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Abstract: International genebanks have a collection of over 760 K conserved accessions of various
plants, most of these accessions are within the multi-lateral system governed by the International
Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA). However, in spite of the
success in collection and conservation, only a small portion of the genetic diversity has been used in
crop breeding programs. As climate change-induced new or enhanced constraints seriously hamper
crop productions, researchers and breeders should be able to swiftly choose an appropriate set of
genetic resources from the genebank and use them for improving crop varieties. Here, we present
some advanced technologies that can effectively promote the use of diverse rice accessions held
at national/international genebanks. High throughput phenotyping using multispectral imaging
systems and unmanned aerial vehicles (UAV) can quickly screen large numbers of accessions for
various useful traits. Such data, when combined with that from the digital rice genebank consisting of
genome sequencing data, will significantly increase the efficiency in breeding efforts. Recent genome
sequencing data of the rice wild species will also add to the resources available for pre-breeding
efforts such as the introgression of useful genes into modern rice varieties. We expect that these
advanced technologies and strategies developed through the global rice research programs will be
applicable for many closely related species as well.

Keywords: plant genetic resources; rice; utilization; climate change; strategic research;
digital genebank; breeding

1. Introduction

Plant genetic resources (PGR) held in national/international genebanks are a hope for the future
of global food security. Uncharacterized accessions in a diverse germplasm collection may be the
source of traits sought by researchers and breeders to swiftly respond to new types or enhanced
levels of biotic and/or abiotic stresses induced by climate change. At this time, the International
Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) provides the mechanism
by which international genebanks of the Consultative Group on International Agricultural Research
(CGIAR), a consortium of international agricultural research centers, share the extensive germplasm
collection and effective ex situ conservation for 760,467 accessions (as of 2019) for a range of plants [1]
amassed over the years. These fed the crop breeding programs that led the green revolution in many
developing countries. For example, the International Rice Genebank (IRG) of the International Rice
Research Institute (IRRI) conserves the World Rice Collection composed of 140 K diverse rice accessions,
breeding material, and elite varieties. Over 120 countries donated these accessions to be conserved and
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held for humanity. By harnessing such genetic diversity, IRRI and partner countries have developed
outstanding rice varieties starting with IR8, a high-yielding semi-dwarf variety called “miracle rice”
that avoided potential famine situations [2].

In spite of past successes, the need for research on characterizing and utilizing genetic resources
remains high due to serious challenges of climate change and not least due to the predicted
demographic, land-use, and socio-economic factors [3]. Rice adaptation to climate change and
other imperatives will need to keep pace with the rate of change. However, current breeding cycles
cannot respond to novel constraints on crop production that assume stability of other critical parameters.
For example, there remains a grave paradox of elevated CO2 increasing the efficiency of photosynthesis,
potentially leading to increased yield, but negatively affecting the nutritional quality of the staple
grains, tubers, and also vegetables [4]. Moreover, the concomitant high temperature is expected to
lead to reduced yield by unfavorable effects on pollen development and sink starch metabolism [5].
High temperature also accelerates the growth rate of crop damaging insect pests such as yellow stem
borer [6]. Increased emergence of such pest challenges, quickly becoming critical, can happen in much
shorter timelines than the variety breeding cycles. However, Aggarwal et al. (2019) indicate that
for some crops, such as maize and wheat, changing crop management approaches may be sufficient
to correct for climate change induced yield losses [7]. Similarly, the altered frequencies of weather
events, especially typhoons, at late seed maturity stage can cause conditions that are favorable for
damage to the rice crop through pre-harvest sprouting (PHS) [8,9]. Muehe et al. [10] reported that
during flooding, the availability of soil arsenic to plants increases, causing 39% reduction in rice grain
yield. The frequency and severity of such floods has become increasingly unpredictable due to climate
change. Such challenges demand scientific innovations promoting fast, accurate, and cost-efficient
breeding pipelines to generate resilient varieties as illustrated by Atlin et al. [11].

