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Abstract: Organic waste generation in developing countries is increasing and appropriate disposal
methods are needed. An open aerobic composting using 20 L bins was carried out using 6 composts
made using ratios of 3:1, 1:2 and 1:4 fruit and vegetable wastes (FVW):biodegradable municipal waste
(BMW), with and without addition of homemade indigenous microorganisms (IMO), for 30 days
to monitor compost quality. The nitrogen contents of the composts ranged from 1.52 to 2.76% N
equivalent to 76–138 kg N ha−1 at 5 t ha−1 compost application rates. Heavy metals measured
were below permissible levels of compost quality standards. Selected composts were incubated
for 60 days to study nitrogen mineralization dynamics when applied to an Oxisol at the rates of
0, 5 and 10 t ha−1. The results showed significant differences (p ≤ 0.05) in the amounts of NH4-N,
NO3-N and cumulative NH4-N + NO3-N released. Ammonium nitrogen released was higher on days
3, 21 and/or 40 for composts 3:1 − IMO at 10 t ha−1, 3:1 + IMO at 10 t ha−1 and 3:1 − IMO at 5 t ha−1.
Cumulative N (NH4 -N + NO3 -N) released over control were 77.98, 64.09 and 64.35% higher for
application of 3:1 + IMO, 1:2 − IMO and 1:2 + IMO, respectively, at an application rate of 10 t ha−1.
The increased nitrogen content, low heavy metals concentrations and the amount of mineralized N
from the composts exhibit potential for increased nutrient availability when applied to a soil.
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1. Introduction

Global solid waste generation is predicted to increase from about 3.5 million tons per day in
2010 to more than 6 million tons per day by 2025 [1]. Fruit and vegetable wastes are the plant-tissue
waste generated on farms, markets or homes and are highly putrescible. Municipal solid waste (MSW)
is the waste that emanates from homes and is majorly composed of organics. The processing and
consumption of fruits and vegetables accounts for almost 25–30% of wastes from their peels, seeds and
inedible parts and when such wastes are not properly disposed of, it causes serious environmental
hazards such as the emission of greenhouse gases as it decomposes [2,3]. Vegetables and fruit wastes
have a low C/N ratio of >27:1 [4] and thus, combining with biodegradable municipal waste (BMW)
would be a viable option for composting.

The surge in organic waste generation of biodegradable municipal waste (BMW) and fruit and
vegetable wastes (FVW) has made it imperative for governments and policy makers to seek viable
ways of disposing them safely without negative impacts on man and the environment. Indigenous
microorganisms (IMO) are a microbial inoculant produced at home and can be produced from kitchen,
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fruit or vegetable wastes all geared towards increasing speed of compost maturity or shortening the
duration of composting time [5].

Composting is an environmentally friendly process involving the destruction of pathogens and
the recycling of nutrients [6] to give a final stable product commonly used as a soil amendment.
Compost substrate composition and ratio are important to have for optimized composting conditions
that favor microbial activity. Studies have been made on co-composting municipal solid wastes and
fruit and vegetable wastes for proper disposal and utilization. Tratsch et al. [7] reported that FVW can
be used as source of nitrogen for plants when composted. Co-composting of municipal solid wastes
including gardening wastes and food market wastes produced a better-quality compost with suitable
agronomic properties for use as organic fertilizers and with no phytotoxic properties [8]. Co-composting
using vegetable wastes and paper in a ratio of 4:1 (C/N 22.9) yielded a better quality compost in
comparison to using vegetable wastes and carton in the ratio of 3:1 (C/N 31.8) [9], while composting
FVW with yard wastes in the ratio of 2.5:1 produced a better quality compost in comparison to
composting vegetable wastes or tree leaves and grass cuttings individually [10].

However, there is limited information on nitrogen transformation of tropical soils amended with
composts derived using FVW and BMW made using different formulation ratios. Composts derived
from organic wastes are important sources of plant nutrients [7]. Efficient mineralization of composts
in soils are usually carried out by soil microorganisms and the abundance of favorable materials causes
them to proliferate and increase in number to convert it to mineral nitrogen. During mineralization,
organic nitrogen is transformed to ammonium ion (NH4

+) by soil microbes and subsequently
to nitrate (NO3

−) by nitrification process [11]. The presence of urease in the soil allows for the
release of nitrogen from added organic matter (compost) for the proliferation of soil microbes [12].
Compost application to agricultural soils can increase plant biomass production, nutrient uptake and
soil enzymatic activities [12].

