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Abstract: Vegetable grafting has primarily been used in the commercial production of high-value
crops in the Solanaceae and Cucurbitaceae families. In this study, we explored the feasibility of
making a novel graft between pac choi (Brassica rapa L. var. chinensis) and daikon radish (Raphanus
sativus L. var. longipinnatus) to create a plant with harvestable pac choi leafy vegetable above-ground,
and a daikon radish taproot below-ground. ‘Mei Qing Choi’ pac choi (scion) was grafted onto ‘Bora
King’ daikon radish (rootstock). Grafted pac choi–daikon radish plants did not show a decrease in
SPAD value, canopy size, leaf number, leaf area, or above-ground weight compared with self-grafted
pac choi plants. However, taproot formation was reduced in grafted pac choi–daikon radish plants, as
shown by decreased taproot length, diameter, fresh weight, and dry weight compared with non- and
self-grafted daikon radish plants. Surprisingly, grafting with radish increased the photosynthetic rate
of the pac choi. This pilot study demonstrated the potential of creating a new pac choi–daikon radish
vegetable product to help save growing space and minimize waste at consumption, as pac choi roots
are not eaten and radish leaves are usually discarded. The inter-generic grafting between B. rapa var.
chinensis and R. sativus var. longipinnatus could also provide a unique model system to help elucidate
scion-rootstock synergy and above- and below-ground sink competition in horticultural crops.
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1. Introduction

Grafting has become an effective practice in the production of high-value solanaceous and
cucurbitaceous vegetables to help overcome biotic and abiotic stresses and improve crop productivity [1–
3]. Although grafting also has been used as a tool in plant physiology studies of Arabidopsis (Arabidopsis
thaliana L.) [4], for accelerating the breeding work of common beans (Phaseolus vulgaris L.) [5], and for
combating Verticillium wilt of globe artichoke (Cynara cardunculus L. subsp. Scolymus) [6], grafting in
other vegetable species beyond Solanaceae and Cucurbitaceae is generally not practiced commercially.
Interestingly, some attempts have been made to explore the feasibility of grafting vegetable plants in
Brassicaceae. Oda et al. [7] tested inter-varietal, inter-specific, and inter-generic grafting among cabbage
(Brassica oleracea L. var. capitata), kale (Brassica oleracea var. sabellica), kohlrabi (Brassica oleracea var.
gongylodes), Chinese cabbage (Brassica rapa L. subsp. pekinensis), turnip (Brassica rapa subsp. rapa),
Japanese mustard (Takana) (Brassica juncea L. var. integrifolia), and Japanese radish (Raphanus sativus L.
var. longipinnatus) and obtained successful grafts. Particularly, an adhesive and hardener system was
developed for making grafts between Chinese cabbage (scion) and turnip (rootstock) [8]. Recently,
Chen et al. [9] evaluated the survival rate of cabbage grafted onto Chinese kale (B. oleracea Alboglabra
group) rootstocks and assessed the feasibility of using grafting to improve cabbage head quality.
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The effort of cruciferous vegetable grafting has not only broadened the potential use of vegetable
grafting as a management tool, but also presents the possibility of creating a novel vegetable product
with added value. In the case of grafted Chinese cabbage/turnip plants, the above-ground portion of
Chinese cabbage—a leafy vegetable, and the below-ground portion of turnip—a root vegetable, can
be harvested from the same plant. This type of rootstock–scion combination holds promise for space
saving in small-scale intensive cultivation systems. Moreover, the grafted Chinese cabbage/turnip
vegetable may possess added economic value with minimal waste, since many consumers may prefer
not to eat turnip leaves and could be drawn to the novelty of this new product. However, the Chinese
cabbage and turnip grafting study of Oda and Nakajima [8] only reported a 50% graft survival rate
and observed restricted development of the Chinese cabbage head.

In this proof of concept study, we grafted the pac choi (B. rapa var. chinensis) scion onto the
daikon radish (R. sativus var. longipinnatus) rootstock to generate a vegetable plant that produced
a pac choi leafy vegetable above-ground and an edible daikon radish root below-ground. Pac choi
and daikon radish are among specialty vegetables increasingly grown for local markets in the U.S.
Although edible, daikon radish leaves are often discarded at consumption. Recent genetic studies
supported the feasibility of making successful inter-generic grafts between B. rapa and R. sativus.
Yang et al. [10] sequenced the chloroplast noncoding region and found that R. sativus was closely
related to B. rapa/oleracea and proposed that Raphanus was derived from hybridization between B.
rapa/oleracea and B. nigra, the two evolutionary lineages in the genus Brassica. Furthermore, the
reciprocal hybridization between R. sativus and B. rapa has been proven viable [11]. Vigorous growth
was also observed for most of the successful primary hybrids between B. rapa and R. sativus [12]. On the
other hand, according to Tonosaki et al. [13], when hybridized with R. sativus, only one particular
breeding line of B. rapa (‘Shogoin-kabu’) successfully produced hybrid seeds, whereas most other lines
failed due to embryo breakdown.

By grafting the pac choi scion onto the daikon radish rootstock, the objectives of this pilot
experiment were to examine the feasibility of developing successful grafts for harvesting both pac choi
leaves and daikon radish taproot from the same plant, and to compare the growth and development of
grafted plants with self-grafted and non-grafted pac choi and daikon radish plants.

2. Materials and Methods

Two experiments were carried out in this study. The first experiment was a pilot study to test
the feasibility of grafting pac choi onto daikon radish. The second experiment was intended to
provide a better understanding of above-ground growth and below-ground development of this
unique scion-rootstock system over an extended post-grafting period of plant establishment. In both
experiments, ‘Bora King’ (BK), a daikon radish with purple taproots (Johnny’s Selected Seeds, Winslow,
ME, USA) was used as the rootstock, while ‘Mei Qing Choi’ (MQ) pac choi (Johnny’s Selected Seeds)
was used as the scion. They were selected based on our preliminary study in which these two cultivars
were found to be compatible for grafting and have similar hypocotyl diameters.

