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Abstract: Sorghum is an important grain, forage, and bioenergy crop. The objective of this study
was to identify genetic signals associated with plant architecture and bioenergy traits in sorghum
and sudangrass germplasm through a genome-wide association study (GWAS). Plant height (HT),
tiller number (TN), internode number (IN), stem diameter (SD), panicle length (PL), panicle weight
(PW), reducing sugar (RS) content, Brix, and protein (PRO) content were assessed in 300 germplasm
consisting of grain sorghum, sweet sorghum, sudangrass, sweet sorghum-sweet sorghum recombinant
inbred lines (RILs) and sudangrass-sudangrass RILs grown in three different environments over two
years. Large variations of phenotypic traits were observed in the population panel. The heritability
of traits were all higher than 0.5, ranging from 0.52 (PRO) to 0.92 (HT) with an average of 0.76.
The population exhibited three population structures (Q) and minor relative kinship (K), assessed by
using 7982 single-nucleotide polymorphisms (SNPs). After controlling Q and K, GWAS identified 24
SNPs that were significantly associated with traits, including three SNPs with HT, four with TN, four
with PL, three with Brix, and ten with RS. Of them, seven SNPs were novel signals that were not
identified previously, including one for HT, one for TN, one for Brix, and four for RS. The putative
candidate genes involved in brassinosteroid regulatory pathway, auxin biosynthesis, carbohydrate
metabolism, and sugar transport were identified underlying the significant SNPs. Identification
of SNP signals and related candidate genes would enrich the current genomic resource for further
molecular breeding aimed at improvement of food, feed, and biofuel productions of sorghum.
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1. Introduction

Sorghum (Sorghum bicolor) is an important crop worldwide. Grain sorghum is a major world
staple crop for human food and livestock feed [1,2], and is ranked as the fifth most important grain
crop worldwide. Sweet and biomass sorghums have also been increasingly receiving attention for
bioenergy production due to their high sugar content in the stalk for potentially producing more
ethanol [3,4]. Sudangrass (Sorghum sudanese) is an annual forage crop with a strong capacity for tillering
and regeneration, and has softer stems and leaves than forage maize (Zea mays) and sorghum [5]. Both
sorghum and sudangrass have the same diploid chromosomes (2n = 2x = 20), and crosses can be
made between these two species. The sorghum-sudangrass hybrids (S. bicolor × S. sudanense) show
a wide range of advantages including high yield, good lodging resistance, drought and cold tolerance,

Agronomy 2020, 10, 1602; doi:10.3390/agronomy10101602 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
http://dx.doi.org/10.3390/agronomy10101602
http://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/10/10/1602?type=check_update&version=2


Agronomy 2020, 10, 1602 2 of 22

good palatability, and high nutritional values [6]. Large variations in phenotypic traits such as plant
morphology, biomass, grain quality, and stress tolerance have been observed in grain, biomass and
sweet sorghum lines or sorghum–sudangrass hybrids [4,7–10]. A wide range of adaptation with
phenotypic diversity in sorghum and sudangrass allows exploration of genetic mechanisms underlying
the trait variation.

Genomic analysis of diverse populations has demonstrated the power of dissection of the genetic
basis of various phenotypic traits in plant species. The genome-wide association study (GWAS),
based on linkage disequilibrium (LD) mapping, which correlates molecular markers with complex
quantitative traits, offers advantages for increasing resolution of marker identification [11]. Single
nucleotide polymorphisms (SNPs) associated with a variety of phenotypic traits have been identified
through GWAS in landraces and accessions or recombinant inbred lines (RILs) of sorghum, including
traits related to plant architecture [12–17], agronomy [16,18–21], bioenergy [22–26], and physiology
and biochemistry [10,27–29]. Some of the significant markers were supported by the quantitative trait
locus (QTL) interval detected by parental linkage mapping studies or additional GWAS studies. For
example, seven QTLs for plant height were detected by a GWAS in sorghum accessions [15], and four
of them were within the previously identified QTL region on chromosomes 6 and 9 [30,31]. In addition,
two associations for plant height observed on chromosome 7 corresponded to qPHT7.1 and Dw3 [16],
which were identified using linkage mapping [32–34]. Three QTLs detected for plant height, qPH6.1,
qPH7.1 and qPH9.1 through QTL mapping [35], have also been found in two GWAS studies [12,36].
However, novel genomic regions are often detected to be associated with traits in each of the unique
GWAS studies. These signals would assist in selecting and narrowing down the genomic region for
further validation of the locus or gene underlying a trait of interest.

The candidate genes in the target SNP regions presumably play an important role in controlling
phenotypic traits. To date, several genes or classical loci have been discovered in sorghum including
the most studied Dw1-Dw4 [37] and qHT7.1 [13] for plant height. The Dw1 locus, located at ~57 Mbp on
chromosome 9, is a novel component of brassinosteroid signaling and acts as a positive modulator of
brassinosteroid signaling [32]. Dw2 was mapped to chromosome 6 at ∼42 Mbp [12], and is identified as
a protein kinase that regulates stem internode length [33]. Dw3 is located at ~ 58Mbp on chromosome 7
and is identified as an adenosine triphosphate-binding cassette (ABC) transporter of the plant hormone
auxin [38]. The exact location of Dw4 has not been determined, and it is possibly on the lower arm of
chromosome 4 [13]. qPHT7.1 is also on chromosome 7 [13,16]. The two associated SNPs for qPHT7.1
were approximately 50 kb from the gene encoding an MYB domain protein, which was highly expressed
in the internode and peduncle [16]. The rice ortholog of this gene regulates internode elongation and
mutants exhibit a modest reduction in plant height [39]. The results suggest that this MYB domain
protein could be a promising candidate for qPHT7.1. Information on other molecular markers, QTL,
and the underlying traits of candidate genes has been summarized in sorghum [40,41].