Rice is a staple crop for more than half of the world population, and it is also rich in genetic
resources [12,13]. Furthermore, rice has relatively small genome size and close relationship to other
major grain crops. These characteristics led to its genome being the first to be sequenced crop
genome [14]. Therefore, the principles developed through advanced rice research could be a good
model for other crop species, particularly inbred species that have ex situ collections [12]. This opinion
paper aims to a) discuss advanced strategic research bridging the gap between genebank collections
and breeding products, and b) recommend the future direction and practical ways to promote the use
of rice genetic resources for global rice breeding programs.

2. Expansion of Ex Situ Conservation Research

Genetic erosion, the loss of alleles or genes from the genetic diversity, may occur when genetic
drift results in high frequencies of non-adaptive gene variants and also under natural selection in
conditions with significant changes in plant growth environment. Modern breeding programs highly
focused on a few important traits of the day can also contribute to genetic erosion [15]. Genebanks hold
ex situ collections to reduce such genetic erosion. Conservation research is a key activity to predict,
monitor, and manage seed longevity of the ex situ collections. Conservation research can also benefit
farmers in terms of seed security. In most cases in developing countries, farmer’s seed lots are stored at
ambient conditions, which leave seed viability and vigor vulnerable to the increased frequency of hot
and humid weather under climate change [16]. Lower seed vigor can result in poor crop establishment
in direct-seeding cultivation, and even more severely under unfavorable crop environments such as
drought [17,18]. While determining seed longevity of genebank accessions, donor germplasm having
high seed longevity could be selected and used for the breeding work enhancing seed longevity of
popular crop varieties [19]. Sasaki et al. [20] reported that qLG-9, the quantitative trait locus (QTL)
conferring pronounced seed longevity, was successfully introgressed into Nipponbare, one of the most
popular temperate japonica rice varieties in Japan. Further efforts to enhance seed longevity of other
elite rice varieties are needed in the near future [16].
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Another aspect of expanding conservation research for breeding applications is that seed dormancy
is a critical trait for both management of crop wild relatives held at genebank and development of
climate-resilient crop varieties. Genebank managers often experience difficulties in seed germination
of wild relatives having a strong dormancy behavior as part of their strategy for survival in nature [21].
To ensure successful regeneration of crop wild relatives, intensive biological research is required
for better understanding of seed dormancy mechanisms as well as development of species-specific
dormancy breaking protocols [22,23]. In contrast, modern crop varieties tend to have a weak dormancy
caused by the domestication of wild ancestors [24]. Under climate change impacts, reduced dormancy
can result in serious PHS damage on economically important crops such as wheat and rice [8,25].
Upstream research addressing physiological and genetic aspects of seed dormancy could be a part of
solution for better management of wild relatives as well as improving modern crop varieties.

3. Pre-Screening for Accelerating PGR Research

The genetic diversity conserved in genebanks contains useful alleles that could confer desirable
traits, including those that would enable adaptation to rapid climate change as well as to paradigm shifts
in the value in crops, e.g., consumption for health promoting properties [26,27]. Genebanks are in a good
position to observe various plant/seed phenotypes during routine operations such as regeneration of
seed or monitoring seed viability. Some traits underlying these phenotypes are unique and potentially
important for the future breeding perspectives. For example, in the crop–livestock research area,
high plant biomass is a desirable trait to improve the productivity of cereal crops for forage use [28,29].
In the case of rice, the National Institute of Crop Science (NICS) of South Korea introduced IRRI
genebank germplasm and developed high biomass yielding varieties with multiple disease and insect
resistances [30]. For genebank managers, it is not difficult to find the accessions having an outstanding
biomass during the regeneration and field-characterization of a diverse crop panel. The stay-green (SG)
is another promising trait that is easily scored in the regeneration field. SG maintains a green leaf color
with high photosynthesis capacity until late grain-filling stage, especially under drought and heat
stress conditions and secures grain yield [31]. Therefore, this trait is potentially important in future
breeding programs to develop climate-smart crop varieties [32]. Although SG is most informative in
such stress situations, we have observed that ambient temperature at late vegetative and seed maturity
stages rose during the last few years and there were large variations in SG, which allowed us to select a
few accessions having high SG.