The objective of this study is aimed at understanding how co-composting FVW and BMW in
different ratios can increase the quality of the obtained compost and to elucidate the quality of the
compost obtained in a short-term incubation study on nitrogen dynamics in a tropical soil.

2. Materials and Methods

2.1. Co-Composting

In total, 6 composts were produced by co-composting FVW and BMW in different ratios (3:1, 1:2,
1:4) w/w on fresh weight basis with and without addition of indigenous microorganisms (IMO) using 20
L bins in an open composting. The composting was conducted for 30 days and the composts obtained
were analyzed for selected maturity and stability parameters. The FVW were chopped up into small
pieces of about less than 5 mm and laid out overnight to drain out the excess moisture. The biodegradable
municipal waste (BMW) consisted of yard wastes, rice and paper wastes only. The paper waste and
yard waste were shredded to sizes less than 5 cm in length for faster stabilization [13]. Biodegradable
municipal waste (BMW) had a moisture content of 36.74%, while the fruit and vegetable wastes had
a moisture content of 86.23%. Carbon, nitrogen and C/N ratio of FVW were 36.79, 1.16 and 31.72,
respectively, and carbon, nitrogen and C/N ratio for BMW were 39.54, 1.15 and 34.38, respectively.

A total of 3 compost compositions were made with and without the addition of an indigenous
microorganism (IMO) inoculant as the source of moisture were formulated. The IMO inoculant
was made using FVW in the ratio of 1:3:10 of brown sugar: FVW: dechlorinated water, which was
homogeneously mixed and kept in an air tight opaque container with daily opening to release
suppressed carbon dioxide. It was ready for use after about 3–5 days when the pH was about 3.5 and it
released a sweet-sour smell.

The composition of the wastes was based on the amount of FVW and BMW being generated at
the wet fruit market, Serdang, Malaysia. and the student’s residential flat, UPM. The results from a
prior preliminary study carried out at the wet fruit market Serdang, Malaysia, showed that 70% of
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FVW generated in the market were fruits with only 30% being vegetables by weight. At the students’
residential flat, UPM, the composition of the BMW stood at 30, 50 and 20%, respectively, for paper
waste, rice waste and yard wastes, respectively. Each of the composting ratios (3:1, 1:2 and 1:4)
were composted with and without the addition of an indigenous microorganism (IMO) inoculant as a
source of moisture (the BMW was simulated).

The physical and chemical properties of the composting materials were characterized before
the composting process and some compost parameters were also measured at the beginning and
the end of the composting. Compost pH and EC were measured using ratio 1:10 using a pH
meter (Model Metrohm 827, Riverview, FL, USA) and electrical conductivity meter (Mettler Toledo
SevenEasyTM Conductivity Meter S30, Hamilton, New Zealand). Dry ashing was employed for
digestion of samples followed by using an atomic absorption spectrophotometer (AAS) for atomic
adsorption spectrometry (AAnalyst 400, PerkinElmer, Waltham, MA, USA) for the determination of
total P, K, Ca and Mg. Dry ashing (oxidation) is normally done by putting the sample in an open vessel
(crucible) and destroying the organic (combustible) parts in the sample by heat (thermal decomposition)
in a muffle furnace at a temperature of 550 ◦C and the ash is then dissolved in a suitable acid, as done
by Chefetz et al. [14]. In this method, 1 g of oven dried sample was weighed into a crucible and placed
in a muffle furnace to ash at an initial temperature of 300 ◦C for 1 h and then the temperature was
subsequently raised to 500 ◦C for 4 h. After cooling in a desiccator, the samples were then placed
in a fume cupboard, a few drops of distilled water were added to the ashed samples followed by
2 mL concentrated HCl and then it was allowed to evaporate to dryness on a hot plate. Subsequently,
10 mL of 20% HNO3 (200 mL HNO3 in 1 L distilled water) was added to the samples and were then
placed in a hot bath for 1 h. The samples were then filtered using a Whatman No 2 filter paper
into a 100 mL volumetric flask and made up to volume with distilled water. Compost carbon and
nitrogen contents were determined using a TruSpec CHNS analyzer (Leco, Saint Joseph, MI, USA).
Determination of some total micronutrients (Cu, Zn) and heavy metals (Cd, Ni, Cr, As) of composts
was carried out using the aqua-regia extraction method. In this method, 3:1 HCl: HNO3 was poured
into digestion flasks containing 0.5 g composts, it was then set upon in a digestion block for 5 h. At the
completion of digestion, it was poured into a flask and made up to 50 mL. It was then filtered, and the
samples were sent to the AAS for determination of the required elements.