Previous studies have revealed genetic control of plant architecture and bioenergy related traits in
sorghum. However, given the existence of genetic diversity within different types of germplasm and
genotype by environment interaction for complex traits, it is necessary to identify potential novel signals
and/or verify the robustness of the existing QTLs in diverse germplasm across different environments.
Therefore, we assembled 300 germplasm lines including sweet sorghum, grain sorghum, sudangrass,
sweet sorghum RILs, and sudangrass RILs and conducted GWAS for plant architecture and bioenergy
related traits across three climate regions in China. The research aimed at the identification of signals
for a better understanding of the genetic control of phenotypic traits in sorghum and sudangrass
germplasm. The results would benefit marker-assisted breeding for improved food, feed, and biofuel
productions in sorghum plants.
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2. Materials and Methods

2.1. Plant Materials and Growing Conditions

Three hundred diverse germplasm lines were used for the experiment, consisting of 22 grain
sorghum, 165 sweet sorghum, 63 sudangrass, 8 sweet sorghum-sweet sorghum RILs, and 42
sudangrass-sudangrass RILs (Supplemental Table S1). Seeds of each line were planted in three
locations in China, including Xinjiang province (44.54◦ N, 88.17◦ E) and Inner Mongolia province
(45.54◦ N, 108.31◦ E) in 2014 and Liaoning province (42.19◦ N and 120.80◦ E) in 2015. Seeding and
harvesting time, and environmental and soil conditions for each location are listed in Supplemental
Table S2.

2.2. Phenotypic Traits and Repeatability

Plant height, tiller number, internode number, stem diameter, panicle length, panicle weight,
reducing sugar, Brix, and protein content were measured in all germplasm lines at the reproductive
stage across all locations in both years. Plant height was determined from the soil surface to the top of
the panicle. Tiller number was recorded by manual separation from the main stalk, and internode
number was counted on the main stalk. Stem diameter was measured using calipers. Panicle length was
measured from the base of the leaf scar to the top of the panicle and dry weight was recorded. The third
internode area from the top of the main stalk was collected for measuring Brix using a Brix meter
(PAL-1, ATAGO Co., Ltd., Tokyo, Japan) and reducing sugar using Fehling’s solution in an SGD-IV
automatic reducing sugar analyzer (Shandong Acad. Sci., Jinan, China). Brix (%) measures the sugar
content of an aqueous solution and is commonly used as an indicator of sugar content in stalk juice.
Crude protein was measured using the main stalk. Tissue was placed in an oven at 105 ◦C for 30 min
and then at 65 ◦C until reaching constant dry weight. The dry tissue was ground into powder and
sieved by 0.4 mm. Protein was determined by the Dumas combustion method using a rapid N/protein
analyzer (Elementar Co., Langenselbold, Germany).

The heritability (h2) of phenotypic traits across three locations (environments) was calculated
using PROC MIXED (SAS Institute, Version 9.1, Cary, NC, USA). The h2 was calculated as
follows: h2 = σ2

g
/(σ2

g + σ2
ge/l + σ2

e/rl), where σ2
e is the variance component for genotypes, σ2

ge

for genotype-by-environment, σ2
e for error; r is the number of replications, and l is number of

environment [42]. Based on the outcome of h2, least square means were estimated for each trait per
germplasm line across three locations.

2.3. Experimental Design and Statistical Analysis

All locations were a randomized complete block design with three replications (blocks). Each
block contained 300 germplasm lines, and they were randomly assigned into each block. Twenty-five
plants of each line were planted in a single 5-m-long row, with 50-cm row spacing, 20-cm plant spacing
in each block. Three representative plants from each row were chosen for sampling in each block as one
replication. The analysis of variance was performed at a significance level of 0.05 using PROC MIXED
in SAS [43], with accession and environment as fixed factors and replications as a random factor. Least
squares means for each trait generated by PROC MIXED were used for testing trait correlation, trait
differences among structural groups, and gene-trait association analysis. Pearson correlation among
traits was performed using PROC CORR in SAS.

2.4. Genotyping

The population was genotyped using restriction site-associated DNA (2b-RAD) with type IIB
(BsaXI) restriction enzyme; the detailed procedure was described previously [44,45]. Briefly, the library
was established and sequenced at Illumina Hiseq Xten platform to produce nucleotide paired-end
reads, with an average of ~6.8 M reads per sample generated. The reads were filtered by removal of
reads with adaptor, low quality reads, and reads with unidentified nucleotide sequence. The clean
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reads were aligned to the Sorghum bicolor genome version 1.4 using SOAP [46], and a total of 91,197
SNPs were discovered. The most informative 7928 SNPs were retained across 10 chromosomes for
this study. The pipeline parameters included minimum SNP call rate of 80%, maximum observed
heterozygosity of 0.5, and minor allele frequency of 1%.

2.5. Population Structure, Relative Kinship, Principal Component Analysis (PCA), and Linkage
Disequilibrium (LD)

Population structure (Q) was determined by using STRUCTURE 2.3.2 software [47] using filtered
SNP markers generated for this study. Briefly, the structure was run 10 times by setting pre-defined
k (the number of population groups) from 1 to 8 using admixture models, with 10,000 burn-in time
and 10,000 iterations of Markov chain convergence for each run. Among the 10 runs, the one with
the highest likelihood value was selected to assign the proportion of membership for each accession [48].
Relative pairwise kinship (K) was calculated using TASSEL 5.0 [49]. The PCA was analyzed with SNP
markers using the TASSEL 5.0, and the results were visualized using R (https://www.r-project.org).
The LD was also calculated using TASSEL 5.0. The generated r2 values averaged with each 50 kb were
plotted against the physical distance among each pair of SNPs.