Multispectral imaging, through the use of an instrument such as the Videometer, is a fast and
robust approach helpful for managing genebank accessions [33,34]. This non-destructive technique
can measure various seed phenotypes, e.g., seed size, shape, and color within a few seconds (Figure 1a).
It can also perform seed purity tests to compare regenerated seeds with the original seeds [33].
Sharing basic information of seed phenotypes through the genebank website would be helpful for
seed users to choose the right accessions based on their purposes. Multispectral imaging, such as that
obtained by the Videometer, is very useful in healthier crops research programs too. Red, purple or any
other colored pericarps in seed contain health promoting phenolic compounds [35,36]. Comparing with
conventional biochemical assays that require expensive operational and labor costs as well as destruction
of many seeds, multispectral imaging analysis can provide reliable data of color-based traits with
minimal cost [37]. Some advanced institutes are equipped with automated-phenotyping systems to
assess key agronomic traits such as seedling vigor in controlled environments [38]. CGIAR-genebanks
also use automation systems such as Germination Scanalyzer to improve the accuracy and efficiency
of seed viability monitoring for seed lots newly harvested or stored in cold rooms (Figure 1b).
While counting total number of germinated seeds as well as measuring the uniformity of germination
(indicating seed vigor), the image analysis software can measure additional seed/seedling traits,
e.g., primary root length and area of secondary/tertiary roots, which are very useful information for
seed users. Under drought conditions, tolerant plants tend to produce deep roots at early seedling
stage, which increases the efficiency of water and nutrient uptake [39]. Hence, genebank germplasm
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showing a long primary root during the germination test have merit for further drought screening.
On the other hand, in phosphorus- or zinc-deficient soils, rapid development of crown roots and
shallow rooting concentrated in nutrient-rich regions are key tolerant mechanisms [40,41]. Therefore,
genebank accessions having high secondary/tertiary root density could be used for research on nutrient
deficiency tolerance in crops.

Unmanned aerial vehicle (UAV)-based high throughput phenotyping is the most promising way
to screen a large number of accessions, efficiently and effectively (Figure 1c). A single operator with a
UAV and aerial image analysis software can cover the whole field site. In 10 min for UAV operation
per hectare plus 1 h for image analysis, characterization of various agronomic traits such as leaf
color, plant height, biomass, and flowering time can be obtained [42,43]. This new technology can
significantly reduce labor and costs as compared with manual phenotyping methods requiring many
genebank operators’ time and effort. In addition to plant characterization, the aerial imagery provides
useful information for field-risk management. For example, pale leaf color (indicating nitrogen
deficiency), leaf rolling (as drought responses), weed growth, disease infection, and lodging [44,45]
can be monitored and the necessary actions undertaken. Furthermore, high performance cameras
capturing multispectral and thermal imagery can determine the stress tolerance-indicators under high
temperature, drought, or salinity conditions (Figure 1c). As part of the capacity building, IRRI has
developed a manual on UAV-phenotyping and has also held training courses for partner countries.
Yang et al. [46] provide a comprehensive review of high throughput phenomics from controlled
environment to field-based systems; all of these approaches will benefit the characterization of diverse
genetic resources.

The above-mentioned high throughput methods are maturing technologies and promise to greatly
extend the scope of phenotyping of genebank germplasm. However, data analysis for image and
other data obtained from high-throughput phenotyping requires high-performance computing and/or
cloud-based solutions. Application of novel machine learning (ML) and AI based approaches will
facilitate extraction of features and parameters that can serve as new traits or proxies for measurements
classically obtained by hand. Combined with increase in genomic data, as we will argue below,
this requirement necessitates a dedicated module for data storage towards a modern, digital genebank.
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Figure 1. Automated-phenotyping system for screening the rice collection held at the International 
Rice Research Institute (IRRI) genebank. (a) Videometer (Videometer A/S, Herlev, Denmark) for 
performing multispectral imaging analysis of seed samples. In the modified image by segmentations, 
red and yellow parts are the areas of interest, i.e., measuring seed size, shape, and color, whereas blue 
regions, such as awn and glume, are less important depending on the objective; (b) Germination 
Scanalyzer (LemnaTec GmbH, Aachen, Germany), the automated-phenotyping system for seed 
viability monitoring. The system is housed in a semi-climate controlled room that can accommodate 
720 seed-trays at the same time and analyze various traits such as number of germinated seeds, 
uniformity of germination, primary root length, and area of secondary/tertiary roots; (c) Unmanned 
aerial vehicle (UAV)-thermal imagery for drought tolerance screening in the rice paddy. Accessions 
are planted in the same positions in both sides of the field. NDVI: Normalized difference vegetation 
index. The index scale at 0.90 and 0.30 indicate completely healthy and unhealthy plants, respectively. 