2.1. Setup of the Pilot Experiment

Pac choi and daikon radish were seeded on 7 and 13 November 2016, respectively. The pac choi
was seeded 6 d earlier than the daikon radish in order to match the stem diameter of the seedlings at
grafting, as the daikon radish germinated and emerged much quicker than the pac choi based on a
preliminary seeding test. All the seeds were sown in 72-cell Speedling trays (Speedling Inc., Ruskin,
FL, USA) and filled with Fafard-2 potting mix (Sun Gro Horticulture, Agawam, MA, USA) containing
a mixture of peat moss, perlite, vermiculite, and dolomite lime. Plants were grown in a greenhouse
at the University of Florida campus (Gainesville, FL, USA). Water-soluble fertilizer 20N-8.7P-16.7K
(Jack’s Classic; Jr Peters Inc., Allentown, PA, USA) was applied on 17 and 28 November at a nitrogen
(N) concentration of 200 mg L−1.
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Plants were grafted on 30 November 2016 (0 d after grafting (DAG)) using the splice grafting
method [1]. Twenty-four plants were grafted using seedlings with the most consistent growth. With
the purpose of ensuring consistent grafting quality, only a small number of plants were grafted in
this pilot experiment after earlier attempts at practicing the grafting technique. The daikon radish
seedlings were severed using a double edge razor blade at approximately a 45-degree angle below
cotyledons to remove the shoots, with pac choi scions cut at the hypocotyl with the same angle just
above the soil surface. The cut surfaces of the pac choi scion and the daikon radish seedlings with
shoot removal were conjoined using a 1.5 mm silicone grafting clip (Johnny’s Selected Seeds). Grafted
plants were then placed in a healing chamber constructed by wrapping a metal shelving unit with
thin plastic film (Uline Econo-Wrapper (0.02 mm), Uline corporation, Pleasant Prairie, WI, USA) in
a temperature-controlled room with air temperature set at 23 ◦C and relative humidity (RH) at 99%.
Light was provided by two, 54-watt T5 fluorescent lights (Philips Lighting Company, Somerset, NJ,
USA) at a photosynthetic photon flux density (PPFD) of 56 µmol m−2 s−1 at seedling canopy level for
12 h each day. An additional plastic tray with a wet sheet of germination paper was placed inside the
healing chamber to help maintain humidity.

From 5 DAG, the healing chamber was gradually cut open and the ambient RH setting was
reduced to 60%. At 8 DAG, the plastic film was completely removed, and grafts remained exposed in
the temperature-controlled room until 13 DAG. Water was applied to plants by filling the bottom of
the tray for absorption. All the grafted plants were transferred to a greenhouse at 13 DAG, and graft
survival rate was determined by counting the number of live and dead plants; only plants with turgid
leaves were counted as living. At harvest, the number of surviving grafted plants was counted again
for calculation of the final graft survival rate, as some plants severely declined following transplanting
into pots.

At 16 DAG, surviving grafted plants were transplanted into 11.36 L black plastic pots (1200C;
Hummert International, Earth City, MO, USA) filled with Fafard-2 soilless mix (Sun Gro Horticulture)
for continued monitoring of the survival of the grafted plants. In addition, five plants of non-grafted
‘Mei Qing Choi’ and ‘Bora King’ were potted as controls. All the plants were placed on the greenhouse
bench following a completely randomized design. Organic fertilizer MicroSTART60 3N-0.9P-2.5K
(Perdue AgriRecycle, LLC., Seaford, DE, USA) was applied to each pot at the rate of 80 g/pot. Drip
irrigation was used by placing one 1.89 L h−1 emitter (Woodpecker pressure compensating junior
dripper; Netafim USA, Fresno, CA, USA) in each pot; plants were watered once a day for 3 min.
Irrigation increased to twice per day for 2 min each time starting at 56 DAG. Insecticidal soap (Safer
Brand; Woodstream Corporation, Lancaster, PA, USA) was sprayed at 56 DAG and lacewing larvae
(Chrysoperla rufilabris (Neuroptera: Chrysopidae); Rincon-Vitova Insectaries, Ventura, CA, USA) were
released at 64 DAG for aphid control. The average day and night temperatures of the greenhouse
during the plant growth were 22.8 ◦C and 16.5 ◦C, respectively.

2.2. Setup of the Follow-Up Experiment

A follow-up experiment was conducted in 2019 to further explore the above-ground growth and
below-ground taproot development in grafted pac choi–daikon radish plants. ‘Mei Qing Choi’ (MQ)
pac choi was grafted onto ‘Bora King’ (BK) daikon radish (MQ/BK), while non-grafted pac choi (MQ)
and daikon radish (BK) as well as self-grafted pac choi (MQ/MQ) and daikon radish (BK/BK) were used
as controls. A randomized complete block design with four replications (blocks) and ten grafted plants
per treatment per replication (block) was used in the grafting experiment. MQ and BK were seeded
into 72-cell trays on 8 and 14 February 2019, respectively. Fish & seaweed organic liquid fertilizer
2N-1.3P-0.8K (Neptune’s Harvest, Gloucester, MA, USA) and 0N-0P-41.5K potassium sulfate (Big K;
JHBiotech, Inc., Ventura, CA, USA) were applied at concentrations of 200 mg L−1 N and 200 mg L−1