2.6. Genome-Wide Association Study (GWAS) and Candidate Gene Identification

Quantile-quantile (Q-Q) plots for model comparisons of simple linear (S), linear model
implemented with population structure (Q), mixed model implemented with relative kinship (K),
and Q+K across all traits were generated using ‘qqman’ package in R. The best fit model that
represents the best agreement between the observed and expected −log10 (p) value for a given trait
for gene-trait associations was selected for the association analysis of each trait. GWAS analysis was
conducted with phenotypic data across three environments as well as with data of each individual
environment using TASSEL 5.0. Associations were considered to be significant only at a p-value lower
than the pthreshold-value, calculated using pthreshold = 0.05/N (N = the number of SNPs), based on
a Bonferroni correction for multiple comparisons. The positions of all significant SNPs were compared
with those previously published signals through GWAS and linkage mapping studies with sorghum
QTL atlas [50]. The SNP locations were identified using genome version 1.4, but their positions in
comparison with genome version 3.1 were also provided. Using the S. bicolor genome assembly,
candidate genes containing SNPs or adjacent to SNPs extended to 100 kb (based on LD) were identified.
Candidate genes annotated using genome version 1.4 were listed and their corresponding gene names
in genome version 3.1 were also provided. The annotated genes putatively involved in plant growth
and development, and hormone and carbohydrate metabolism were given high priority for identifying
candidate genes underlying a trait.

3. Results

3.1. Analysis of Variance, Trait Variation and Heritability

Genotypes had significant effects on plant height (HT), tiller number (TN), internode number
(IN), stem diameter (SD), panicle length (PL), panicle weight (PW), reducing sugar (RS), Brix and
protein (PRO) across three environments (Table 1). Significant environment effects and significant
genotype by environment interactions were also noted in all traits (Table 1). All the trait values varied
considerably across genotypes (Table 1). Heritability (h2) was calculated across 300 genotypes and
three environments. The h2 values of all traits were higher than 0.5, ranging from 0.52 (PRO to 0.92
(HT) with an average of 0.76 (Table 1). The high heritability over testing the environments allowed
least square means of individual traits to be calculated and used for association analyses of markers
and traits.

https://www.r-project.org
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Table 1. The minimum (Min), maximum (Max), mean values, heritability and analysis of variance
of plant height (HT), tiller number (TN), internode number (IN), stem diameter (SD), panicle length
(PL), panicle weight (PW), reducing sugar (RS), Brix and protein (PRO) in the population across
three environments.

Trait Min Max Mean Heritability Genotype
(G)

Environment
(E) G × E

HT (cm) 83.3 355.7 235.3 0.92 *** *** ***
TN (number) 0.67 6.44 2.71 0.89 *** ** ***
IN (number) 7.00 13.4 10.3 0.84 *** ** ***

SD (cm) 0.68 2.74 1.56 0.86 *** * ***
PL (cm) 14.0 42.4 26.2 0.80 *** *** ***
PW (g) 17.0 125.0 57.3 0.54 *** *** ***
RS (g/L) 0.14 1.21 0.41 0.76 *** ** ***
Brix (%) 6.70 22.4 14.1 0.73 *** *** ***
PRO (%) 2.79 7.99 4.94 0.52 *** *** ***

*, **, and *** represent significance at 0.05, 0.01, and 0.001, respectively. NS, not significant.

3.2. Trait Correlations

There were 13 positive and 15 negative correlations among the traits across the population (Table 2).
Specifically, HT was positively correlated with TN, IN, RS and Brix but negatively correlated with SD,
PW, and PRO. TN was only positively correlated with PL but negatively correlated with IN, SD, PW,
Brix and PRO. IN was only negatively correlated with PL but positively correlated with SD, PW, RS,
Brix and PRO. Positive correlations were also observed between SD and PW, SD and PEO, PW and
PRO, RS and Brix. Negative correlations were also identified between SD and PL, SD and RS, RS and
PRO, and Brix and PRO. The PL was also negatively correlated with RS and Brix.

3.3. Population Structure and Its Effects on Traits

Population structure was analyzed using 7928 SNPs generated from the population.
The combination trends of the likelihood values of [LnP(D)] and the ∆K calculated for each K
showed the 300 genotypes could be assigned into three subgroups (G1, G2 and G3) (Figure 1A). There
were 78, 90, and 132 genotypes from G1, G22 and G3, respectively (Figure 1B). G1 mainly contained
sweet sorghum and sudangrass; G2 consisted of sweet sorghum, sudangrass, sudangrass inbred lines
and sweet sorghum inbred lines, and G3 mainly included sweet sorghum and grain sorghum.

Three subgroups differed in trait values (Table 3). G2 had significantly higher TN, and PL and
lower IN, SD, PW, RS, Brix, and PRO than both G1 and G3. G2 also had higher HT than G3 but not G1.
Comparing G1 and G3, G1 had higher TN and PW but lower IN, SD, and Brix values than G3. No
differences in HT, PL, RS and PRO were observed between G1 and G3.

3.4. PCA, Relative Kinship and LD

PCA revealed that grain sorghum and sudangrass germplasm were well-separated into different
clusters, while grouping for sweet sorghum lines was not apparent as they were scattered into different
clusters (Figure 2A). Approximately 56.8% of the pairwise kinship estimates were zero, while 8.6%
were between zero and 0.05, 6.8% between 0.05 and 0.1, and 9.3% between 0.1 and 0.2, indicating that
approximately 82% of the estimates were < 0.2 (Figure 2B). Across all 300 samples, a rapid decline in LD
was observed within 100 kb with r2 = 0.18, but LD decay extended to 500 kb with r 2 = 0.10 (Figure 2C).
The LD decay pattern of 250 diverse germplasm was almost identical to that of 300 samples, while LD
decay for RILs (50) was r2 = 0.50 within 100 kb and extended to 500 kb with r 2 = 0.40 (Figure 2C).
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Table 2. Pearson correlation coefficients among plant height (HT), tiller number (TN), internode number (IN), stem diameter (SD), panicle length (PL), panicle weight
(PW), reducing sugar (RS), Brix, and protein (PRO) in the population cross three environments.