  

Figure 1. Automated-phenotyping system for screening the rice collection held at the International Rice
Research Institute (IRRI) genebank. (a) Videometer (Videometer A/S, Herlev, Denmark) for performing
multispectral imaging analysis of seed samples. In the modified image by segmentations, red and
yellow parts are the areas of interest, i.e., measuring seed size, shape, and color, whereas blue regions,
such as awn and glume, are less important depending on the objective; (b) Germination Scanalyzer
(LemnaTec GmbH, Aachen, Germany), the automated-phenotyping system for seed viability monitoring.
The system is housed in a semi-climate controlled room that can accommodate 720 seed-trays at the
same time and analyze various traits such as number of germinated seeds, uniformity of germination,
primary root length, and area of secondary/tertiary roots; (c) Unmanned aerial vehicle (UAV)-thermal
imagery for drought tolerance screening in the rice paddy. Accessions are planted in the same positions
in both sides of the field. NDVI: Normalized difference vegetation index. The index scale at 0.90 and
0.30 indicate completely healthy and unhealthy plants, respectively.

4. Digital Rice Genebank for Game-Changing Research

Genebanks have an innate obligation to make the germplasm collection and the accompanying
identification information available for distribution to users. Strategies promoting the use of genebank
accessions may compensate the high cost of germplasm collection and conservation. Although the
genetic diversity conserved at genebanks contains most of the resources to address current and
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potentially the future-constraints in crop production, it requires researchers extensive screening of
the germplasm collection for various traits in multiple trials, which is inefficient and simply not
possible. One promising approach to reduce the time and labor for choosing the most appropriate set of
accessions for specific research goals is to provide the seed users with the genotype/sequencing data [47].
Based on allelic information in the specific region of interest, e.g., the Sub1 locus on chromosome
9 in rice conferring submergence tolerance [48], the users can narrow the list of germplasm they
require for their research, thus significantly reducing the costs for evaluation and accelerating the
discovery process.

Advanced genotyping methods such as next generation sequencing (NGS) have evolved through
human genome projects [49,50] and become applicable for crop genetics research. Among crop
species, rice research benefited greatly from such sequencing technologies and took the lead in crop
informatics with the support of international rice community including the CGIAR system and donor
countries [12]. McCouch et al. [51] provided the high-density rice array (HDRA) comprised of 700,000
single-nucleotide polymorphisms (SNPs) from the 1593 rice accessions held at genebanks. This first data
set was highly efficient to strengthen the genetic research for genome-wide association studies (GWAS),
enabling researchers to quickly discover novel loci/genes associated with desired traits such as grain
size, cooking quality, root cone angle, salinity, and Zn-deficiency tolerances [12,41,52–54]. Once the
identified loci are validated, researchers can easily choose the right genebank materials based on the
presence of particular genetic markers associated with target traits. With the financial support from
the Bill and Melinda Gates Foundation and the Chinese Ministry of Science and Technology, the 3000
Rice Genomes Project sequenced 3010 diverse rice accessions representing 15 subgroups derived from
indica, aus, and japonica major groups and discovered over 18 million SNPs [55,56]. All genotype data
with supportive phenotype data generated through HDRA and 3K projects is publicly available so that
seed users worldwide can request germplasm from the IRG, based on sequencing information [57,58].
As of 31 May 2020, 768 studies cited either SNP-Seek or HDRA-related work, according to Scopus [59].
This work was largely possible due to availability of multiple software tools developed within global
bioinformatics community. Variant discovery is enabled by advances in algorithms and their efficient
implementations in software like BWA [60], SAMtools [61], Picard toolkit [62], Genome Analysis
Toolkit [63,64], and others. Continued support of tool development and adjustment is needed for
further developments in sequence variation discovery.