K2O at the seedling growth stage on 18 and 26 Feb. Plants were grafted on 1 March 2019 using the
aforementioned grafting method. Grafted plants were healed in an air-conditioned laboratory room
with the same set up of healing chamber as in 2016. Supplemental light was provided for 10 h each
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day during the healing process. The air temperature and RH of the laboratory room were 23.8 ± 0.5 ◦C
and 47.6 ± 13.1%. The plastic film was completely removed at 8 DAG. Water was gently sprayed onto
the soil surface using a wash bottle when needed to avoid wetting foliage. All the grafted plants were
moved into a greenhouse at 13 DAG where the average day and night temperatures were 27.1 ◦C and
20.7 ◦C, respectively. Graft survival rate was determined for each grafting treatment in each replication
by counting the number of live and dead plants at 17 DAG. At 19 DAG, 24 plants from each treatment
with healthy and consistent growth were chosen and randomly reassigned to four blocks with six
plants in each block for further evaluation of the growth of the grafted plants in a greenhouse pot study,
following a randomized complete block design. Plants were transplanted into 11.36 L black plastic
pots filled with PRO-MIX premium organic vegetable and herb mix (Premier Tech Ltd., Quakertown,
PA, USA) which contained 60–75% peat moss plus peat humus, compost, perlite, gypsum, limestone,
organic fertilizer, and mycorrhizae. Drip irrigation was used by placing one 1.89 L h−1 emitter in each
pot; the plants were watered twice a day for 3 min per cycle between 21 and 39 DAG and irrigation
increased to 4 min per cycle thereafter. Adventitious roots developed from the graft union area were
monitored and removed once a week as needed after the plants were transplanted into the pots.

2.3. Plant Growth Measurements

In the 2019 follow-up experiment, leaf relative chlorophyll content and canopy size were measured
at 33 and 41 DAG. A SPAD 502 Plus Chlorophyll Meter (Spectrum Technologies, Aurora, IL, USA) was
used to measure leaf relative chlorophyll content on three randomly chosen plants per treatment per
block by averaging four readings obtained from two distal areas of the leaf blade for each of the two
most recent mature leaves per plant. The canopy size was measured on 3 plants of MQ/BK, MQ/MQ,
and MQ for each block using digital photographs processed with ImageJ/Fiji (version 2.0.0) [14].
A ruler held in the frame of each photograph set the scale for pixels per linear cm and enabled digital
measurement of length and width of the plant canopy. The canopy size was then determined by
multiplying the canopy length and width.

2.4. Gas Exchange Measurements

Gas-exchange was measured in the 2019 follow-up experiment at 34 and 46 DAG between 10:00
am and 3:00 pm by using an open gas exchange system (Li-6800; Li-Cor Inc., Lincoln, NE, USA)
on three plants per treatment per block. Leaf transpiration rate (E, mmol H2O m−2 s−1), net CO2

assimilation rate (A, mmol CO2 m−2 s−1), intercellular CO2 concentration (Ci, µmol CO2 mol−1 air),
and stomatal conductance to water (gsw, mmol H2O m−2 s−1) were measured at steady-state on the
third (fully expanded) leaf from the top of each plant [15]. The PPFD was set at 800 µmol m−2 s−1,
with CO2 concentration at 400 ppm, vapor pressure deficit at 1.2 kPa, and leaf temperature at 27–29 ◦C.
Instantaneous water use efficiency (iWUE) (µmol CO2 mmol−1 H2O) was calculated as A/E [16] and
stomatal conductance (Gs, mol m−2 s−1) was calculated as gsw/1.6 [17].

2.5. Yield Components and Biomass Accumulation at Harvest

For the 2016 pilot study, the above-ground part (above soil line) of all the plants of MQ/BK,
non-grafted MQ, and non-grafted BK were harvested at 68 DAG. The number of leaves longer than
4 cm were counted for each plant. The MQ/BK and non-grafted BK were then uprooted, and the
taproots were separated and rinsed with water to remove excess potting soil from the roots. Taproot
length (from the stem base to the end of the radish taproot) of each harvested plant was recorded, and
the diameter of the widest part of each radish taproot was measured with a digital caliper. For the 2019
follow-up experiment, harvest and destructive sampling were carried out at 47 DAG. Five out of six
plants per treatment per replication were randomly sampled. The above-ground part (above soil line)
of each plant was removed from the pot, and leaves longer than 4 cm were counted and scanned with
a leaf area meter (LI-3100; Li-Cor Inc., Lincoln, NE, USA). Only taproots from MQ/BK, BK, and BK/BK
were harvested and cleaned. Pak choi and daikon radish leaves and taproots from the 2016 and 2019
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experiments were first weighed then dried at 65 ◦C for 7 d (until constant weight) to determine the
above-ground and below-ground fresh and dry biomass.

2.6. Mineral Nutrient Contents in Leaf and Root Tissues

In the 2019 experiment, the dried root samples from the BK, BK/BK, and MQ/BK treatments and
dried leaf samples from the MQ, MQ/MQ, and MQ/BK treatments were ground using a Thomas Wiley
Laboratory mill (Model 4; Arthur H. Thomas Company, Philadelphia, PA, USA) and sent to Waters
Agricultural Laboratories (Camilla, GA, USA) to measure the concentrations of the macronutrients N,
phosphate (P), sulfate (S), potassium (K), calcium (Ca), and magnesium (Mg) and the micronutrients
boron (B), zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu). Nutrient accumulation was calculated
by multiplying the nutrient concentration by dry tissue biomass.

2.7. Statistical Analyses

The pilot study followed a completely randomized design with five replications and one plant per
replication. In the follow-up experiment, a randomized complete block design with four replications
(blocks) and ten plants per experimental unit was used before plants were transplanted to larger pots,
when the number was reduced to six plants per experimental unit. Data were analyzed using a linear
mixed model in the GLIMMIX procedure of SAS (SAS Version 9.4 for Windows; SAS Institute, Cary,
NC, USA). Some data were transformed by taking the square root to meet the assumptions of the model
(normality, homogeneity, linearity) as needed, while results were presented using the original data
following statistical analysis. Fisher’s least significant difference (LSD) test (α = 0.05) was conducted
for multiple comparisons of different measurements among treatments.