HT TN IN SD PL PW RS Brix PRO

HT
TN 0.43 ***
IN 0.21 *** −0.53 ***
SD −0.59 *** −0.82 *** 0.52 ***
PL −0.08 0.33 *** −0.38 *** −0.14 *
PW −0.26 *** −0.50 *** 0.31 *** 0.53 *** 0.04
RS 0.48 *** −0.004 0.35 *** −0.12 * −0.35 *** −0.09

Brix 0.52 *** −0.15 * 0.59 *** 0.03 −0.45 *** −0.07 0.54 ***
PRO −0.73 *** −0.46 *** 0.03 0.58 *** −0.002 0.14 * −0.38 *** −0.27 ***

*, *** indicates significance at 0.05 and 0001, respectively.
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Figure 1. An estimated logarithm probability of the data likelihoods LnP(D) and magnitude of ∆k for
each K value in the population (A). LnP(D), the log probability of the data. K means subpopulations.
∆k, delta K. Population structure results with three defined subpopulations (K = 3) (B). Numbers
on X-axis represent germplasm and numbers on the y-axis indicate the membership coefficient for
each germplasm line. The three clusters: G1 = red, G2 = green, G3 = blue. Accessions with the same
color belong to the same group. G1 mainly contains sweet sorghum and sudangrass; G2 consists of
sweet sorghum, sudangrass, sudangrass inbred lines and sweet sorghum inbred lines, and G3 mainly
includes sweet sorghum and grain sorghum.

Table 3. Three population structure groups differing in plant height (HT), tiller number (TN), internode
number (IN), stem diameter (SD), panicle length (PL), panicle weight (PW), reducing sugar (RS), Brix,
and protein (PRO) in the population across three environments.

Group HT
(cm) TN IN SD

(cm) PL (cm) PW (g) RS
(g/L)

Brix
(%)

PRO
(%)

1 238.8 ab 2.4 b 10.6 b 1.6 b 25.4 b 66.2 a 0.42 a 14.3 b 5.0 a
2 250.4 a 3.9 a 9.1 c 1.2 c 28.7 a 47.9 c 0.35 b 12.1 c 4.5 b
3 223.0 b 2.1 c 11.1 a 1.8 a 25.0 b 58.5 b 0.45 a 15.2 a 5.2 a

Means followed by the same letter or not followed by any letter within a column for a given treatment were not
significantly different at p < 0.05.

3.5. GWAS

The quantile-quantile (Q-Q) plots verified the adequate model for controlling false positives
for marker and trait association (Figure 3). The S, Q, K, and Q + K models were implemented and
compared by examining the results between the observed and expected −log10 (p). The results showed
that the Q + K model was more suitable for analyzing genome-wide association for all phenotypic traits.

Across three environments, GWAS detected 24 significant SNPs associated with HT, TN, PL,
RS, and Brix after controlling Q and K (Figure 4, Table 4). Specifically, one SNP at S3_53230521 on
chromosome 3, one at S8_50424256 on chromosome 8, and one at S9_56656748 on chromosome 9
were associated with HT, explaining HT variations by 9.5%, 9.0% and 11.3%, respectively. Four SNPs
(S2_63990205, S6_46267204, S8_54924780 and S9_52354291) located on chromosomes 2, 6, 8, and 9 were
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associated with TN, explaining TN variations by 9.1%, 10.1%, 9.4%, and 8.7%, respectively. Four SNPs
(S1_11646700, S2_794419, S8_49724219, S10_1803717), found on chromosomes 1, 2, 8, and 10, were
associated with PL, causing PL variations by 13.2%, 8.5%, 9.6%, and 10.3%, respectively. Three SNP
signals (S5_216438, S6_39878130, S8_40217639) were identified for Brix, leading to Brix variations of
11.2%, 11.5%, and 8.9%, respectively. There were 10 SNPs significantly associated with RS, including
four on chromosome 1, two on chromosome 2, one on chromosome 3, two on chromosome 9, and one
on chromosome 10. These SNPs caused RS variations ranging from 8.7% to 12.5%. Of total significant
SNPs, six were novel signals that were not identified previously (Table 4, Supplementary Table S4),
including S3_53230521 for HT, S8_54924780 for TN, S5_216438 for Brix, and S2_70725655, S9_83605,
S9_43662454, and S10_57577048 for RS.
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Figure 2. Principal component analysis (PCA) of 250 diverse accessions (A). PC1, the first principal
component; PC2, the second principal component. Distribution of pairwise relative kinship estimates
in the population panel (B). The peak around zero indicates no relationship. Genome-wide linkage
disequilibrium (LD) decay (C). The generated r2 value averaged with each 50 kb was plotted against
the physical distance among each pair of significant single nucleotide polymorphisms (SNPs). LD
decay was calculated using all 300 samples (red), 250 diverse lines (green), and 50 recombinant inbred
lines (RILs) (blue).