2.2. Nitrogen Mineralization Study: Soil Incubation

The soil for nitrogen mineralization experiment was preincubated for 10 days with the addition of
water to field capacity (26.5%). Soil compost mixtures at the rate of 0, 5 and 10 t ha−1 compost (3:1 + IMO,
3:1 − IMO, 1:2 + IMO 1:2 − IMO) were applied in 200 g soil in plastic bottles (500 cm3) covered with
perforated (punctured) foil paper to incubate for 60 days at 27 ± 1 ◦C in the dark. The moisture content
of the soil was maintained at field capacity by regular weighing of the bottles and making up for
lost water with distilled water. The incubated soils were destructively sampled on the stipulated
days of 0, 3, 7, 14, 21, 28, 40, 50 and 60 days. Soil samples during each sampling were divided into
3 portions and were kept at 4 ◦C and 18 ◦C while the third portion was dried, and these samples
were used for respective measurements of the parameters during the course of the incubation period.
For each destructive sampling conducted, the soils were measured for pH, NH4-N and NO3-N.
Soil pH was measured using 1:2.5 soil:water ratio and the pH was subsequently measured using a pH
meter (Model Metrohm 827, Riverwiew, FL, USA). The ammonium and nitrate were determined by
steam distillation after extraction using 2M KCl and they were titrated using 0.01M HCl according
to Keeney [15].

2.3. Statistical Analyses

All data collected were analyzed using analysis of variance (ANOVA) using SAS version 9.4.
Tukey’s (honestly significant difference) post-hoc test was used to compare means when significant
differences were found. The main effects were considered significant at a probability level (p) of 0.05.
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Pearson’s correlation analysis was performed to test relationships between variables during the
nitrogen mineralization experiment.

3. Results and Discussion

3.1. Co-Composting Materials

A survey was carried out at the wet market Serdang, Selangor, Malaysia, to assess the types and
quantities of fruit and vegetable wastes being generated. The survey was done on three different days
and the average percentage of fruit and vegetable wastes (FVW) only being generated as waste was
calculated and analyzed individually. From the preliminary survey conducted, it was observed that
70% of wastes from the wet market consisted of fruits while 30% were vegetables. Table 1 shows the
composition of fruit and vegetable wastes and their physical and chemical properties. The moisture
content of these materials was greater than 70%. Standing water from the FVW was drained out
before composting and the moisture of the comixed compost materials were kept to less than 60%.
Maintaining the moisture content of the composting materials within 40–60% can significantly enhance
the composting process. The FVW can be classified as high N-containing materials, especially the leafy
vegetables such as spinach and mustard. The C/N ratio of vegetables was less than 20 but is higher for
fruits wastes, except for watermelon and sweet melon.

Table 1. Fruit and vegetable waste (FVW) used in co-composting.

Materials MC FW C (%) DW N (%) DW C/N DW P (%) DW K (%) DW Ca (%) DW Mg (%) DW

Spinach 89.26 29.82 4.73 6.31 0.22 4.06 1.95 0.24
Cabbage 87.93 35.56 2.88 12.36 0.17 2.73 0.73 0.18
Mustard 91.89 31.30 6.12 5.11 0.27 3.92 3.87 0.39
Carrot 89.93 34.99 1.91 18.35 0.13 2.59 0.23 0.10

Cucumber 96.71 34.55 2.00 16.46 0.07 2.31 0.28 0.12
Orange 81.27 35.25 0.67 53.01 0.03 0.98 0.63 0.13

Pineapple 84.31 36.37 0.78 46.75 0.06 2.35 1.57 0.26
Apple 84.60 35.91 0.39 90.92 0.07 1.80 0.22 0.07

Banana 70.99 34.33 0.56 60.97 0.05 2.10 0.05 0.24
Watermelon 89.72 30.14 2.67 11.31 0.20 3.83 0.45 0.33
Sweet melon 90.58 32.79 1.97 16.62 0.15 3.15 0.36 0.32

A survey was also carried out around the students’ residential flat of Universiti Putra Malaysia
and it was observed that 50% of biodegradable municipal wastes (BMW) from homes consisted
of food wastes, primarily rice with 20% yard waste and 30% paper waste. For the present study,
only waste paper, waste rice and plant leaves were taken as the components of BMW. Table 2 presents
the physico-chemical properties of the materials that were used as biodegradable municipal wastes
during the co-composting. The moisture contents of the biodegradable municipal wastes were quite
variable as shown in the table. The N content of BMW was low (<1.7%).

