Table 1. Formulae and glossary of terms used by the JIP-test for the analysis of $\mathrm{Chl} a$ fluorescence transient OJIP emitted by dark-adapted photosynthetic samples.

Data extracted from the recorded fluorescence transient OJIP

F_{t}	fluorescence at time t after onset of actinic illumination
$\mathrm{F}_{\mathrm{J}} \equiv \mathrm{F}_{2 \mathrm{~ms}}$	fluorescence intensity at the J-step ($2 \mathrm{~ms} \mathrm{)} \mathrm{of} \mathrm{OJIP}$
$\mathrm{F}_{\mathrm{I}} \equiv \mathrm{F}_{3} \mathrm{mms}$	fluorescence intensity at the I-step ($30 \mathrm{~ms} \mathrm{)} \mathrm{of} \mathrm{OJIP}$
F_{P}	maximal recorded fluorescence intensity, at the peak P of OJIP
Fluorescence parameters derived from the extracted data	
$\mathrm{F}_{0} \cong \mathrm{~F}_{50 \mu \mathrm{~s}}$ or $\cong \mathrm{F}_{20 \mu}$	minimal fluorescence (all PSII RCs are assumed to be open)
$\mathrm{F}_{\mathrm{M}}\left(=\mathrm{F}_{\mathrm{P}}\right)$	maximal fluorescence, when all PSII RCs are closed (equal to F_{P} when the actinic light intensity is above $500 \mu \mathrm{~mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ and provided that all RCs are active as Q_{A} reducing)
$\mathrm{F}_{\mathrm{u}} \equiv \mathrm{F}_{\mathrm{t}}-\mathrm{F}_{0}$	variable fluorescence at time t
$\mathrm{Fv} \equiv \mathrm{F}_{\mathrm{M}}-\mathrm{F}_{0}$	maximal variable fluorescence
Phenomenological fluxes	
$\mathrm{ABS} / \mathrm{CS}=\mathrm{Fo}$ or $\mathrm{ABS} / \mathrm{CSM}=\mathrm{FM}$	absorption per excited cross-section
TRo/CS $=$ ФPo $\cdot(\mathrm{ABS} / \mathrm{CS})$	trapping per excited cross-section
ETo/CS $=\Phi$ Ро $\cdot \Psi 0 \cdot(\mathrm{ABS} / \mathrm{CS})$	electron transport per excited cross-section
Quantum yields and efficiencies	
$\varphi_{\mathrm{Pt}} \equiv \mathrm{TR}_{\mathrm{t}} / \mathrm{ABS}=\left[1-\left(\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{M}}\right)\right]=\Delta \mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\mathrm{M}}$	quantum yield for primary photochemistry at any time t, according to the general equation of Paillotin (1976)
$\varphi_{\mathrm{P}_{0}} \equiv \mathrm{TR}_{0} / \mathrm{ABS}=\left[1-\left(\mathrm{F}_{0} / \mathrm{F}_{\mathrm{M}}\right)\right]$	maximum quantum yield for primary photochemistry
$\psi_{\mathrm{Eo}} \equiv \mathrm{ET}_{0} / \mathrm{TR}_{0}=\left(1-\mathrm{V}_{\mathrm{J}}\right)$	efficiency/probability for electron transport (ET), i.e. efficiency/probability that an electron moves further than $\mathrm{Q}_{\mathrm{A}^{-}}$
$\varphi_{\mathrm{Eo}} \equiv \mathrm{ET}_{0} / \mathrm{ABS}=\left[1-\left(\mathrm{F}_{0} / \mathrm{F}_{\mathrm{M}}\right)\right] \psi_{\text {Eo }}$	quantum yield for electron transport (ET)
$\delta_{\text {Ro }} \equiv \mathrm{RE}_{0} / \mathrm{ET}_{0}=\left(1-\mathrm{V}_{\mathrm{I}}\right) /\left(1-\mathrm{V}_{\mathrm{J}}\right)$	efficiency/probability with which an electron from the intersystem electron carriers moves to reduce end electron acceptors at the PSI acceptor side (RE)
$\varphi_{\mathrm{Ro}} \equiv \mathrm{RE}_{0} / \mathrm{ABS}=\left[1-\left(\mathrm{F}_{0} / \mathrm{F}_{\mathrm{M}}\right)\right] \psi_{\text {Eo }} \delta_{\text {Ro }}$	quantum yield for reduction of end electron acceptors at the PSI acceptor side (RE)
$\gamma_{\mathrm{RC}}=\mathrm{Chl}_{\mathrm{RC}} / \mathrm{Chl}_{\text {total }}=\mathrm{RC} /(\mathrm{ABS}+\mathrm{RC})$	probability that a PSII Chl molecule functions as RC
$\mathrm{RC} / \mathrm{ABS}=\gamma_{\mathrm{RC}} /\left(1-\gamma_{\mathrm{RC}}\right)=\varphi_{\mathrm{Po}_{0}}\left(\mathrm{~V}_{\mathrm{J}} / \mathrm{M}_{0}\right)$	Q ${ }_{\text {A-reducing }} \mathrm{RCs}$ per PSII antenna Chl (reciprocal of ABS/RC)
Performance indexes (products of terms expressing partial potentials at steps of energy bifurcations)	
$\mathrm{PI}_{\mathrm{ABS}} \equiv \frac{\gamma_{\mathrm{RC}}}{1-\gamma_{\mathrm{RC}}} \cdot \frac{\varphi_{\mathrm{Po}}}{1-\varphi_{\mathrm{Po}}} \cdot \frac{\psi_{\mathrm{o}}}{1-\psi_{\mathrm{o}}}$	performance index (potential) for energy conservation from exciton to the reduction of intersystem electron acceptors
$\mathrm{PI}_{\text {total }} \equiv \mathrm{PI}_{\mathrm{ABS}} \cdot \frac{\delta_{\mathrm{Ro}}}{1-\delta_{\mathrm{Ro}}}$	performance index (potential) for energy conservation from exciton to the reduction of PSI end acceptors

