048T 99.76

Proteobacteria,
Alphaproteobacteria,

Rhizobiales, Rhizobiaceae

CDVBN83 * YMA LXVIII Sphingomonas faeni DSM
14747T 99.78

Proteobacteria,
Alphaproteobacteria,
Sphingomonadales,

Sphingomonadaceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

CDVBN46B * 869 1/10 LXIX Massilia suwonensis
5414S-25T 99.01

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae

CDVBN40 * 869 1/10 LXX Massilia yuzhufengensis
ZD1-4T 98.59

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae

PDABN9 * YMA LXXI Acidovorax radicis N35T 99.65

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Comamonadaceae

CDVBN31 * TSA LXXII Variovorax paradoxus
NBRC 15149T 99.52

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Comamonadaceae

CDVBN59 * 869 1/10 LXXIII Herbaspirillum lusitanum
LMG 21710T 100

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae

CDVBN63 YMA LXXIII Herbaspirillum lusitanum
LMG 21710T -

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae

CDVBN67 YMA LXXIII Herbaspirillum lusitanum
LMG 21710T -

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae

CDVBN32 * TSA LXXIV Herbaspirillum lusitanum
LMG 21710T 99.45

Proteobacteria,
Betaproteobacteria,

Burkholderiales,
Oxalobacteraceae
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Table 1. Cont.

Strain
Bacterial
Growth
Medium

879F *

Most Closely Related
Type Strain

Based on the 16S
rRNA Gene

% Similarity with
the Most Closely

Related Type
Strain (16S rRNA)

Taxonomy Siderophores Cellulose P Solub

PDABN25 * YMA LXXV Shigella flexneri ATCC
29903T 99.58

Proteobacteria,
Gammaproteobacteria,

Enterobacterales,
Enterobacteriaceae

CDVBN81 * TSA LXXVI Acinetobacter johnsonii
ATCC 17909T 99.51

Proteobacteria,
Gammaproteobacteria,

Pseudomonadales,
Moraxellaceae

Representative strains from each of the 879F groups are marked with asterisks. Grey-highlighted names represent best performing strains regarding the PGP traits. CDV: Castellanos de
Villiquera (Salamanca); PDA: Peleas de Arriba (Zamora). Color scale: Grey color means no growth. White color means negative result (growth but no activity). Different shades of blue
mean a range from weak (light blue) to strong (dark blue).
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Table 2. Results of plant growth-promoting (PGP) tests (IAA-like compounds, solubilization of bi- and
tricalcium phosphate, nitrogen fixation, siderophore and cellulose production) performed with strains
selected in the plant promotion assay. All the tests were performed in triplicate.

Strain
IAA-like

Molecules
(µg·mL-1)

P Solubilization
(Ca3(PO4)2) N Fixation Siderophores Cellulose P Solubilization

(CaHPO4)

CDVBN4 24.53 + - +++ ++ +++

CDVBN6 5.34 - + +++ ++ +++

CDVBN10 * 8.18 + - +++ ++ +++

CDVBN20 * 75.19 w - +++ + +++

CDVBN21 13.72 + - +++ ++ +++

CDVBN65 5.14 + - +++ - +++

CDVBN68 10.07 + - +++ ++ +++

CDVBN69 8.45 + - +++ + +++

CDVBN70 0.00 + - +++ ++ ++

* Selected for further assays. + to +++, positive (range of halo size); -, negative; w, weak.

The results of root and plant height at 5 and 15 days post inoculation (dpi) are shown in Figure 1.
The best six bacterial strains according to these results from the 5 dpi samples were re-tested in planta,
allowing the seedlings to grow to 15 dpi. All six strains but one significantly increased shoot length
compared to the uninoculated control (Figure 1).Agronomy 2020, 10, x FOR PEER REVIEW 15 of 30 

 

 
Figure 1. Growth promotion in rapeseed seedlings 5 and 15 days post inoculation (dpi): (A) plant 
height 5 dpi; (B) plant height 15 dpi; (C) root length 5 dpi; (D) root length 15 dpi. Bars indicate the 
standard error. Histogram bars marked with an asterisk indicate a value significantly different from 
the negative control (p = 0.05) according to Fisher’s Protected LSD (Least Significant Differences). 