3.6. Candidate Genes

The putative candidate gene was identified within 100 kb of each significant SNP (Table 5).
The selected genes, homologs to those in Arabidopsis, seemed to be interesting and might play a role
in affecting a particular trait. Three candidate genes were identified for HT, including Sb03g026400
encoding an auxin-responsive protein on chromosome 3 within 40 kb of a SNP, Sb08g019600 encoding
a protein kinase on chromosome 8 within 41 kb of a SNP, and Sb09g027683 encoding an indole-3-butyric
acid response protein on chromosome 9 within 0.26 kb of a SNP. Four candidate genes, Sb02g028870 on
chromosome 2, Sb06g017100 on chromosome 6, Sb08g022790 on chromosome 8, and Sb09g022660 on
chromosome 9 were detected for TN, which were about 3.7-, 0.47-, 33.4-, and 72.5-kb away from the target
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SNP, respectively. There were four potential candidate genes for PL, including Sb01g012660 encoding
a protein kinase family protein, Sb02g000960 encoding WRKY57 transpiration factor, Sb08g019140
encoding a RNA binding protein, and Sb10g002190 encoding an exordium-like 3 protein involved
in the brassinosteroid regulatory pathway at 0.38-, 0.69-, 59.4-, and 52.3-kb from the target SNP,
respectively. Three genes were detected for Brix, including Sb05g000330 encoding a mitochondrial
substrate carrier protein, Sb06g014370 encoding a hydroxyproline-rich glycoprotein protein and
Sb08g015300 encoding a pentatricopeptide protein, which were approximately 76.9-, 64.5-, and 9.6-kb
away from the target SNP, respectively. Ten candidate genes could affect RS. Of them, the notable
homologs for RS were Sb01g028790 encoding a MYB transcription factor, Sb01g029400 encoding
a glucosyltransferase, Sb01g029590 encoding a trehalose-6-phosphate phosphatase, Sb02g030990
encoding glycoside hydrolase 9B7, and Sb02g036310 encoding a sugar transporter. These genes were
located approximately 85.1-, 79.7-, 33.8-, and 5.1-kb from the target SNP on chromosomes 1 and
2, respectively.Agronomy 2020, 10, x 8 of 21 
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(TN), internode number (IN), stem diameter (SD), panicle length (PL), panicle weight (PW), reducing
sugar (RS), Brix, and protein concentration (PRO). The solid diagonal lines represent agreement between
the observed and expected −log10 (p) for marker-trait associations. Colored lines represent agreement
between the observed and expected −log10 (p) value for gene-trait associations analyzed with simple
(S), population structure (Q), relative kinship (K), and Q + K implemented models, respectively.
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(TN), internode number (IN), panicle length (PL), panicle weight (PW), reducing sugar (RS), and Brix.
Lines indicate threshold for significant single nucleotide polymorphisms (SNPs). The x-axis indicates
the physical position of the SNPs on the ten sorghum chromosomes.
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Table 4. Significant associations of single nucleotide polymorphism (SNP) with traits of plant height (HT), tiller number (TN), panicle length (PL), Brix, and reducing
sugar (RS) in the population across three environments.

Traits SNP Position Chromosome p-values R2 (%) Comments

HT 53230521 3 5.11 × 10−6 9.5 Novel region
50424256 8 3.77 × 10−6 9.0 Overlap [51]
56656748 9 1.78 × 10−7 11.3 Overlap [19,36,52–57]

TN 63990205 2 2.68 × 10−6 9.1 Overlap [58]
46267204 6 3.61 × 10−7 10.1 Overlap [36,55,59]
54924780 8 1.07 × 10−6 9.4 Novel region
52354291 9 5.51 × 10−6 8.7 Overlap [55]

PL 11646706 1 1.26 × 10−8 13.2 Overlap [36]
794419 2 6.11 × 10−6 8.5 Overlap [51,60]

49724219 8 3.83 × 10−6 9.6 Overlap [36]
1803717 10 5.63 × 10−7 10.3 Overlap [61]

Brix 216438 5 8.12 × 10−7 11.2 Novel region
39878130 6 3.56 × 10−7 11.5 Overlap [62]
40217639 8 6.02 × 10−6 8.9 Overlap [63]

RS 50338536 1 3.35 × 10−6 10.7 Overlap [52,64]
50949572 1 3.86 × 10−6 8.9 Overlap [52,64]
51456627 1 3.89 × 10−6 8.9 Overlap [52,64]
51729456 1 5.08 × 10−6 9.9 Overlap [52,64]
65963213 2 3.43 × 10−6 9.5 Overlap [63]
70725655 2 1.24 × 10−6 9.8 Novel region
20424005 3 5.49 × 10−6 8.7 Overlap [64]

83605 9 5.60 × 10−6 8.9 Novel region
43662454 9 1.14 × 10−7 12.5 Novel region
57577048 10 1.82 × 10−6 10.3 Novel region

GWAS was also analyzed with phenotypic data from individual environment (Env). There were 19, 21, and 26 significant SNPs associated with various traits for Env 1, Env 2, Env3,
respectively (Supplemental Table S4). Of them, 16 SNPs were considered as novel markers for Env 1, 12 for Env 2, and 10 for Env 3 (Supplemental Table S4). Among the total 66 significant
SNPs, 14 markers were also detected in the analysis across three environments, including three (HT, TN, and RS) for Env 1, four (two TN and two PL) for Env 2, and seven (HT, Brix, five
RS) for Env 3. GWAS produced no associations of IN, PW, and RPO across three environments, but significant SNPs for these traits were shown on at least one of the single environment
(Supplemental Table S4).
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Table 5. The potential candidate genes identified corresponding to the significant single nucleotide polymorphism (SNP) associated with traits of plant height (HT),
tiller number (TN), panicle length (PL), Brix, and reducing sugar (RS) in the population across three environments.