3. Results and Discussion

3.1. Graft Survival Rate

In the 2016 pilot study, the survival rate of MQ/BK was 95.8% at 13 DAG but decreased to 87.5% at
68 DAG (data not shown). In the 2019 experiment, there was no difference in survival rate (p = 0.483)
between BK/BK (79%), MQ/MQ (92%), and MQ/BK (77%) at 17 DAG (data not shown). The relatively
high survival rates of MQ/BK indicated good graft compatibility between ‘Mei Qing Choi’ pac choi
and ‘Bora King’ daikon radish. Both the edible pac choi leafy green part of the plant and the radish
taproot developed in MQ/BK (Figure 1A–C). According to Oda and Nakajima [8], ‘Taibyoh 60-nichi’
Chinese cabbage grafted onto ‘Taibyoh hikari’ turnip had a survival rate of only approximately 50%;
however, it was attributed to the small size of the seedlings at grafting rather than graft incompatibility.
In our studies, we also used 1.5 mm or even smaller grafting clips to graft younger and tender seedlings
as the hypocotyl tissue of radish and pac choi plants tend to become more lignified as they grow.
The lower survival rate observed in the 2019 experiment may have been due to an issue with properly
matching the plant stem diameters at grafting since the hypocotyl of the daikon radish plant had
grown thicker than expected at the time of grafting. As stem diameter and alignment of cambial
tissues affect the success of grafting [18–20], matching plant stem diameters between these two species,
which have thin hypocotyls at the optimum stage for grafting, is a challenge for achieving successful
grafts. In this study, daikon radish was seeded 6 d earlier than pac choi to help match their stem
diameters, but with less than desirable results, especially in the 2019 experiment owing to the seasonal
variability of greenhouse conditions that led to unpredictable growth rate of plants. As shown by
Hayashida et al. [21] and Kwack et al. [22], the hypocotyl growth of pac choi and radish seedlings can
be manipulated by light quality and intensity. Employing a more controlled environment for growing
seedlings until ready for grafting seems to be advisable for future work.
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Figure 1. Grafted plants with ‘Mei Qing Choi’ pac choi as scion and ‘Bora King’ daikon radish as 
rootstock. (A) A well-healed grafted pac choi–daikon radish seedling. (B) Formation of the taproot of 
daikon radish grafted with pac choi. (C) Longitudinal section of the grafted pac choi–daikon radish 
plant at harvest. (D) Comparison between self-grafted ‘Bora King’ (left), ‘Mei Qing Choi’ pac choi 
grafted onto ‘Bora King’ daikon radish (middle), and non-grafted ‘Bora King’ (right) at harvest. (E) 
Longitudinal section of the graft union area of grafted pac choi–daikon radish plant at harvest. (F) 
Longitudinal section of the graft union area of self-grafted ‘Bora King’ daikon radish at harvest. (G) 
Longitudinal section of the graft union area of self-grafted ‘Mei Qing Choi’ pac choi plant at harvest. 

3.2. Plant Growth Parameters 

SPAD and canopy size were measured at 33 and 41 DAG in the 2019 experiment (Table 1). There 
was a significant difference in SPAD among treatments at 33 DAG, but no difference was found at 41 
DAG. At 33 DAG, non-grafted pac choi showed lower levels of leaf SPAD values than non- and self-
grafted daikon radish. The lack of difference in SPAD between MQ/BK, MQ, and MQ/MQ indicated 
that BK as a rootstock did not impair accumulation of chlorophyll by MQ. The similar canopy size 
between MQ/BK, MQ, and MQ/MQ at both 33 and 41 DAG (Table 1) suggested that grafting with 
daikon radish did not reduce the leaf growth and expansion of pac choi.  
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choi and daikon radish plants at 33 d after grafting (DAG) and 41 DAG in the 2019 experiment. 

Treatment z 
Relative Chlorophyll Content (SPAD) Canopy (cm2 Plant−1) 

33 DAG 41 DAG 33 DAG 41 DAG 
BK 37.2 ± 0.8 a y 40.6 ± 0.7 a - - 

BK/BK 36.7 ± 0.8 ab 40.3 ± 0.7 a - - 
MQ 34.1 ± 0.8 c 40.7 ± 0.7 a 54.26 ± 2.71 a 78.32 ± 3.35 a 

MQ/MQ 34.6 ± 0.8 bc 42.1 ± 0.7 a 58.90 ± 2.71 a 76.90 ± 3.35 a 
MQ/BK 33.3 ± 0.8 c 40.0 ± 0.7 a 52.32 ± 2.71 a 75.42 ± 3.35 a 
p value 0.006 0.194 0.150 0.813 
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Non-grafted ‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = 
‘Mei Qing Choi’ pac choi grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means 
followed by the same letter are not significantly different at p ≤ 0.05 according to Fisher’s LSD test. 

As shown in Figure 1B, above-ground pac choi and below-ground daikon radish taproot 
developed normally in MQ/BK plants. We observed cavities in the vascular bundle connections at 
the graft union area in grafted pac choi plants with the daikon radish rootstock but not in self-grafted 
daikon radish plants (Figure 1E,F), similar to what was reported in grafted Chinese cabbage/turnip 

Figure 1. Grafted plants with ‘Mei Qing Choi’ pac choi as scion and ‘Bora King’ daikon radish as
rootstock. (A) A well-healed grafted pac choi–daikon radish seedling. (B) Formation of the taproot
of daikon radish grafted with pac choi. (C) Longitudinal section of the grafted pac choi–daikon
radish plant at harvest. (D) Comparison between self-grafted ‘Bora King’ (left), ‘Mei Qing Choi’ pac
choi grafted onto ‘Bora King’ daikon radish (middle), and non-grafted ‘Bora King’ (right) at harvest.
(E) Longitudinal section of the graft union area of grafted pac choi–daikon radish plant at harvest.
(F) Longitudinal section of the graft union area of self-grafted ‘Bora King’ daikon radish at harvest.
(G) Longitudinal section of the graft union area of self-grafted ‘Mei Qing Choi’ pac choi plant at harvest.