3.4. Taxonomic Affiliation of the Best Performing Strains 

General characteristics of strains CDVBN10 and CDVBN20 genomes are detailed in Table 3, as 
well as data from Subsystems Categories retrieved from the SeedViewer are shown in Table 4. 

Table 3. General genome properties of the PGP strains CDVBN10 and CDVBN20. 

Attributes CDVBN10 CDVBN20 

Genome size (bp) 6,180,897 5,666,760 

GC Content (%) 60.8 60.6 

N50 value 128,213 49,053 

L50 value 15 34 

Number of contigs (with PEGs) 85 271 

Number of subsystems 403 393 

Number of coding sequences 5773 5199 

Number of RNAs 61 37 

Table 4. Number of genes associated with specific functional categories in strains CDVBN10 and 
CDVBN20. 

Number of Genes Related to: CDVBN10 CDVBN20 

Cofactors, vitamins, prosthetic groups, pigments 219 232 

Cell wall and capsule 49 49 

Virulence, disease and defense 58 60 

Potassium metabolism 11 9 

Miscellaneous 37 39 

Phages, prophages, transposable elements, plasmids 8 3 

Figure 1. Growth promotion in rapeseed seedlings 5 and 15 days post inoculation (dpi): (A) plant
height 5 dpi; (B) plant height 15 dpi; (C) root length 5 dpi; (D) root length 15 dpi. Bars indicate the
standard error. Histogram bars marked with an asterisk indicate a value significantly different from
the negative control (p = 0.05) according to Fisher’s Protected LSD (Least Significant Differences).

Then, we selected Pseudomonas brassicacearum CDVBN10 and P. orientalis CDVBN20 to obtain
their genome sequence and deepen the in silico study of their PGP capabilities. The reasons for the
selection of these two strains are the following: (i) they presented good plant growth-promoting traits
according to the in vitro assays, (ii) they presented a capability to promote plant growth at 5 and
15 dpi, and (iii) they belong to the genus Pseudomonas, the most abundant genus in plants from both
locations, which might be related to a positive role of bacteria of this genus within their host plant
(see discussion section).
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3.4. Taxonomic Affiliation of the Best Performing Strains

General characteristics of strains CDVBN10 and CDVBN20 genomes are detailed in Table 3, as well
as data from Subsystems Categories retrieved from the SeedViewer are shown in Table 4.

Table 3. General genome properties of the PGP strains CDVBN10 and CDVBN20.

Attributes CDVBN10 CDVBN20

Genome size (bp) 6,180,897 5,666,760
GC Content (%) 60.8 60.6
N50 value 128,213 49,053
L50 value 15 34
Number of contigs (with PEGs) 85 271
Number of subsystems 403 393
Number of coding sequences 5773 5199
Number of RNAs 61 37

Table 4. Number of genes associated with specific functional categories in strains CDVBN10
and CDVBN20.

Number of Genes Related to: CDVBN10 CDVBN20

Cofactors, vitamins, prosthetic
groups, pigments

219 232

Cell wall and capsule 49 49
Virulence, disease and defense 58 60
Potassium metabolism 11 9
Miscellaneous 37 39
Phages, prophages,
transposable elements,
plasmids

8 3

Membrane transport 194 151
Iron acquisition and
metabolism

19 52

RNA metabolism 50 52
Nucleosides and nucleotides 96 101
Protein metabolism 230 212
Motility and Chemotaxis 68 74
Regulation and cell signalling 55 61
Secondary metabolism 4 4
DNA metabolism 101 95
Fatty acids, lipids and
isoprenoids

155 138

Nitrogen metabolism 55 19
Dormancy and sporulation 4 1
Respiration 133 111
Stress response 106 102
Metabolism of aromatic
compounds

94 71

Amino acids and derivatives 548 481
Sulfur metabolism 24 14
Phosphorus metabolism 35 49
Carbohydrates 316 261

According to the 16S rRNA gene sequence, the most closely related type strains to CDVBN10 are
P. brassicacearum subsp. neurantiaca CIP109457T (99.79%), Pseudomonas corrugata DSM7228T (99.65%)
and P. brassicacearum subsp. brassicacearum DBK11T (99.59%). The gyrB gene sequence of strain
CDVBN10 presented similarities of 94.99%, 92.92%, and 94.71% with those strains, respectively. In the
case of the sequence of the rpoB gene, the similarities between the strain CDVBN10 and its closest
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related species were respectively 97.59%, 95.28%, and 97.00%. Thus, we can conclude that the most
closely related type strain of CDVBN10 is P. brassicacearum subsp. neurantiaca CIP109457T.