Trait SNP Gene ID (V1.4) Distance to peak
SNP (kb)

Homolog to
A. thaliana Encoding Protein Function/Biological

Process Gene ID (V3.1)

HT S3-53230521 Sb03g026400 40.1 AT1G76190
SAUR-like

auxin-responsive
protein

Responsive to
auxin Sobic.003G202000

S8-50424256 Sb08g019600 41.2 AT2G25760 Protein kinase Protein binding Sobic.008G146100

S9-56656748 Sb09g026370 0.26 AT4G14430 Indole-3-butyric acid
response 10 Auxin metabolism Sobic.009G207100

TN S2-63990205 Sb02g028870 3.7 AT2G24430 NAC domain
containing protein 38

Transcription
factor Sobic.002G253000

S6-46267204 Sb06g017100 0.47 AT2G01170 Bidirectional amino
acid transporter 1

Amino acid
transport Sobic.006G084600

S8-54924780 Sb08g022790 33.4 AT5G49660
Receptor

protein-tyrosine
kinase

Growth and
development Sobic.008G186400

S9-52354291 Sb09g022660 72.5 AT2G28710 C2H2 zinc finger
protein

Transcription
factor Sobic.009G164600

PL S1-11646700 Sb01g012660 0.38 AT1G67580 Protein kinase family
protein

Signal
transduction Sobic.001G145100

S2-794419 Sb02g000960 0.69 AT1G69310 WRKY57 Hormone
signaling Sobic.002G008600

S8-49724219 Sb08g019140 59.4 AT5G19960 RNA binding protein Growth and
development Sobic.008G140700

S10-1803717 Sb10g002190 52.3 AT5G51550 Exordium-like 3 Brassinosteroid
regulatory Sobic.010G023400

Brix S5-216438 Sb05g000330 76.9 AT2G35800
Mitochondrial

substrate carrier
protein

Substrates
transport Sobic.005G001700

S6-39878130 Sb06g014370 94.5 AT2G33490 Hydroxyproline-rich
glycoprotein protein

Cell wall
composition Sobic.006G055400
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Table 5. Cont.

Trait SNP Gene ID (V1.4) Distance to peak
SNP (kb)

Homolog to
A. thaliana Encoding Protein Function/Biological

Process Gene ID (V3.1)

S8-40217639 Sb08g015300 9.6 AT4G18750 Pentatricopeptide protein Growth and
development Sobic.008G100400

RS S1-50338536 Sb01g028790 88.0 AT2G44730 MYB transcription factor Alcohol
dehydrogenase Sobic.001G294700

S1-50949572 Sb01g029170 5.5 AT3G60530 Zinc finger family protein
GATA

transcription
factor

Sobic.001G299600

S1-51456627 Sb01g029400 85.1 AT2G35710 Glucosyltransferase Glucose transfer Sobic.001G302200

S1-51729456 Sb01g029590 79.7 AT4G22590 Trehalose-6-phosphate
phosphatase

Trehalose
biosynthesis Sobic.001G303900

S2-65963213 Sb02g030990 33.8 AT1G75680 Glycoside hydrolase 9B7 Polysaccharide
metabolism Sobic.002G276600

S2-70725655 Sb02g036310 5.1 AT1G11260 Sugar transporter 1 Monosaccharide
transport Sobic.002G338500

S3-20424005 Sb03g014780 23.7 AT3G06400 Chromatin-remodeling
protein Protein binding Sobic.003G163200

S9-83605 Sb09g000320 64.2 AT1G57820 C3HC4 zinc finger
protein

Transcription
factor Sobic.009G001200

S9-43662454 Sb09g017540 21.4 AT3G06760 Drought responsive
family protein Unknown function Sobic.009G108600

S10-57577048 Sb10g027790 46.8 AT4G30080 Auxin response factor 16 Auxin-activated
signaling Sobic.010G236300
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4. Discussion

4.1. Trait Variations and Correlations

Large phenotypic variations were observed in the diverse collection panel. The range of HT, TN,
IN and PL values were comparable to the previous study identified in 315 sorghum accessions [15].
The range of Brix values observed in this study was also comparable to sorghum RILs derived from
a cross between a dwarf grain sorghum and a tall sweet sorghum [65]. All traits showed high heritability
except for PW and PRO with moderate heritability. Overall, large variations of phenotypic traits and
high heritability of the traits provide an important basis for analyzing marker-trait associations in
sorghum panel.

Some of the trait correlations agreed with the results in other studies. A positive correlation
between HT and IN, negative correlation between TN and IN, and no correlation between HT and
PL found in this study were consistent with a previous report in sorghum accessions [15]. However,
a positive correlation between HT and PL was found in biparental quantitative trait loci (QTL) mapping
population [31,66] and accessions including sweet sorghum, grain sorghum, forage sorghum, mutant
populations, and B- and R-lines [67]. We identified a positive correlation between HT and TN, which
was also shown in a segregating population derived from a cross between S. bicolor and S. sudanense [68],
but not in a RIL population derived from a cross between grain sorghum and sweet sorghum [63]. HT
was negatively correlated with SD, which was consistent with the previous result [63], but did not
support the correlations noted in another study [54]. In addition, the positive correlation between HT
and Brix observed in this study was consistent with previous results [52,69–71]. Brix and RS were
measured using stem tissue, but we found a negative correlation between SD and RS, but no correlation
between SD and Brix. No correlation between SD and Brix and a positive correlation between SD
and sugar were found previously [63], however, a positive correlation between HT and Brix was
observed in RILs of sorghum [71]. Collectively, the results demonstrated interrelationships among
morphological, agronomic and physiological traits in the diverse collection. Samples size, nature of
the populations, and environmental conditions may all contribute to the variation of relationships
among various traits.