Table 2. Biodegradable municipal waste (BMW) used in co-composting.

Material MC (%) C (%) N (%) C/N P (%) K (%) Ca (%) Mg (%)

70.47 37.36 1.60 23.33 0.08 0.90 0.54 0.09
1.51 30.93 0.18 169.96 0.01 0.87 2.77 0.06
0.93 41.25 1.35 30.60 0.05 0.42 1.06 0.09

Table 3 presents the ratios and weights of individual materials used during the co-composting of
fruit and vegetable wastes and biodegradable municipal waste. The formulation ratios were obtained
from the preliminary assessment of the composition of FVW and BMW. The combined weight of each
composting substrate was made up to 10 kg.
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Table 3. Formulation ratios and weights (kg) of FVW and BMW used in composting.

Material Used 3:1 1:2 1:4

Fruit 70% 5.25 2.33 1.4
Vegetable 30% 2.25 1.00 0.6

Paper 30% 0.75 2.00 2
Rice 50% 1.25 3.33 4

Yard wastes 20% 0.5 1.33 1.6

Total (kg) 10 kg 10 kg 10 kg

3.2. Temperature Profile during Co-Composting for 30 Days

The trends for the compost temperature during the composting of FVW and BMW with and
without IMO using three different ratios is presented in Figure 1. At the start of composting, there was
an almost immediate increase in temperature of all the composts irrespective of the ratios used.
Normally in any composting system, 4 cycles of temperature (mesophilic, thermophilic, cooling and
maturation) exists [16]. An immediate increase in temperature of the composts to 42 ◦C in relation to
the ambient temperature of 33 ◦C was recorded on the first day of the composting and this indicated
the thermophilic stage [8], whereby, there is vigorous microbial activity due to the abundance of
easily degradable substrates in composts 3:1 − IMO, 1:2 − IMO, 1:4 − IMO, 3:1 + IMO, 1:2 + IMO
and 1:4 + IMO. Further increase in temperature was subsequently noticed on day 3 for all composts
in relation to ambient temperature which can be an indication of an increase in the activities of
microorganisms due to organic matter decomposition that results in energy release [17], whereby the
microorganisms feed on carbon to obtain energy and at the same time release water and carbon
dioxide, ammonia and organic acids [18]. The composts to which IMO were added, such as compost
1:4 + IMO and 1:2 + IMO, reached the higher temperatures probably because of the increased quantity
of microorganisms, therein due to the composting temperature profile which was attributed to
microbial activity as reported by [19]. Addition of composting enhancing additives such as indigenous
microorganisms readily affect the population of the microorganisms because of the additional nutrients
and carbon which can all affect compost temperature, moisture and/or aeration [20]. In the present
study, the highest temperatures of 45 ◦C, 48 ◦C, 47 ◦C, 44 ◦C, 48 ◦C and 50 ◦C were recorded on
individual different days for each compost between days 3 and day 7 for composts 3:1− IMO, 1:2 − IMO,
1:4 − IMO, 3:1 + IMO, 1:2 + IMO and 1:4 + IMO, respectively. The temperature did not go higher
than 50 ◦C due to the difficulty of conserving heat with the low volume composts. This can have a
positive effect as it has also been reported that temperatures above 60 ◦C have the potential to kill the
microorganisms needed for composting.

Sanitization of composts usually occurs at elevated temperatures during the composting process,
and it is expected that the high temperature will exterminate all possible pathogens and weeds,
thereby increasing the quality of composts. The fall in temperature of the composts was observed
by day 28 when all 6 compost temperatures were equal to the ambient temperature of 31 ◦C.
Compost temperature when compared to ambient temperature on day 30 had decreased to ambient
temperature in all composting bins, with a plausible reason being the exhaustion of labile nutrients [20].
The differences in temperature profile of the composting treatments in the present study shows that
the temperature trend in this study was similar to Rawoteea et al. [9] and Guo et al. [21], who reported
that the typical variations of compost temperature was observed in their experiment and that a long
thermophilic phase was not recorded probably due to the small size of reactor used.