The comparison of the 16S rRNA gene sequence of strain CDVBN20 with the type strains available
in databases showed that its most closely related type strains are P. orientalis CFML97-170T (99.66%),
Pseudomonas antarctica CMS35T (99.31%), and Pseudomonas meridiana CMS38T (99.25%). In the case of
the gyrB gene sequence, strain CDVBN20 showed the following similarities with the closest related
type strain: 92.48%, 90.73%, and 90.73%, respectively. In the case of the sequence of the rpoB gene,
the type strains of the most closely related species were not available in the databases. Therefore,
according to the 16S rRNA and gyrB gene sequences, the most closely related type strain is P. orientalis
CFML97-170T.

3.5. Genome in Silico Analysis of Plant Growth-Promoting and Putative Colonization Related Mechanisms

The in silico analyses of the PGP mechanisms of strains CDVBN10 and CDVBN20 showed
the presence of genes implicated in several interesting PGP pathways. Both genomes contain
genes encoding enzymes involved in the solubilization of inorganic P or in the release of P from
other molecules, such as exopolyphosphatases (EC 3.6.1.11), polyphosphate kinases (EC 2.7.4.1),
inorganic triphosphatases (EC 3.6.1.25), inorganic pyrophosphatases (EC 3.6.1.1), pyrroloquinoline
quinones (PQQ), glucose dehydrogenase PQQ-dependent (EC 1.1.5.2) and gluconate 2-dehydrogenase
(EC 1.1.99.3), as well as genes of the Pst system (pstSCAB), which is the most conserved member of the
Pho regulon [49], and some other genes related to unspecific uptake of this element [24].

Moreover, we found that both bacteria have genes involved in the metabolism of several
acids that could solubilize both K and P, such as the genes encoding citrate synthase (EC 2.3.3.1)
and malate synthase G (EC 2.3.3.9) responsible for the synthesis of citric acid and malic acid,
respectively, genes related with the metabolism of malonic acid (malonate decarboxylase, malonate
utilization transcriptional regulator, malonate-semialdehyde dehydrogenase), of gluconic acid
(gluconate 2-dehydrogenase (EC 1.1.99.3), of 2-ketogluconic acid (2-ketogluconate kinase (EC 2.7.1.13),
2-ketogluconate transporter) and of lactic acid (D-lactate dehydrogenase, L-lactate dehydrogenase,
L-lactate permease). We also found several genes implicated in K transport belonging to the Kup and
Kef systems [50].

Regarding iron provision, we found a great number of genes linked with Fe uptake, metabolism and
Fe efflux systems, as well as the ones related to the production of pyoverdine, a common siderophore in
fluorescent Pseudomonas [51]. Regarding IAA, one of the main phytohormones responsible of many plant
functions and directly related to plant growth, we found that both genomes have genes encoding for
some enzymes related to IAA synthesis, such as the indole-3-glycerol phosphate synthase (EC 4.1.1.48)
or the tryptophan synthase (alpha and beta chain; EC 4.2.1.20), amongst others. Nevertheless, we could
not find a complete or clear pathway for the biosynthesis of IAA. In addition, using BLASTp search,
we found genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity in both
bacteria, an enzyme which catalyzes the conversion of ACC into ammonia andα-ketobutyrate, avoiding
high levels of ethylene synthesis during abiotic stress situations.

Finally, both genomes showed genes involved in lipopolysaccharide (LPS) biosynthesis, such as
ipx, waa, kdt, ept and gmh genes, or genes related to the LPS-assembly, such as lptD and lptE.
Moreover, genes encoding enzymes involved in the synthesis of exopolysaccharides, such as a cyclic
β-1,2-glucan synthetase, are in both genomes and exo genes, only in the strain CDVBN10. Both genomes
also contained genes encoding glycosyl transferases and glycosyl hydrolases, enzymes involved in
polysaccharide biosynthesis and biodegradation, and genes encoding transcriptional factors from
AraC family.
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3.6. Pseudomonas brassicacearum CDVBN10 Displays Beneficial Effects in Rapeseed Plants Cultivated in
the Field