4.2. LD Decay

The LD decay pattern of all 300 samples and 250 diverse accessions was almost identical, while
LD decay for RIL lines was somewhat different (Figure 2C). Linkage disequilibrium determines
the resolution of an association mapping [72]. In this study, LD decayed to r2 = 0.18 within 100 kb and
to r2 = 0.10 within 500 kb across all 300 samples or across 250 diverse germplasm (Figure 2C). Previous
studies have shown a varied LD decay pattern in sorghum. The LD decay was found to r2 < 0.2 within
5 kb and r2 < 0.1 within 20 kb in sweet cultivars and landraces [25], 15–20 kb in accessions [73,74],
30 kb in a mini core collection of landraces [73], 50 kb in the diverse landraces [16], 50–100 kb in
landraces [75], and within 150 kb in accessions [12]. A recent study has demonstrated that LD decay to
r2 < 0.1 within 50 kb in the diverse landraces, but decay to r2 = 0.2 within 90 kb in the recombinant
inbred lines (RILs) [16]. In addition, several RILs population had LD decay to r2 = 0.4 to 0.6 within
100 kb and to r2 = 0.3 to 0.5 within 500 kb [76], and LD values for RILs in this study were in this range
and consistent with their results. LD rate decay was slower in RILs families (∼500 kb) compared to
diverse accessions from China and Ethiopia (∼20 kb) [76]. The mapping population in this study
consisted of 50 RILs, accounting for 16.7% of total genotypes. The outcome of LD was similar to that
observed in the RILs [16,76]. It appeared that genome coverage of markers and number and type of
genotypes could contribute to variations of LD. The faster LD decay in more diverse populations may
reflect greater recombination and lead to higher mapping resolution than in RIL families [72].
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4.3. Marker Effects

On average, the significant SNPs caused 9.9% of phenotypic trait variations in this study (Table 4).
The SNP effects on the traits were higher, lower or comparable to other studies in sorghum. For
example, a SNP on chromosome 9 explained 11.1% of HT variation, which was in a range of 10% to
12% found in a population derived from a cross between grain sorghum and sweet sorghum [22], but
lower than 16% to 29% identified in diverse sorghum accessions [15]. A marker causing 10.1% of TN
variation on chromosome 6 was higher than the effects of two QTLs on fertile tiller number (~7.8%)
but was lower than the other two QTLs on the same chromosome (~13.7%) in sorghum [58]. A SNP
at S8_49724219 on chromosome 8 accounted for 9.6% variation of PL (Table 4), which was higher
than the value in long-day trials (6.9%) and in short-day trials (4.0%) on the same chromosome in
a RIL population of sorghum [66]. In addition, we found that a marker on chromosome 6 explained
11.5% of Brix variation, which was comparable to the previously found marker effects (~10%) on
the same chromosome [22]. In addition, SNP effects accounted for 8.9% to 12.5% of RS variations on
chromosomes 1 and 9, similar to those QTL effects for glucose juice (11%–12%) or within the range of
QTL effects (7%–21%) on sugar yield in sorghum [22]. The different mapping panels, tested diverse
environments, and marker density may lead to variations of marker effects on phenotypic traits.

4.4. Significant SNPs across Environments

Genetic signals have been identified for many phenotypic traits in sorghum through linkage
mapping and/or GWAS, providing comparisons to our results. In sorghum, several studies identified
a signal for HT on chromosome 9 at between 52 to 59 Mbp [19,36,52–57], while a SNP at S9_56656748
found in this study was in this genomic region noted above (Table 4, Supplemental Table S4). It
demonstrated that S9_56656748 was a strong signal for controlling HT on chromosome 9. Previously,
the Dw1 locus located at ~57 Mbp on chromosome 9 was detected, which positively regulates
brassinosteroid signaling [32]. The SNP at S9_56656748 was not too far from the Dw1 locus, and it
might be the same signal. In addition, the SNP at S9_56656748 in our study was 609 kb away from
a previously identified marker on chromosome 9 that affected plant height in sorghum [15]. We also
detected a signal for HT on chromosome 8 (S8_ 50424256) that was overlapped with a known QTL [70].
However, a SNP on chromosome 3 (S3_53230521) found in this study was about 1.6Mbp away from
a reported QTL [63], so it could be a novel signal for controlling HT in sorghum.

We detected four SNPs (S2_63990205, S6_46267204, S8_54924780, S9_52354291) associated with
TN. Of them, three SNPs were overlapped with the previously reported QTLs on chromosome 2 [58],
chromosome 6 [36,55,59], and chromosome 9 [55] in sorghum, including one identified through
a GWAS [36] (Table 4, Supplemental Table S4). However, a SNP at S8_54924780 on chromosome 8 did
not fall into a known QTL region, and was approximately 3.4 Mbp away from a signal detected for
TN though a GWAS using diverse sorghum germplasm [15]. The result suggests that S8_54924780
for TN could be a novel signal. We also confirmed that all four SNPs (S1_11646700, S2_794419,
S8_ 49724219, S10_1803717) associated with PL were overlapped with regions of signals identified
previously, including one on chromosome 1 and 8 by a GWAS [36], one on chromosome 2 through
a QTL mapping [51] and GWAS [60], and one on chromosome 10 with a QTL mapping [61] (Table 4,
Supplemental Table S4).

Three SNPs (S5_216438, S6_ 39878130, S8_40217639) were associated with Brix, and two were
overlapped with known QTLs on chromosome 6 [74] and on chromosome 8 [63]. A SNP on chromosome
5 was approximately 1.0 Mbp away from a reported QTL [64], suggesting that this could be a novel
signal. Among the traits, RS had the highest number of associations. Six out of ten significant SNPs
were overlapped with known QTLs for RS, including four on chromosome 1 around 51 Mbp [52,64],
one on chromosome 2 [52], and one on chromosome 3 [64]. Additional four SNPs were considered as
novel signals, since they were distant to known QTLs, approximately 2.2 Mbp away on chromosome
2 [63], 3.0 Mbp and 8.8 Mbp on chromosome 9 [63], and 55.6 Mbp on chromosome 10 [77], respectively.
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4.5. Significant SNPs for Individual Environment

In addition to a few common signals identified across environments as well as in a single
environment, some unique SNPs were detected in each individual environment (Supplemental Table
S4). Notably, significant associations were found for IN, SD, PW and PRO for Env 1, which were all
novel signals. For example, two SNPs for SD on chromosome 4 were 36.4 Mbp and 22.8 Mbp away
from a reported QTL [51], while one SNP for PRO on chromosome 2 was 17.5 Mbp away from a known
signal SNP [29] and four SNPs for PRO on chromosome 7 were about 10.1 to 54.1 Mbp away from
a known QTL [78]. Thirteen significant associations for PW were especially found in Env 2, and ten
were considered as novel signals. These SNPs ranged from 1.5 to 53 Mbp away from known QTLs
on different chromosomes in sorghum [63]. For Env 3, there were ten significant associations for HT
detected on chromosome 2, 4, 5, 6 and 9, respectively. Of them, four SNPs were considered as novel
signals, since they were distant to known signals on chromosome 2 found a GWAS study [34] and on
chromosome 5 [79] and chromosome 9 [63] found in a QTL mapping. In addition, novel signals were
also noted for PW on chromosome 2, 5 and 9 in Env 3, respectively.