The initial and final pH of the compost samples is presented in Figure 2. The pH of the composts
increased at the end of composting and it was statistically significant (p ≤ 0.05) between the different
composts. Initial pH of the 6 composts ranged between 5.74 and 6.11, which was slightly acidic,
however there was an increase in the pH of the composts at the end of composting and it ranged
between 7.06 and 8.23. An increase in pH was observed in all of the treatments and it can be ascribed
to the presence of microorganisms that were degrading the organic matter and subsequently releasing
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ammonia. In this experiment, the rise in pH of the composts at the end in relation to the initial pH
was observed at the end of the composting experiment and this can be attributed as reported by
Guo et al. [21] to the aerobic composting being carried out, which was responsible for the conversion
of proteins and amino acids to ammonia (mineralization). Generally, pH will go down to the acidic
range initially because of the formation of organic acids, and then, as the composting process proceeds,
the pH will rise as the acids produced are consumed with subsequent ammonium production. In this
study, the pH at the end of the composting ranged from 6.98 to 8.23 and composts + IMO recorded
significantly (p ≤ 0.05) lower pH of 8.07, 7.31 and 7.06 for composts 3:1, 1:2 and 1:4, respectively,
in comparison to composts − IMO that recorded 8.23, 7.46 and 6.98.
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Figure 1. Ambient and composts temperature during co-composting of FVW and BMW at different
ratios (3:1, 1:2 and 1:4). key T1: compost 3:1 − IMO, T2 compost 1:2 − IMO T3 compost 1:4 − IMO,
T4 3:1 + IMO T5 1:2 + IMO T6 1:4 + IMO, T7 Ambient temperature.

Initial and final C/N ratio of co-composting substrates is presented in Figure 3. The C/N ratio is
an indicator of the degree of decomposition of an organic matter, as carbon is lost as carbon dioxide.
For active composting, the recommendation is to use materials that can give an initial C/N ratio of
25–40:1. Composting of materials at a C/N ratio greater than 40 will slow down the composting
process, whereas a C/N ratio less than 25 can result in odor problems due to anaerobic conditions,
release of ammonia and accelerated decomposition. A high C/N ratio at the end of composting has
been attributed to lower amounts of FVW used in composting substrates reported by Tratsch et al. [7]
and at lowered rates of FVW application to composting substrates, a lower C/N ratio at the end of
composting should not be expected.

Awasthi et al. [22] reported that a low starting C/N ratio will imply excess nitrogen availability,
which will be lost as ammonia with attendant odor, and mostly high EC that causes compost to be unfit
for use on agricultural soils, while a higher initial C/N ratio implies less nitrogen for active composting
by microorganisms [23] which can be overcome by the addition of indigenous microorganisms and
shredding of primary substrates used in composting to smaller sizes. At the end of the composting
period in the present experiment, a C/N ratio of 13:1 was obtained in composts 3:1− IMO and 3:1 + IMO.
Composts 1:2 − IMO and 1:4 − IMO both recorded a C/N ratio of 25 while composts 1:2 + IMO and
1:4 + IMO obtained a C/N ratio of 26, respectively. Compost C/N ratio cannot be assumed to be the
ultimatum in deciding compost maturity. It is an important parameter, and if it can be reduced at the
end of composting to values less than or equal to 25, then it can be termed a matured compost [22,24,25].
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Some selected final compost quality parameters are presented in Table 4. Total nitrogen
contents of the 6 composts produced at the end of composting were significantly different (p ≤ 0.05).
Composts 3:1 + IMO and 3:1 – IMO had about the same amount of total N and were significantly higher
(p ≤ 0.05) than the other 4 composts. Compost 3:1 − IMO recorded the highest nitrogen content of
2.76% while the lowest nitrogen content at the end of composting was recorded by compost 1:2 + IMO
with 1.52% nitrogen. The phosphorus, potassium, calcium and magnesium contents of the 6 composts
were significantly different (p ≤ 0.05) and were equivalently higher in ratios that had higher FVW.
A plausible explanation can be because of the types of FVW used which had different quantities of
different fruits and vegetables e.g., spinach which has a very high potassium content, which may
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have likely been mineralized during the composting. In the present study, the 6 composts made
ranged in nutrient contents from 0.05 to 0.17%, 1.03 to 3.23%, 2.49 to 4.02%, 0.15 to 0.36%, 6.60 to
41.23 mg kg−1, and 29.2 to 93.6 mg kg−1 for phosphorus, potassium, calcium, magnesium, copper and
zinc, respectively, for composts 3:1 − IMO, 1:2 − IMO,1:4 − IMO, 3:1 + IMO, 1:2 + IMO and 1:4 + IMO.

Table 4. Selected final compost quality parameters.