In spite of these successful achievements, it has become increasingly clear that for NGS data
of large populations, the standard variant discovery approaches cannot capture all useful variation
when only one reference genome is used. Inevitably, large and potentially useful population- and
individual-specific genomic regions are left unexplored if one uses only one reference genome [56,65–70].
When using a reference genome specific to an ecotype, a more complete picture of variation is captured,
including the variants missing in a single reference genome. For rice, reference genomes from three
popular varieties: Minghui 63, Zhenshan 97B, and Nipponbare have been obtained over the past few
years, and now there are reference genomes representative for each of the 15 subpopulations [56]
discovered through the 3K dataset. Genomic variation discovered from these reference genomes is
expected to be more complete and more accurate since a closer reference genome has more similar
sequence content in terms of population-specific SNPs, insertions/deletions as well as duplications and
other copy-number variation (Figure 2a). It also becomes increasingly clear from pangenome studies
that a linear reference genome is not a good enough data structure for representing the population
data [71]. To be able to accurately call variants and represent in one dataset the variation coming from
diverged lineages one needs a graph structure (Figure 2b). This is an active area of research, which has
been already used in cattle and soybean [72,73]. This is also the topic of a new effort, PanOryza, led by
Prof. Andy Jones, University of Liverpool, with collaborators from the European Bioinformatics
Institute (EMBL-EBI), Oregon State University, University of Arizona, and IRRI.
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Figure 2. New strategy to enhance the genomic/genetic research using rice genetic resources.
(a) Population specific references are necessary for better read mapping/variant discovery: without a
reference that is from sample’s population, the reads near indels are unmapped or poorly mapped;
(b) A “variation graph” (VG or “pangenome graph”) data structure represents all types of variants and
allows for more accurate read mapping; (c) a schematic of digital rice genebank providing in-depth
sequencing data for over 10,000 diverse rice accessions stored at the International Rice Genebank (IRG)
and associated data, databases, tools, and analyses. AI/ML: artificial intelligence/machine learning,
HTP: high throughput, MET: multi-environment testing, GWAS: genome-wide association study.
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These progresses made in recent years brought on greater confidence to use genotype data in
improving elite rice varieties. A digital rice genebank through collaboration between IRRI and partners
in U.S., Saudi Arabia, and China aims to generate in-depth sequence data (at more than double the
coverage depth obtained in the 3K dataset) using an additional set of over 10,000 rice accessions
(Figure 2c) [74]. This expansion of sequencing analysis to a larger germplasm set possibly allows us to
discover more subpopulations existing in nature, which leads to generate more reference genomes for
future genetic studies. Furthermore, panOryza analysis may produce more accurate gene models that
can replace simple gene models currently available in the rice annotation project databases. The greater
depth and coverage of diverse germplasm in a digital genebank will enable the discovery of rare allelic
variants that may boost the accuracy and efficiency in rice breeding to enhance desired traits in the near
future. Having high coverage data on a significant fraction of the genebank will allow the remaining
accessions to be sequenced at lower depths followed by imputation within the subpopulations of the
genetic diversity to predict missing allelic states.

As of now, reference genomes for all AA genome species (Oryza sativa, O. rufipogon, O. nivara,
O. meridionalis, O. glaberrrima, O. barthii, O. longistaminata, O. glumaepatula) and many other genome
types are available [75]. Furthermore, work is under way to improve the quality and complete reference
genomes for the remaining species. Population re-sequencing data (like 3K but smaller) are available
for Oryza glaberrima and O. rufipogon (~400 accessions), and these resources will continue to grow.
Comparative analyses across the genomic diversity will facilitate understanding of the evolution
of the genus and its adaptation across different ecologies and under diverse conditions. Access to
the high-quality reference builds across all of the wild Oryza will enable deeper exploration of these
resources and discovery of novel genes and alleles that have been lost in domesticated rice and enable
their use for improvement of cultivated rice.