According to in vitro, in silico, and in vivo laboratory experiments, Pseudomonas brassicacearum
CDVBN10 and P. orientalis CDVBN20 were shown to be promising plant growth-promoting bacteria.
However, and taking into account that P. brassicacearum species had been isolated as a root endophyte
from several different plants and that the preliminary hypothesis of this study was that bacteria with
a good capability to enter plant roots will be more efficient under field conditions, we chose the
bacterium P. brassicacearum CDVBN10 to tests its capability to promote plant growth in field conditions
(a neighbor-joining phylogenetic tree based on the 16S sequence of the strain CDVBN10 and the
closest related species of the genus Pseudomonas is available in the Supplementary Figure S2). Data
from field experiments (Figures 2 and 3) showed a significant increase in both seed weight and shoot
biomass in those plants inoculated with P. brassicacearum CDVBN10 compared to uninoculated plants.
The percentages of the increase in pod number, pod dry weight and shoot dry weight in inoculated
plants over the control plants were 216.0%, 174.3%, and 197.8%, respectively. Regarding the nutritional
content of the plants, inoculated rapeseed plants present a significantly higher content in N, C and K,
whereas uninoculated plants presented higher Fe content than those inoculated with P. brassicacearum
CDVBN10 (Table 5).Agronomy 2020, 10, x FOR PEER REVIEW 18 of 30 
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Figure 3. Results of field experiment. (A) Pod number, (B) pod dry weight (g), (C) shoot dry
weight (g). Bars indicate the standard error. Histogram bars marked with an asterisk indicate a
value significantly different from the negative control (p = 0.01) according to Fisher’s protected least
significant differences (LSD).

Table 5. Effects of Pseudomonas brassicacearum CDVBN10 inoculation on nutrient contents of rapeseed
plants grown in the field experiment. Values marked with an asterisk indicate a value significantly
different from the negative control (p = 0.05) according to Fisher’s protected least significant
differences (LSD).

Treatment N (g/100g) C (g/100g) Fe (mg/kg) K (g/100g) P (g/100g)

Control 3.56 ± 0.05 53.69 ± 0.49 67.34 ± 2.52 1.04 ± 0.01 0.58 ± 0.02

CDVBN10 3.82 ± 0.07 * 54.89 ± 0.19 * 59.60 ± 1.50 * 0.99 ± 0.03 0.65 ± 0.03 *

3.7. CDVBN10 Inoculation Does Not Significantly Alter Bacterial Diversity in Rapeseed Roots Grown in the
Field Trial

The SMRT PacBio sequencing produced a total of 376,370 reads for the eight samples (four
uninoculated and four CDVBN10 inoculated). After the filtering, we obtained a total of 96,105 valid
reads (≥ 800 and ≤ 1600 bp), The minimum number of reads per sample was 2381 and the maximum
was 21,274. We performed a clustering based on a threshold of 97% similarity and assigned taxonomic
rank to generate a total of 3419 OTUs (Table 6). Underrepresented OTUs (n ≤ 2) were also removed,
being a final amount of 2130 OTUs in total.

Setting a level of similarity of 97% as the threshold and removing singletons and doubletons,
the average number of OTUs among the samples was 552.2 (±56.81) and 541.2 (±120.73) for
CDVBN10-inoculated and uninoculated treatments, respectively. The rarefaction curves for each
sample (Figure S1) together with the different alpha diversity indexes (Table 6) show that the most
common OTUs are present in the sequencing data. Both alpha (Table 6; Figure 4) and beta diversity
(Supplementary Table S1; Figure 5) analyses revealed that there are no statistically significant differences
among and within all samples from both treatments and that there are not associations between taxa
and treatments (Supplementary Table S2).
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Table 6. Number of sequences, OTUs and alpha diversity indexes of bacterial communities present
in the 8 samples, 4 from uninoculated and 4 from CDVBN10-inoculated treatments. No significative
differences were found (p > 0.05).