TRT 3:1 − IMO 1:2 − IMO 1:4 − IMO 3:1 + IMO 1:2 + IMO 1:4 + IMO Standard Compost

N (%) 2.76 a 1.65 b 1.65 b 2.70 a 1.52 b 1.58 b 0.6
P (%) 0.17 a 0.05 b 0.05 b 0.18 a 0.06 b 0.05 b 0.22%
K (%) 3.23 a 1.48 b 1.15 b,c 3.04 a 1.50 b 1.03 c 0.25%
Ca (%) 4.02 a 2.66 c 2.54 c 3.76 a,b 2.88 b,c 2.49 c 1.42
Mg (%) 0.36 a 0.19 b 0.17 b 0.31 a 0.20 b 0.15 b 0.18

EC (mS cm) 2.29 a 2.33 a 2.30 a 2.32 a 2.37 a 2.28 a <3
Germ (%) 68.55 a 87.14 a 86.59 a 96.63 a 80.12 a 75.8 a >70% *
MC (%) 44.93 a 48.71 a 44.45 a 43.85 a 40.45 a 43.67 a variable

Cu (mg kg−1) 14.40 a 7.27 a 41.23 a 23.47 a 8.13 a 6.60 a 300
Zn (mg kg−1) 71.2 a 44.3 a 93.6 a 29.2 a 53.3 a 41.00 a 1000
Cd (mg kg−1) 0.02 c 0.02 d 0.01 e 0.07 a 0.06 b 0.07 a <5 **
As (mg kg−1) 0.53 b 0.43 c 0.53 a 0.28 f 0.34 d 0.29 e <50 **
Cr (mg kg−1) 5.88 d 4.68 e 7.15 c 8.13 b 1.23 f 8.95 a <200 **
Ni (mg kg−1) 1.19 e 0.73 f 2.29 d 3.53 b 4.25 a 2.71 c <150 **

Adapted from: Council of European Communities (CEC) quality standard for composts, * adapted from [26],
** adapted from [27]. Footnote: similar letters on table across the composts indicate not significantly different
at p = 0.05.

The composts produced were relatively high in nitrogen and potassium with an average amount
of 138 kg nitrogen and 51.5 kg potassium at 5 t ha−1 application. Horrocks et al. [28] reported that
agronomically sufficient N, P, K and S were found in the composts used in their study (municipal garden
and kitchen wastes composts). Heavy metal contents of final composts samples were not significantly
different (p > 0.05) among the composts, and will not therefore, pose a threat when applied to the
soil. Phytotoxicity of compost sampled on germination of sweet corn were not significantly different
(p > 0.05) between each compost but were all greater than 50%.

3.3. Nitrogen Mineralization: Soil Incubation

Figure 4 shows the results of the soil pH during the incubation period of 60 days. The pH of the
soil and compost amended soils were significantly different (p ≤ 0.05). The pH of the soils, due to
compost application for all treatments, increased up to day 21, while for some of the treatments,
the highest increase was observed on day 14. The compost pH increment seemed to be more at the
application of 10 t ha−1 in comparison to the control for all treatments, irrespective of the addition of
indigenous microorganisms (IMO). The trend line for the composts with respect to days of incubation
was similar for all treatments, including the control treatment. Conversion of organic nitrogen by
soil microorganisms to ammonium is termed ammonification. Rise in pH of soils upon addition of
organic residues is most probably because of enhanced ammonification in relation to nitrification,
which subsequently leads to an OH− formation [29,30]. In essence, chemical mechanisms guiding
pH change in soils are all related to nitrogen cycling with the conversions of organic nitrogen in the
soil to ammonium releasing OH− (consuming H+), increasing soil pH [31,32] and the subsequent
release of 2H+ ions that reduces the pH of soil during nitrification [33]. The subsequent conversion
with time of ammonium to nitrate releasing 2H+ (consuming OH−) can be observed by the gradual
decrease in soil pH which subsequently stabilized towards the end of the incubation experiment.
The soil pH change during mineralization can also be related to organic acid production during
decomposition, ammonification, nitrification process and/or chemical species oxidation process [34].
Decarboxylation of organic anions due to the addition of residues in soils has also been associated to
soil pH increase [35]. The sequential release of organic acids is mainly related to edaphic factors such
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as initial pH, cation exchange capacity, organic matter content and texture which have an effect on
association/dissociation reactions and microbial activity that occurs in the soils.
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Ammonium ion mineralization in soil during the 60 days nitrogen mineralization study is shown
in Figure 5. Significant differences (p ≤ 0.05) were observed in the amounts of ammonium nitrogen
released by the different treatments. An almost immediate mineralization was observed of the
lower C/N ratio of the composts (3:1 composts) applied. Highest ammonium nitrogen production of
40.21 mg kg−1 on day 40 was observed at the application of compost 3:1 + IMO at 10 t ha−1 while the
lowest quantity of 2.94 mg kg−1 ammonium was observed at the control treatment to which no compost
was added on day 60. Azeez and Averbeke [36] reported that ammonification is usually fast when
organic nitrogen sources such as compost is added to soils, especially in the presence of moisture
because the soil microorganisms will be able to convert it to ammonium. All compost-amended soils
in this experiment recorded an initial increase in ammonium release during the incubation up to day
3. A similar result was also reported by Calderon et al. [37] who reported that ammonium nitrogen
was dominant in terms of mineral nitrogen release at the beginning of an incubation experiment and
Tratsch et al. [7] who also reported a similar result but presumed it was because of the initial higher
concentration of NH4