3.2. Plant Growth Parameters

SPAD and canopy size were measured at 33 and 41 DAG in the 2019 experiment (Table 1).
There was a significant difference in SPAD among treatments at 33 DAG, but no difference was found
at 41 DAG. At 33 DAG, non-grafted pac choi showed lower levels of leaf SPAD values than non-
and self-grafted daikon radish. The lack of difference in SPAD between MQ/BK, MQ, and MQ/MQ
indicated that BK as a rootstock did not impair accumulation of chlorophyll by MQ. The similar canopy
size between MQ/BK, MQ, and MQ/MQ at both 33 and 41 DAG (Table 1) suggested that grafting with
daikon radish did not reduce the leaf growth and expansion of pac choi.

Table 1. Relative chlorophyll content and canopy size of grafted, self-grafted, and non-grafted pac choi
and daikon radish plants at 33 d after grafting (DAG) and 41 DAG in the 2019 experiment.

Treatment z

Relative Chlorophyll Content
(SPAD) Canopy (cm2 Plant−1)

33 DAG 41 DAG 33 DAG 41 DAG

BK 37.2 ± 0.8 a y 40.6 ± 0.7 a - -
BK/BK 36.7 ± 0.8 ab 40.3 ± 0.7 a - -

MQ 34.1 ± 0.8 c 40.7 ± 0.7 a 54.26 ± 2.71 a 78.32 ± 3.35 a
MQ/MQ 34.6 ± 0.8 bc 42.1 ± 0.7 a 58.90 ± 2.71 a 76.90 ± 3.35 a
MQ/BK 33.3 ± 0.8 c 40.0 ± 0.7 a 52.32 ± 2.71 a 75.42 ± 3.35 a
p value 0.006 0.194 0.150 0.813

z BK = Non-grafted ‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted
‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi
grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means followed by the same letter are not
significantly different at p ≤ 0.05 according to Fisher’s LSD test.

As shown in Figure 1B, above-ground pac choi and below-ground daikon radish taproot developed
normally in MQ/BK plants. We observed cavities in the vascular bundle connections at the graft union
area in grafted pac choi plants with the daikon radish rootstock but not in self-grafted daikon radish
plants (Figure 1E,F), similar to what was reported in grafted Chinese cabbage/turnip plants [8]. In our
experiments, grafting was carried out at 16 d after sowing (DAS) for daikon radish and 23 DAS for pac
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choi. According to Liu et al. [23], as early as 16 DAS, tuberization began in turnip (B. rapa subsp. Rapa)
and the center part of the upper hypocotyl which accounted for about 50% of the cross section area was
occupied by pith cells, with an actively dividing cambium circle and a thin xylem ring. When pac choi
was grafted at 23 DAS, more than 50% of the center part of the upper hypocotyl of pac choi consisted
of secondary xylem cells with highly lignified cell walls. This discrepancy in hypocotyl structure
between scion and rootstock seedlings likely resulted in the formation of the cavity inside the graft
union during healing as observed in our study (Figure 1E), especially considering that the cavity did
not exist in self-grafted daikon radish (Figure 1F) or pac choi (Figure 1G).

Leaf number and taproot length and diameter were measured at harvest in both experiments
(Table 2). In the 2016 pilot study, MQ/BK had more leaves than non-grafted BK, but did not differ
significantly from MQ. In the 2019 experiment, MQ/BK had 35% and 26% more leaves than self-
and non-grafted BK, respectively, but no difference was found between self- and non-grafted BK.
Similar leaf numbers were observed for MQ/BK, MQ/MQ, and MQ. Total leaf area was also measured
in the 2019 experiment and MQ/BK had smaller leaf area than all other treatments. In both 2016 and
2019, MQ/BK produced significantly shorter and smaller taproots than non-grafted BK and in 2019,
MQ/BK was also smaller in taproot diameter than BK/BK (Table 2 and Figure 1D). Our results were
consistent with Zheng et al. [24], who reported that the diameter of turnip was significantly smaller
when grafted with rapeseed (B. rapa subsp. oleifera) than self-grafted turnip. BK/BK did not differ
significantly from BK in taproot length but was 7% smaller in taproot diameter.

Table 2. Total leaf number and area and taproot length and diameter of grafted, self-grafted, and
non-grafted pac choi and daikon radish plants at harvest in the 2016 pilot study and the 2019 experiment.

Treatment z Leaf Number (no.
Plant−1)

Leaf Area (mm2

Plant−1)
Taproot Length

(cm)
Taproot Diameter

(mm)

2016
BK 18.9 ± 2.3 b y - 10.9 ± 0.5 a 68.55 ± 3.98 a
MQ 26.6 ± 2.4 ab - - -

MQ/BK 28.1 ± 2.4 a - 8.2 ± 0.5 b 51.92 ± 3.56 b
p value 0.020 0.005 0.017

2019
BK 15.7 ± 0.6 b 2521.73 ± 60.62 a 9.2 ± 0.5 a 45.24 ± 0.71 a

BK/BK 14.7 ± 0.5 b 2401.06 ± 60.62 ab 8.4 ± 0.5 a 42.20 ± 0.71 b
MQ 20.4 ± 0.6 a 2423.26 ± 60.62 ab - -

MQ/MQ 19.5 ± 0.6 a 2311.67 ± 60.62 b - -
MQ/BK 19.8 ± 0.6 a 2080.12 ± 60.62 c 6.8 ± 0.5 b 34.94 ± 0.71 c
p value <0.001 0.002 0.005 <0.001

z BK = Non-grafted ‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted
‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi
grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means followed by the same letter are not
significantly different at p ≤ 0.05 according to Fisher’s LSD test.