Samples Raw
Reads

Reads after
Processing *

Observed
OTUs

PD whole
Tree Chao-1 Shannon Simpson Good´s

Coverage

CDVBN10 A1 40297 15884 540 69.68 2465.58 5.56 0.75 0.95

A2 49926 15190 714 71.17 2416.30 8.35 0.97 0.96

A3 50086 7353 537 44.89 1369.97 7.46 0.97 0.95

A4 30213 14870 373 53.98 2083.64 3.95 0.61 0.96

Uninoculated B1 47285 2381 532 31.42 782.39 7.51 0.97 0.90

B2 61430 4491 525 35.55 1041.56 7.86 0.99 0.93

B3 44494 14480 501 64.73 2201.01 5.51 0.77 0.95

B4 52639 21274 648 81.05 2083.64 7.48 0.94 0.96

Total 376370 96105

* after filtering (< 800 nt > 1300 nt) and chimera removal.
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Figure 4. Comparison of alpha diversity between sampling sites; (A) boxplots represent Chao-1 index;
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genus Pseudomonas, which is supposed to be enriched in the CDVBN10-inoculated treatment, showed 
the same relative abundance (0.7%) in both treatments (Figure 6E).  

Figure 5. Comparison of beta diversity between sampling sites; (A) boxplots represent the unweighted
Unifrac distances; (B) the weighted Unifrac distances. No significant differences were found among all
the samples.

Eleven phyla were identified, with the phylum Proteobacteria, with four of the classes present
(Alpha-, Beta-, Gamma- and Deltaproteobacteria), being the phylum with the highest relative abundance
(27.8% in uninoculated treatment and 37.1% in CDVBN10-inoculated). The phyla Bacteroidetes (18.0%
and 19.0%) and Verrucomicrobia (5.6% and 4.6%) were the second and the third in relative abundance,
respectively (Figure 6A). There are more unassigned sequences in the uninoculated (42.6%) than
in the CDVBN10-inoculated (34.7%) treatment. The class Betaproteobacteria is the most abundant
within both treatments (18.9% and 20.9%), followed by the classes Flavobacteria (9.9% and 11.5%)
and Gammaproteobacteria (4.2% and 5.6%) (Figure 6B). The orders Burkholderiales (15.6% and
18.5%), families Commamonadecae (8.8% and 10.6%) and Oxalobacteraceae (6.8% and 7.8%), genera
Polaromonas (2.1% and 2.6%) and Janthinobacterium (2.9% and 3.4%); and Flavobacteriales (9.9% and
11.5%), the family Flavobacteriaceae (9.6% and 11.2%), and the genus Flavobacterium (9.6% and 11.2%)
are those with the highest relative abundance in both treatments (Figure 6C–E). Other important taxa,
such as the order Rhizobiales (2.1%) or the family Pseudomonadaceae (0.7%), showed similar relative
abundances in both treatments. Indeed, the genus Pseudomonas, which is supposed to be enriched in
the CDVBN10-inoculated treatment, showed the same relative abundance (0.7%) in both treatments
(Figure 6E).
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and Flavobacterium had already been identified as rapeseed endophytes [19,53–59], while 
Micromonospora, Massilia, Bosea, Shinella and Agromyces had been found in soil or rhizosphere 
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(C) order, (D) family and (E) genus. Taxa with relative abundances higher than 0.1% are represented in
the charts.

4. Discussion

The results of the present study show a broad biodiversity of bacterial endophytic strains
of B. napus roots in two soils from Northwest Spain: the 879F-RAPD fingerprinting, which had
been proven to be a useful technique to generate different profiles at the intraspecific level in both
Gram-positive and negative bacteria [24,26,52], showed the presence of several different profiles
among the isolated strains, and the 16S rRNA sequence analysis showed a wide diversity of bacterial
species and genera. The dominant genus was Pseudomonas, followed by Pseudoarthrobacter and Bacillus.
The genera Pseudomonas and Bacillus appeared in samples from both localities, while all the other
genera were location-specific. Strains from the genera Pseudomonas, Bacillus, Rhizobium, Staphylococcus,
Acidovorax, Micrococcus, Arthrobacter, Variovorax, Microbacterium, Sphingomonas, Acinetobacter, Devosia and
Flavobacterium had already been identified as rapeseed endophytes [19,53–59], while Micromonospora,
Massilia, Bosea, Shinella and Agromyces had been found in soil or rhizosphere associated to B. napus
roots [57–61]. However, to the best of our knowledge, this is the first report of the association of
bacteria from genera Neorhizobium, Microvirga, Herbaspirillum, Dermacoccus, Nocardioides, Isoptericola,
Pseudoarthrobacter, Clavibacter and Shigella to B. napus plants, although genera such as Neorhizobium,



Agronomy 2020, 10, 1788 29 of 36

Microvirga and Herbaspirillum are well-known PGP bacteria associated to different plants [62–64].
Considering that the plant endosphere is a much more restricted niche than the rhizosphere, these
results show a great biodiversity within the isolated strains, probably due to the use of different
isolation media.