+ in the composts that were used for the mineralization experiment. Subsequently,
ammonium ion, released by the remaining treatments with lower FVW contents, also increased.
The highest concentration of ammonium nitrogen of 41.30 mg kg−1 on day 21 and 41.86 mg kg −1 on day
40 were by compost 3:1 + IMO and 3:1 − IMO at 10 t ha−1 (Figure 4) and were possibly due to the higher
amount of easily mineralizable fruit and vegetable wastes in relation to the control which could lead to
a higher proliferation of soil microorganisms. The ammonium nitrogen mineralized during incubation
can however be temporarily immobilized by soil microorganisms [36] before subsequently being
released later. As the incubation progressed with time, the rate of ammonium nitrogen transformation
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gradually reduced, which led to the gradual change of the ammonium ion formed into nitrate with a
subsequent reduction in the ammonification rate (Figure 6).Agronomy 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 5. Ammonium nitrogen released in soils during incubation at different rates of compost
application. Key: Trt1: 3:1 − IMO at 5 t ha−1, Trt2: 3:1 − IMO at 10 t ha−1, Trt3: 1:2 − IMO at 5 t ha−1,
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5 t ha−1, Trt8: 1:2 + IMO at 10 t ha−1, Trt9: control.
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Figure 6. Nitrate released in soils during incubation at different rates of compost application.
Key: Table 1. 3:1 − IMO at 5 t ha−1, Trt2: 3:1 − IMO at 10 t ha−1, Trt3: 1:2 − IMO at 5 t ha−1,
Trt4: 1:2 − IMO at 10 t ha−1, Trt5 3:1 + IMO at 5 t ha−1, Trt6: 3:1 + IMO at 10 t ha−1, Trt7: 1:2 + IMO at
5 t ha−1, Trt8: 1:2 + IMO at 10 t ha−1, Trt9: Control.

Nitrate production was higher in compost 3:1 + IMO at 10 t ha−1 at 27.98 mg kg−1 on day 60
and was lowest in the control plot at 3.69 mg kg−1 production on day 14. At the beginning of the
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incubation, the rate of nitrate release was very low, and it ranged between 6.09 and 14.96 mg kg −1

on day 1 to 16.1–27.98 mg kg−1 on day 60 probably because of the initial increase in ammonification.
The nitrate released was still higher in the treatments that received higher FVW (compost 3:1 + and
− IMO) possibly because of the lower C/N ratio exhibited by these composts due to the inclusion
of fruit and vegetable wastes in their composition. In addition, however, high moisture content of
soils may cause leaching of nitrates, leading to the creation of a microsite that may associate with
carbon to increase denitrification losses of composts applied. The rate of nitrate production from the
control soil was lower in comparison to the other treatments because of the low organic matter content
throughout the 60-day incubation period. Towards the end of the incubation there was an increase in
nitrate released because of the conversion of ammonium to nitrate through nitrification (33) from the
added composts. Ammonium is oxidized to NO2

− by Nitrobacter and then to NO3
− by Nitrosomonas,

thereby increasing the concentration of NO3
− towards the end of the incubation [7]. Highest peak