Overall, some novel SNPs were identified, either across environments or in a single environment
analysis. We also confirmed the previously reported QTL or SNP signals in sorghum germplasm
or QTL mapping population. In this study, we used 2b-RAD genotyping method, which is proven
as a simple and flexible method for genome-wide genotyping [44,45,80,81]. Given that 2b-RAD is
a reduced representation sequencing approach compared to the whole genome sequence (WGS), it is
expected that the number of identified SNP markers in a population panel are lower than that using
WGS. This can affect mapping resolution since high density genotyping increased the precision of
association mapping in the panel. Nevertheless, our results indicate robustness of some candidate SNP
signals in sorghum, regardless of variation of size and nature of different populations and genotype by
environment interactions.

4.6. Potential Candidate Genes

The potential candidate genes in the significant SNP regions extended to 100 kb were searched
for each signal associated with the target trait. Plant height is controlled by the phytohormones
gibberellins (GA), brassinosteroids (BR), and auxins and by altering the distance between internodes.
Dw3, a well-known auxin transporter gene, is located on chromosome 7 with a major effect on sorghum
plant height [13]. We did not detect this gene nor any signals for HT on chromosome 7. However,
a SNP at S9_56656748 for HT was found approximately 386 kb from the gene underlying the Dw1
locus, a regulator of sorghum stem internode length [82]. Dw1 is a novel component of brassinosteroid
signaling and acts as a positive modulator of brassinosteroid signaling [32]. However, interestingly,
approximately 260 bp away from SNP S9_56656748, a gene Sb09g026370, a homolog of AT4G14430,
encoding indole-3-butyric response 10 (IBA10) was identified. Since IBA10 might be involved in
the conversion of indole 3-butyric acid (IBA) to indole 3-acetic acid (IAA) in Arabidopsis [83], this
Sb09g026370 could be the candidate gene that regulates plant height in sorghum. Notably, gene
Sb03g026400, a homolog of AT1G76190, encoding small auxin up RNAs (SAUR)-like auxin-responsive
protein, was also identified corresponding to SNP S3_53230521 on chromosome 3. In Arabidopsis,
overexpression of several distinct SAUR genes results in increased growth of cotyledons, hypocotyls,
or roots, respectively [84], suggesting a role of this protein in promoting plant growth.

Brassinosteroids (BRs) are a class of steroidal hormones essential for plant growth and
development [85]. Gene Sb10g002190, a homolog of AT5G51550 encoding exordium (EXO)-like
3 protein, was found for PL in this study. The EXO gene was identified as a potential mediator
of BR-promoted growth. Expressions of EXL3 (At5g51550) and EXL5 (At2g17230) were positively
correlated with EXO expression in Arabidopsis, and an exo knock-out mutant showed reduced cell
size and number and plant growth [86], suggesting a role of the EXL in promoting plant growth. We
also identified another candidate gene Sb02g000960, a homolog of AT1G69310 encoding WRKY57
transcription factor. In Arabidopsis, WRKY57 protein acts as a repressor in jasmonic acid-induced
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leaf senescence and is a common component of the jasmonic acid- and auxin-mediated signaling
pathways [87]. The results indicate a role of WRKY57 in regulating plant growth.

Several genes involved in carbohydrate metabolism were noted for Brix and RS, ranging from
5.1 kb to 88 kb from the associated SNPs. Interestingly, a gene Sb02g036310 was 5.1 kb from the SNP
that was associated with RS. This gene is a homolog to AT1G11260, encoding SUGAR TRANSPORTER
PROTEIN 1 (STP1), a high-affinity sugar transporter that acts as an H+/monosaccharide cotransporter,
capable of transporting a wide range of hexoses [88,89]. STP1 is the member of the STP family with
the highest expression level [90]. Moreover, the transcript AT1G11260 was strongly regulated by sugars,
depending on phosphorylated hexoses [91]. Another gene Sb09g025790 encoding trehalose-6-phosphate
synthase, located 64.2 kb from the significant SNP, is a homolog to AT1G78580 (AtTPS1). In Arabidopsis,
AtTPS1 with a terminal TPS domain, is involved in trehalose synthesis [92]. It seemed that Sb02g036310
and Sb09g02579 might be candidate genes mediating sugar metabolism in sorghum.

5. Conclusions

Plant phenotype is regulated by a complex network of genetic and environmental signals. The work
presented here has generated new knowledge of the genetic mechanisms underlying plant architecture
and agronomics traits in sorghum, sudangrass and RILs collections. Through genome-wide association
analysis across environments, 24 significant SNPs were detected and associated with plant height, tiller
number, panicle length, Brix and reducing sugar. A few signals have not been previously detected
and were considered as novel regions for controlling various traits. Several putative candidate genes
underlying the signals could be potentially the targets for further validation of their roles in affecting
plant architecture and growth. The significant markers may be used for marker-assisted breeding
programs aimed at improvement of improved food, feed, and biofuel productions in sorghum and
related species.
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