The primary root axis of radish consists of two anatomically distinct parts. The upper part
originates from the hypocotyl whereas the lower part is true root tissue. Both lower and upper regions
of the radish root thicken to form succulent tissue by increases in both cell number and cell size [25,26].
In this grafting experiment, the cut made on the daikon radish plant was in the thickening region of the
hypocotyl as demonstrated by the longitudinal section of the graft union area of self-grafted daikon
radish plant (Figure 1F). Very likely, grafting pac choi with radish shortens the hypocotyl part that could
contribute to the formation of the taproot, leading to reduced taproot length compared with non-grafted
radish, while self-grafting radish does not involve any loss of hypocotyl tissue. Furthermore, it has been
found that in turnip the hypocotyl tissue is the main contributor to underground tuber development,
and hypocotyl excision led to a lower expression level of genes controlling tuberization, leading to a
substantial inhibition of tuber formation [24].
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3.3. Gas-Exchange Parameters

Leaf transpiration rate, net CO2 assimilation rate, intercellular CO2 concentration, stomatal
conductance, and instantaneous water use efficiency (iWUE) were compared for MQ/BK, MQ, MQ/MQ,
BK, and BK/BK at 34 and 46 DAG in the 2019 experiment (Table 3). No difference in leaf transpiration
rate was observed at 34 DAG, while at 46 DAG, MQ/BK had a similar transpiration rate as MQ and
MQ/MQ, and all three treatments showed a 95% increase of transpiration rate on average than BK and
BK/BK. Grafting significantly increased the net CO2 assimilation rate of MQ/BK compared with MQ
and MQ/MQ by 15% and 28%, respectively, at 34 DAG, while no difference was observed between
MQ/BK and BK/BK. At 46 DAG, MQ/BK showed a net CO2 assimilation rate that was 48% and 45%
higher than MQ and MQ/MQ, respectively, but it did not differ significantly from BK/BK. MQ/BK also
had a 21% higher net CO2 assimilation rate than BK at 46 DAG. Very likely, MQ/BK had a stronger sink
strength than MQ/MQ and MQ, which contributed to the higher photosynthetic rate observed [27].
Interestingly, at 34 DAG, MQ and MQ/MQ had similar intercellular CO2 concentrations, which were
significantly higher than that of other treatments. At 46 DAG, MQ/BK, MQ, and MQ/MQ had higher
intercellular CO2 concentration than BK and BK/BK and the same trend was observed for stomatal
conductance at 46 DAG although no difference in stomatal conductance was detected at 34 DAG. At 34
DAG, MQ/BK had 36% and 53% higher iWUE than MQ and MQ/MQ, but did not differ from BK and
BK/BK. However, at 46 DAG, MQ/BK, MQ, and MQ/MQ exhibited a similar level of iWUE which was
significantly lower than that of BK and BK/BK.

Table 3. Leaf transpiration rate (E), net CO2 assimilation rate (A), intercellular CO2 concentration (Ci),
stomatal conductance (gs), and instantaneous water use efficiency (iWUE) of grafted, self-grafted,
and non-grafted pac choi and daikon radish plants at 34 d after grafting (DAG) and 46 DAG in the
2019 experiment.

Treatment
y

E (mmol H2O m−2 s−1) A (µmol CO2 m−2 s−1) Ci (µmol CO2 mol−1 air) Gs (mol m−2 s−1) iWUE (µmol CO2 mmol−1

H2O) z

34 DAG 46 DAG 34 DAG 46 DAG 34 DAG 46 DAG 34 DAG 46 DAG 34 DAG 46 DAG

BK 4.81 ± 0.71 a
x 2.80 ± 0.79 b 21.41 ± 0.75

a
17.22 ± 0.89

b
298.14 ±
11.10 b

251.33 ±
10.59 b 0.28 ± 0.05 a 0.15 ± 0.05 b 4.92 ± 0.56 a 7.26 ± 0.54 a

BK/BK 4.68 ± 0.71 a 4.18 ± 0.79 b 19.66 ± 0.75
ab

18.93 ± 0.89
ab

305.43 ±
11.10 b

273.09 ±
10.59 b 0.27 ± 0.05 a 0.25 ± 0.05 b 4.55 ± 0.56

ab 6.27 ± 0.54 a

MQ 4.95 ± 0.71 a 6.61 ± 0.79 a 16.10 ± 0.75
c

14.06 ± 0.89
c

330.36 ±
11.10 a

345.22 ±
10.59 a 0.32 ± 0.05 a 0.41 ± 0.05 a 3.59 ± 0.56

bc 2.49 ± 0.54 b

MQ/MQ 5.51 ± 0.71 a 6.33 ± 0.79 a 14.41 ± 0.75
c

14.31 ± 0.89
c

331.63 ±
11.10 a

346.80 ±
10.59 a 0.33 ± 0.05 a 0.40 ± 0.05 a 3.20 ± 0.56 c 2.51 ± 0.54 b

MQ/BK 4.35 ± 0.71 a 7.47 ± 0.79 a 18.44 ± 0.75
b

20.76 ± 0.89
a

299.39 ±
11.10 b

336.66 ±
10.59 a 0.25 ± 0.05 a 0.45 ± 0.05 a 4.88 ± 0.56 a 2.94 ± 0.54 b

p value 0.564 <0.001 <0.001 <0.001 0.011 <0.001 0.362 0.001 0.024 <0.001

z Instantaneous water use efficiency (iWUE) = net CO2 assimilation rate (A)/transpiration rate (E). y BK = Non-grafted
‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted ‘Mei Qing Choi’ pac
choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi grafted onto ‘Bora King’
daikon radish. x Mean ± SE (standard error); means followed by the same letter are not significantly different at p ≤
0.05 according to Fisher’s LSD test.

Lower leaf transpiration rate and intercellular CO2 concentration of radish compared with pac
choi observed in the later growth stage could be owing to different leaf structures. Pac choi leaves
are fleshy and glossy, while radish has trichomes on both upper and lower leaf surfaces [28]. It has
been suggested that trichome density is negatively related to transpiration rate and CO2 diffusion rate
as trichomes can increase boundary layer resistance [29–31]. The trichomes on daikon radish leaves
might have affected the leaf transpiration rates and intercellular CO2 concentrations measured in this
study. Further examination is needed to directly compare the intrinsic leaf structures of pac choi and
daikon radish plants for their effects on gas exchange and gas exchange measurements.