NO3
− release of 27.98 mg kg−1 N was attained by compost 3:1 + IMO at 10 t ha−1 on day 60.
Mineralizable nitrogen (sum of NH4-N and NO3-N) content of the soil in relation to the addition

of composts made with and without IMO is presented in Figure 7. The results were significantly
different (p ≤ 0.05) between the different treatments. The mineralizable nitrogen released was lower in
the control in comparison to other treatments. Total mineralizable nitrogen release pattern was similar
to that of total ammonium release possibly because the ammonification process was more dominant
than the nitrification process. On days 7, 14, 21 and 60 of the experiment, compost 3:1 + IMO recorded
higher mineralizable nitrogen released in comparison to the control soil. Higher mineralizable nitrogen
was recorded in treatments with higher amounts of FVW during the composting, a similar result as
reported by Tratsch et al. [7].
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Figure 7. The NH4-N + NO3-N (mineralizable N) released in soils during incubation at different rates
of compost application. Key: Trt1: 3:1 − IMO at 5 t ha−1, Trt2: 3:1 − IMO at 10 t ha−1, Trt3: 1:2 − IMO
at 5 t ha−1, Trt4: 1:2 − IMO at 10 t ha−1, Trt5: 3:1 + IMO at 5 t ha−1, Trt6: 3:1 + IMO at10 t ha−1,
Trt7: 1:2 + IMO at 5 t ha−1, Trt8: 1:2 + IMO at 10 t ha−1, Trt9: control.

Cumulative NH4-N + NO3-N nitrogen of soils during incubation studies at the application of 0, 5
and 10 t ha−1 compost application is presented in Figure 8. The results showed that cumulative nitrogen
released was lowest in the control treatment and were highest in the treatments to which compost was
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added at the rate of 10 t ha−1 irrespective of the addition of indigenous microorganisms. The results
from the cumulative nitrogen mineralization of organic residue amended soils were consistent with
the results of Masunga et al. [38]. They ascribed the high mineralization from Gliricidia and organic
residues with similar C/N-amended soils to the large pool of labile organic nitrogen that was released
into the soil solution. The cumulative nitrogen increased with the increase in incubation duration time
probably because of the continuous mineralization of the composts with time. Cumulative nitrogen
released over control of 77.98, 64.09 and 64.35% were recorded for application rates of 3:1 − IMO,
1:2 − IMO and 1:2 + IMO at 10 t ha−1 respectively.
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Pearson correlation was carried out to determine the relationship that existed between the
parameters measured in the nitrogen mineralization study (Table 5). From the correlation table, it was
observed that a highly significant (p≤ 0.001) positive correlation existed between ammonium production
and pH of the soils. An increase in ammonium can cause an increase in soil pH and vice versa which
affirms the results of [11] who reported that a significantly positive correlation exists between mineral
nitrogen released as well as pH. A highly significant (p < 0.01) negative correlation existed between
nitrate production in the soils and soil pH. A decrease in nitrate production should be expected with
an increase in soil pH and the opposite holds true. A highly significant (p ≤ 0.01) negative correlation
also existed between ammonium and nitrate production, which infers that generally it can be assumed
that production rates of ammonium is inversely related to nitrate production. Meanwhile a positive
correlation existed between mineralizable nitrogen and ammonium.
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Table 5. Correlation coefficients for soil parameters in the incubation study.

pH NH4-N NO3-N NH4-N + NO3-N

pH 1
NH4-N 0.3349 1

<0.0001
NO3-N −0.2596 −0.3801 1

<0.0001 <0.0001
NH4-N + NO3-N 0.2278 0.88168 0.1013 1

0.0003 < 0.0001 0.1152

4. Conclusions

The composts produced by co-composting fruit and vegetable wastes and biodegradable municipal
wastes had good agronomic potentials in terms of nitrogen and potassium contents. Composts 3:1+IMO
and 3:1-IMO showed superiority in mineral nutrient contents probably because of the lower C/N contents
as a result of the combination and ratio of substrates used in the co-composting. Understanding mineral
nutrient release from the application of composts in tropical soils is important to be synchronized with
plant nutrient demand for more effective nutrient use from applied composts. The different ratios
used during the composting process yielded different composts with different nutrient status and
waste management abilities. From the results obtained, composting using ratio 3:1 and 1:2 aided in
complementing the lapses of the primary substrates used during the composting. Nitrogen release
dynamics is paramount for effective nitrogen use to avoid environmental pollution and/or leaching
losses. The laboratory incubation experiments showed the release rates of these composts when
applied to an Oxisol at the rates of 0, 5 and 10 t ha−1. An in-depth knowledge and understanding of
the results obtained will help policy makers charter new guidelines with regards to organic waste
disposition. Compost users will have an option of getting a better compost with more nutrients and
the government and individuals can manage the wastes effectively. Recycling of fruit and vegetable
wastes and biodegradable municipal wastes into composts is a sustainable waste management option.
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