Table 1. Formulae and glossary of terms used by the JIP-test for the analysis of Chl a fluorescencetransient OJIP emitted by dark-adapted photosynthetic samples.

Data extracted from the recorded fluorescence transient OJIP	
Ft	fluorescence at time t after onset of actinic illumination
$F_J \equiv F_{2ms}$	fluorescence intensity at the J-step (2 ms) of OJIP
$F_I \equiv F_{30ms}$	fluorescence intensity at the I-step (30 ms) of OJIP
FP	maximal recorded fluorescence intensity, at the peak P of OJIP
Fluorescence parameters derived from the extracted data	
$F_0 \cong F_{50\mu s} \text{ or } \cong F_{20\mu s}$	minimal fluorescence (all PSII RCs are assumed to be open)
$F_M (= F_P)$	maximal fluorescence, when all PSII RCs are closed (equal to F_P
	when the actinic light intensity is above 500 μ mol photons m ⁻² s ⁻¹
	and provided that all RCs are active as QA reducing)
$F_{\upsilon} \equiv F_t - F_0$	variable fluorescence at time t
$F_{\rm V} \equiv F_{\rm M} - F_0$	maximal variable fluorescence
<u>Phenomenological fluxes</u>	
ABS/CS = Fo or ABS/CSM = FM	absorption per excited cross-section
$TRo/CS = \Phi Po \cdot (ABS/CS)$	trapping per excited cross-section
$ETo/CS = \Phi Po \cdot \Psi o \cdot (ABS/CS)$	electron transport per excited cross-section
Quantum yields and efficiencies	
$\phi_{Pt} \equiv TR_t / ABS = [1 - (F_t / F_M)] = \Delta F_t / F_M$	quantum yield for primary photochemistry at any time t,
	according to the general equation of Paillotin (1976)
$\varphi_{Po} \equiv TR_0 / ABS = [1 - (F_0 / F_M)]$	maximum quantum yield for primary photochemistry
$\psi_{\rm Eo} \equiv ET_0/TR_0 = (1-V_J)$	efficiency/probability for electron transport (ET), i.e.
	efficiency/probability that an electron moves further than Q_A^-
$\varphi_{Eo} \equiv ET_0 / ABS = [1 - (F_0 / F_M)] \psi_{Eo}$	quantum yield for electron transport (ET)
$\delta_{\text{Ro}} \equiv RE_0/ET_0 = (1-V_I)/(1-V_J)$	efficiency/probability with which an electron from the
	intersystem electron carriers moves to reduce end electron
	acceptors at the PSI acceptor side (RE)
$\varphi_{\rm Ro} \equiv RE_0 / ABS = [1 - (F_0 / F_{\rm M})] \psi_{\rm Eo} \delta_{\rm Ro}$	quantum yield for reduction of end electron acceptors at the PSI
	acceptor side (RE)
$\gamma_{\rm RC} = {\rm Chl}_{\rm RC}/{\rm Chl}_{\rm total} = {\rm RC}/({\rm ABS} + {\rm RC})$	probability that a PSII Chi molecule functions as RC
$RC/ABS = \gamma_{RC}/(1-\gamma_{RC}) = \varphi_{Po}(V_J/M_0)$	Q _A -reducing RCs per PSII antenna Chl (reciprocal of ABS/RC)
<u>Performance indexes</u> (products of terms expressing partial potentials at steps of energy bifurcations)	
$\mu_{\rm RC} = \gamma_{\rm RC} \phi_{\rm Po} \psi_{\rm o}$	performance index (potential) for energy conservation from
$\Gamma_{IABS} = \frac{1 - \gamma_{RC}}{1 - \gamma_{RC}} \cdot \frac{1 - \phi_{Po}}{1 - \psi_{o}}$	exciton to the reduction of intersystem electron acceptors
β_{R_0}	performance index (potential) for energy conservation from
$PI_{total} \equiv PI_{ABS} \cdot \frac{\pi \sigma}{1 - \delta_{Po}}$	exciton to the reduction of PSI end acceptors
NU	