Most water loss from leaves of intact plants is generally through open stomatal apertures [32],
thus the higher stomatal conductance of MQ/BK was likely the driving factor for its lower iWUE
compared with BK and BK/BK despite its higher net CO2 assimilation rate. It has been found in tobacco
(Nicotiana tabacum L.) that stomatal conductance did not always parallel photosynthetic capacity
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changes [33,34], which could partially explain the relatively high stomata conductance, but low net
CO2 assimilation rate observed in MQ and MQ/MQ.

3.4. Leaf and Taproot Harvest and Biomass Partition

In the 2016 pilot study, MQ and MQ/BK had 151% and 104% higher above-ground fresh weight
(FW) than BK, and the former two did not differ significantly (Table 4). No difference was detected
in above-ground dry weight (DW) between these three treatments. MQ/BK produced significantly
lower below-ground FW and DW compared with BK, while similar levels of total FW and DW were
observed between MQ/BK and BK.

Table 4. Above-ground, below-ground, and total fresh weight (FW) and dry weight (DW) of grafted,
self-grafted, and non-grafted pac choi and daikon radish plants at harvest in the 2016 pilot study and
the 2019 experiment.

Treatment z Above-Ground
FW (g Plant−1)

Below-Ground
FW (g Plant−1)

Above-Ground
DW (g Plant−1)

Below-Ground
DW (g Plant−1)

Total FW (g
Plant−1)

Total DW (g
Plant−1)

2016

BK 240.07 ± 54.58 b
y 332.15 ± 33.23 a 20.41 ± 2.52 a 19.84 ± 1.56 a 572.21 ± 67.48 a 41.08 ± 4.00 a

MQ 602.76 ± 48.82 a - 25.50 ± 2.25 a - - -
MQ/BK 490.63 ± 48.82 a 110.44 ± 29.72 b 24.42 ± 2.25 a 7.60 ± 1.20 b 601.07 ± 60.36 a 32.02 ± 3.10 a
p value 0.001 <0.001 0.331 <0.001 0.792 0.142

2019
BK 171.64 ± 6.62 d 103.47 ± 5.25 a 12.85 ± 0.25 a 6.58 ± 0.33 a 275.17 ± 4.44 b 19.45 ± 0.41 a

BK/BK 162.27 ± 6.62 d 77.55 ± 4.57 b 12.34 ± 0.25 a 5.33 ± 0.30 b 239.91 ± 4.44 c 17.67 ± 0.41 b
MQ 329.83 ± 6.62 a - 10.09 ± 0.25 b - - -

MQ/MQ 293.51 ± 6.62 b - 8.98 ± 0.25 c - - -
MQ/BK 269.08 ± 6.62 c 43.59 ± 3.45 c 9.43 ± 0.25 bc 2.24 ± 0.20 c 312.93 ± 4.44 a 11.68 ± 0.41 c
p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

z BK = Non-grafted ‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted
‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi
grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means followed by the same letter are not
significantly different at p ≤ 0.05 according to Fisher’s LSD test.

In the 2019 study, MQ/BK showed a significant reduction in above-ground FW compared with
MQ and MQ/MQ by 18% and 8%, respectively (Table 4). MQ, MQ/MQ, and MQ/BK on average had
78% higher above-ground FW than the average of BK and BK/BK. However, BK and BK/BK had
significantly higher above-ground DW than other treatments and MQ/BK did not differ significantly
in above-ground DW from MQ and MQ/MQ. Grafting with pac choi significantly decreased the
below-ground FW and DW of daikon radish compared with non- and self-grafted daikon radish.
BK had higher below-ground FW and DW than BK/BK by 33% and 23%, respectively. MQ/BK exhibited
a significantly higher total FW but a reduction in total DW compared with BK and BK/BK. The water
content of both radish taproots and leaves was about 93%, whereas it reached 97% in the pac choi
leaves, indicating that the pac choi leafy part had a disproportional contribution to the FW of MQ/BK.
The differences in total FW and DW between 2016 and 2019 studies may be due to the different growing
seasons and the time between grafting and harvest as the period from grafting to harvesting was 45%
longer in 2016 compared with the 2019 study. Overall, the two experiments suggested that grafting
between ‘Mei Qing Choi’ pac choi and ‘Bora King’ daikon radish had a greater impact on radish taproot
development than the influence on pac choi leaf growth as the taproot DW of MQ/BK was significantly
lower than BK, but the leaf DW was similar to that of MQ.

The grafting procedure per se negatively affected biomass accumulation in edible part in both
self-grafted BK/BK and MQ/MQ compared with their non-grafted counterparts. Grafting can be viewed
as mechanical wounding that triggers redistribution of the local resources or mobilization of resources
from neighboring tissues to the injured part [35], which may divert the resources that could be used for
plant growth. Moreover, wounding could induce jasmonic acid production, leading to suppression of
mitosis [36], and thus reduce cell number and lead to reduced plant growth.
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Gibberellins (GAs) have long been known to inhibit potato tuberization possibly by their
involvement in photoperiodic control of tuber formation [37,38]. Grafting potato (Solanum tuberosum
L.) with tomato (Solanum lycopersicum L.) decreased stolon (underground shoot) number and length as
well as tuber number, but increased the gibberellic acid (GA3) content of stolon and tuber compared
with self-grafted potato [39]. The level of GAs has also been reported to play a vital role in carrot
(Daucus carota L. var. sativus) elongation and expansion [40]. Leaf application of GA3 inhibited tuberous
root growth but improved shoot growth in radish, while leaf application of paclobutrazol, an inhibitor
of gibberellin biosynthesis, improved taproot growth [41]. Auxin may also affect hypocotyl-tuber
growth in turnip as show in in-vitro studies [23]. Peres et al. [38] grafted tomato mutants, which were
incapable of certain hormone biosynthesis or photomorphogenesis, onto potato plants and suggested
that failure to produce certain chemicals by the tomato mutant scion may have impeded formation of
the potato tuber. Hence, modifications of signal molecules produced in and transported from pac choi
may have led to reduced growth of the daikon radish taproot.