Regarding the in vitro PGP potential, P is an essential plant nutrient and P deficiency is one of
the most important limitations to plant development and crop production, it being estimated that
more than 5 billion hectares of land are deficient in P [65]. On the other hand, iron (Fe) is essential
for plants, forming part of chlorophyll. Siderophores are molecules that bacteria secrete to solubilize
iron, forming a complex ferri-siderophore that can move by diffusion and be returned to the cell or
captured by plants [66]. Finally, the production of polysaccharides is an advantage for the strain in
order to colonize the plant roots. Amongst those polysaccharides, cellulose is involved in bacterial
root colonization and biofilm production—preliminary steps prior to plant growth promotion—and
thus, cellulose biosynthesis is important for biofertilizers efficiency [67]. Because of all the mentioned
advantages of these PGP bacterial traits, the positive results found for our bacterial isolates suggest the
presence of an advantageous endophytic microbiota in rapeseed roots. All isolates except Nocardioides
cavernae CDVBN101, Micromonospora coxensis CDVBN102 and Bosea lathyri PDABN26 showed positive
results for at least one of the in vitro assayed PGP traits. The best bacteria belonged to the species
Pseudomonas thivervalensis, P. poae, P. baetica, P. brassicacearum, Bacillus aryabhattai and Bacillus simplex.
Strains belonging to these species have been previously described as PGP of different plants [68–75].

Thus, we tested the capability of representative bacterial strains from those species to promote
rapeseed seedling development. The results from these assays suggest that the strains CDVBN10
and CDVBN20, both belonging to the genus Pseudomonas, were the best rapeseed PGPs. The genome
analysis of strains CDVBN10 and CDVBN20 showed an interesting genetic PGP potential, as both strains
showed positive results in all the PGP traits tested (excepting growth in N-free media). According to
the results obtained in the in vitro tests performed in this study and the analyses of other genomes of
Pseudomonas strains [37,76–78], we found a great number of genes linked to Fe uptake, metabolism
and efflux systems. In addition, in consonance with the in vitro tests and the results found for other
Pseudomonas strains [79], both genomes contain gene sequences encoding enzymes that are involved
in the solubilization P and K as well as the transport of these elements [20,24,50]. In addition, both
bacterial genomes contain genes related to IAA biosynthesis. The lack of detection of a complete IAA
biosynthetic pathway may be due to the biases of annotating draft genomes. On the other hand, as
with other Pseudomonas strains [80], these two bacterial genomes encode the enzyme ACC deaminase;
the synthesis of this enzyme would probably confer the plant a better resistance to abiotic stress
conditions [81]. The synergy between both IAA synthesis and ACC deaminase activity could lead to a
better performance of this plant–bacteria symbiosis [82]. Both bacteria also contain genes related to
the biosynthesis of polysaccharides such as a cyclic β-1,2-glucan synthetase [83] in both genomes and
exo genes [84], only in the strain CDVBN10 and genes encoding glycosyl transferases and glycosyl
hydrolases, enzymes involved in polysaccharide biosynthesis and biodegradation [85]; polysaccharides
have been proved to play a role in biofilm formation and the colonization of root surfaces [35,86,87].
Both genomes also have genes encoding transcriptional factors from AraC family, which are known
as regulators of many processes including the ones involved in the interchange of signals among
bacteria [88] and have been revealed as relevant for rhizosphere competition in rhizobia [89].