A key requirement for success of large-scale sequencing projects is building an efficient data
storage and processing infrastructure. Storing large sequence data in a traditional relational database
management system (RDBMS) leads to inefficiency in data retrieval, as there is no natural support for
fast regional and sample subset queries. Solutions to this can be multiple, from custom file formats
storing matrix-shaped sequence data, to specialized formats like HDF5 or NetCDF holding array-based
data, to advanced databases [76]. Currently, in rice we have the SNP-Seek database that uses a hybrid
data storage architecture (variation data in HDF5 files, and phenotype and metadata in relational
DB), with some forms of the data (raw BAM and VCF files) available pro bono through Amazon Web
Services platform [77]. In addition, recently Google has released variant analysis from 3K project in
public domain accessible through BigQuery database [78], allowing efficient access and advanced
querying for power users. Solutions like this are expected to be used either alongside digital genebanks
or as integral part of those, as the number of sequences increases, and may become indispensable for
species with large genome size. For image data and derived phenotype data, there does not seem to
be a standard solution yet, but examples tried in the community include CropSight [79], BreedBase,
IAP (Integrated Analysis Platform) [80], utilizing both relational databases (MariaDB in CropSight)
or NoSQL databases (such as MongoDB in IAP); see also PhenoImage [81]. Thus, we see a fully
digitized genebank as a system comprising several components or modules, centered around a data
storage and processing module, including phenotype data ingestion modules, and a rich web interface
allowing users to interact with the data and mine genotype-phenotype associations using either built-in
or external platform for statistical and ML-based analysis (Figure 2c).

5. Dissemination of Information for Better Use of Genetic Resources

As discussed above, the most critical requirement for the benefit-sharing of PGR is a user’s access to
information about the genetic resources held in the collections. To increase the accessibility, global crop
communities have developed several public databases providing passport, phenotypic, and genotypic
data of crop diversity stored at genebanks around the world. Genesys contains information on millions
of accessions located in over 450 institutes [82]. It provides a quick-search function that allows users
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to simultaneously see the information of hundreds of accessions with a single filter and then easily
request seeds through the system. To integrate and reuse all of agronomic, socioeconomic, and digital
data from the CGIAR system with partners, the BigData platform has been launched [83]. The Global
Agricultural Research Data Innovation & Acceleration Network (GARDIAN), the CGIAR flagship
data harvester provides a huge amount of information from more than 170,000 publications and
27,000 datasets [84]. To ensure the integrity and accessibility to various rice research data, IRRI has
implemented several Big Data activities. These include developing databases that tag datasets with
rice crop and other ontology descriptors, and AGROVOC and GACS (The Global Agricultural Concept
Scheme) terms. AGROVOC is a controlled vocabulary covering all areas of interest of the Food and
Agriculture Organization (FAO) of the United Nations while GACS (The Global Agricultural Concept
Scheme) provides a hub for concepts related to agriculture, in multiple languages, for use in linked
data. Other efforts are in place to create databases for UAV-based high throughput phenotypes and
GIS applications [58,83,85,86].

6. Conclusions

As the impact of climate change seriously threatens crop productions worldwide,
scientific innovations and advanced technologies promoting the use of PGR are in high demand.
Although the genetic diversity held at genebanks contains useful genes and alleles to potentially address
all kinds of constraints in crop production, it is difficult to select the most appropriate set of accessions
without sufficient information such as phenotypic and genotypic data. Hence, researchers and breeders
tend to use a small portion of the genetic diversity in their research programs, which indicates a big
gap between genebank collections and breeding products. High throughput phenotyping performed
during the routine operations of the genebanks can generate very useful information which helps
the seed users to save resources for germplasm screening and further discovery steps. Access to a
digital rice genebank, wherein all of the conserved accessions have genomic data, is now within reach,
although it requires major support and dedicated teams. However, there are major constraints to be
overcome, including the need for baseline, ground-truth phenotyping data to allow the prediction of
phenotype from genotype and the development of new and improved tools enabling these predictions,
such as those described by van Eeuwijk et al. [87]. Once in hand, these rich resources, when coupled
with detailed multi-omics-including genomics proteomics, and metabolomics-on selected materials,
will allow selection of genotypes and novel alleles and haplotypes for any trait. Exploration of these
resources is expected to accelerate the breeding process while enhancing the use of the rich conserved
diversity. The integrated databases launched by the CGIAR system provide comprehensive information
on PGR and represent a first step to accelerating the use of genebanks accessions.
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