Strain CDVBN20 belongs to the species Pseudomonas orientalis, a bacterium not frequently
associated with plant microbiomes, this being, to the best of our knowledge, the first time it has been
described as a bacterial species associates to B. napus. However, the strain CDVBN10 belongs to the
species Pseudomonas brassicacearum, which was originally described as a bacterial colonizer of B. napus
rhizosphere [90]. Moreover, different strains of this species have been isolated as root endophytes from
different plants, such as Salvia miltiorrhiza Bunge. [69], Artemisia sp. [91], Lavandula dentata L. [92] and
nodules of the legume Sphaerophysa salsula (Pall.) DC. [93]. Some studies also reported how this species
promotes the growth of Pisum sativum L. [94], Solanum nigrum L. [95] and Medicago lupulina L. [96] plants.
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Moreover, the genome sequence analyses of other bacterial strains belonging to this species seem to
indicate that this bacterium is a good plant growth promoter and a potential biocontrol agent [97,98].
Considering the results of this study and previous references of the species, we conclude that the strain
P. brassicacearum CDVBN10 has a good potential as rapeseed biofertilizer and we decided to test its
performance under field conditions. The results of our trial, performed with no addition of chemical
fertilizers, show a significant increase not only in total plant biomass, but also in seed yields compared
to the non-inoculated control plants, confirming that this bacterium has an interesting potential to be
employed as a biofertilizer for Brassica napus crops, as it has been already for other Pseudomonas species
inoculated in field trials [99–101], this being, to the best of our knowledge, the first report of a PGP
bacterium with potential to specifically promote rapeseed/canola crops which showed an important
yield increase in field trials

Interestingly, despite the significant differences in plant development and yields, the analysis
of the biodiversity based on amplicon sequencing showed that there are no significant differences
in the root bacterial communities of plants inoculated with the strain Pseudomonas brassicacerarum
CDVBN10 nor in the associated functions of this community. In this sense, our results agree with those
of Qiao et al. [102], which showed that the inoculation of a PGPB Bacillus strain does not alter the root
bacterial microbiome on tomato plants. However, this effect might be strain-specific or context-specific,
as suggested by Gadhave et al. [103]; these authors performed several inoculations with different
PGPB strains belonging to the genus Bacillus and found that there is an infraspecific variation and
competition issues within sprouting broccoli roots. The modulation of root microbiomes by addition
of biofertilizers based on beneficial strains and other factors is not well-understood and further studies
must be performed to elucidate these effects [104].

According to ecological theories [13,105], most bacteria living as root endophytes probably play
important roles for the plant development and survival. Thus, in our opinion, the results obtained
in this study are very positive: rapeseed plants from the plots inoculated with the strain CDVBN10
showed a clear benefit from the inoculation and their endophytic root microbiome was not altered by the
inoculation, so there was not competition of potentially benefiting members of the plant microbiome.

There is an unexpected result in the PacBio data; we were not able to detect any OTU belonging to
the phylum Firmicutes. This is a rare event, taking into account that members of this phylum were
found within the root bacterial microbiome of Brassica plants [106]. However, Lay et al. [61] did not
find any Firmicutes in canola roots. Some of the amplicon sequences appeared as unclassified at
different taxonomic levels, which might be the reason for lacking some taxa in the amplicon sequencing
analyses. These results highlight the importance of combining culturomics and metagenomics for
biodiversity studies, because whereas isolated strains can be better identified, amplicon sequences
allow us to decipher those members of the community which cannot grow in synthetic conditions or
are inhibited by other members of the community in the selected growth conditions of the study.

As the bacterial communities associated to plants, both rhizospheric and endophytic, are strongly
influenced by many factors [107–109], further studies on different soils and climate conditions should
be performed in order to demonstrate the success of this strain as a biofertilizer for rapeseed crops and
the lack of alteration of the root microbiome after its addition; furthermore, the best formulation of the
strain to be commercialized as a biofertilizer should also be evaluated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/11/1788/s1,
Data sheet; Supplementary Table S1: Beta diversity results. Statistics corresponding to distance boxplots of
Figure 5 (from the main text) according to unweighted and weighted Unifrac distances. Supplementary Table S2:
Statistic significance of the relatedness of each OTUs with each treatment group (control samples or CDVBN10
inoculated samples). Supplementary Figure S1: Rarefaction curve for observed bacterial OTUs clustering at 97%
16S rRNA sequence similarity. Curves represent number of observed OTUs from the uninoculated (A1-4) and
CDVBN10 inoculated (B1-4) treatments. Supplementary Figure S2: Neighbour-joining phylogenetic tree based on
the 16S rRNA gene sequences of strain P. brassicacearum CDVBN10 and its closest related type strains. Scale bar =
5 nucleotide (nt) substitutions per 1000 nt.
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