In most cases, plants partition photosynthates preferentially to vegetative organs in the early
to middle growth stage and to reproductive or storage organs in late growth stage [42]. However,
many root vegetable plants grow the vegetative biomass and develop the storage root at the same time,
leading to a balance between them [42,43]. Grafting may disturb the source–sink balance between
scion and rootstock [44]. Both the leaf apical meristem of pac choi and the taproot part of daikon
radish are strong sinks [45] and possibly competed for photosynthates in the pac choi–daikon radish
grafts. The source-sink relationship was likely altered to support the growth of pac choi leaves at a
cost of reduction in radish taproot development in the grafted plants. The dry mass of the leafy part
accounted for 81% of the total DW of MQ/BK, but for non-grafted daikon radish, the leafy part only
accounted for 66% of the total DW.

For Chinese cabbage grafted onto turnip, the heading of the Chinese cabbage was restricted by
the thickening of the turnip taproot, resulting in a small Chinese cabbage head when the turnip taproot
was harvested [8]. This imbalance was attributed to the discrepancy in crop maturity and growth
cycle requirement as the heading of the Chinese cabbage requires more time than the development of
the turnip taproot. In our study, ‘Mei Qing Choi’ pac choi and ‘Bora King’ daikon radish were both
fast-growing cultivars with 45 and 49 d to maturity, respectively (Johnny’s Selected Seeds). However,
we seeded the faster maturing pac choi 6 d earlier than the slower maturing daikon radish in order
to better match their stem diameters for grafting. Further examinations are needed to elucidate the
scion–rootstock interactions for grafting scenarios in which accumulated biomass of both scion (shoots)
and rootstock (enlarged taproot) are harvested together for economic yield. In this special scenario,
competition for water and nutrients, photosynthetic capacity, and photosynthate partitioning between
above- and below-ground sinks are of particular importance. Interestingly, the reciprocal grafting
experiment by Sugiura et al. [42] using Raphanus sativus genotypes with differential hypocotyl sink
activities demonstrated the genotype-dependent autonomous regulation of the hypocotyl sink activity.

3.5. Mineral Nutrient Contents in Pac Choi Leaves and Daikon Radish Roots of Grafted Plants

Dried leaves of MQ, MQ/MQ, and MQ/BK, and dried taproots of BK, BK/BK, and MQ/BK from the
2019 experiment harvest were used to examine the macronutrient and micronutrient concentrations
(Table 5) and accumulation (Table 6). Leaf N concentration did not differ significantly between
MQ/BK and MQ. Interestingly, MQ/MQ had a significantly higher N concentration in the leaf tissue
compared with MQ/BK. However, this seems contradictory to the finding that MQ/BK had a higher
leaf photosynthetic rate (Table 3) than MQ/MQ. It needs to be pointed out that the entire above-ground
leaf tissue was sampled for leaf nutrient analysis, whereas the most recently mature leaves were
used for photosynthesis measurements. While MQ/BK had a lower level of leaf N concentration in
the above-ground biomass, its higher leaf photosynthetic rate could be due to remobilization of N
compounds from the older leaves to the most recently mature leaves that were used for photosynthesis
measurement [46]. Compared with non-grafted pac choi, grafting with the daikon radish rootstock
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significantly decreased K and S concentrations in the leaf tissue of pac choi (by 21% and 45%,
respectively), but it increased Zn concentration in the leaf tissue by 37%. MQ/BK had significantly
higher concentrations of N (by 14%), K (by 30%), Mg (by 47%), Ca (by 38%), B (by 36%), and Zn
(by 63%) in the taproot compared with the average of BK and BK/BK, while there were no differences
between BK and BK/BK. By contrast, the concentration of S in the taproot of MQ/BK was reduced
by 44% compared with BK and BK/BK. Overall, there was not a clear relationship between plant
nutritional status and reduction of taproot in MQ/BK. Nutrient uptake of grafted pac choi–daikon
radish in relation to scion-rootstock interactions is an intriguing area to explore.

Table 5. Mineral nutrient concentrations in leaves of grafted, self-grafted, and non-grafted pac
choi and in taproots of grafted, self-grafted, and non-grafted daikon radish plants at harvest in the
2019 experiment.

Treatment
z N (mg g−1) P (mg g−1) K (mg g−1) Mg (mg

g−1)
Ca (mg

g−1) S (mg g−1) B (µg g−1) Zn (µg g−1) Mn (µg
g−1) Fe (µg g−1) Cu (µg

g−1)

Leaves

MQ 51.5 ± 0.9 ab
y 10.3 ± 0.3 a 92.1 ± 1.7 b 6.4 ± 0.2 a 30.2 ± 1.0 a 15.4 ± 0.4 a 44.6 ± 1.6 a 77.5 ± 3.5 b 180.4 ± 7.1

a
103.5 ± 6.8

a 0.7 ± 0.1 a

MQ/MQ 53.7 ± 0.9 a 10.5 ± 0.3 a 96.1 ± 1.7 a 6.7 ± 0.2 a 31.3 ± 1.0 a 15.4 ± 0.4 a 45.9 ± 1.6 a 76.7 ± 3.5 b 195.3 ± 7.1
a

101.7 ± 6.8
a 0.7 ± 0.1 a

MQ/BK 48.4 ± 0.9 b 9.7 ± 0.3 a 73.1 ± 1.7 c 6.4 ± 0.2 a 32.0 ± 1.0 a 8.5 ± 0.4 b 45.6 ± 1.6 a 106.5 ± 3.5
a

180.8 ± 7.1
a

120.1 ± 6.8
a 1.1 ± 0.1 a

p value 0.008 0.147 <0.001 0.352 0.437 <0.001 0.835 <0.001 0.175 0.070 0.057
Taproot

BK 28.2 ± 0.7 b 7.6 ± 0.3 a 51.1 ± 2.4 b 1.5 ± 0.1 b 3.3 ± 0.2 b 10.3 ± 0.3 a 20.7 ± 0.9 b 63.2 ± 3.8 b 27.0 ± 1.5 a 105.2 ± 17.9
a 0.9 ± 0.2 a

BK/BK 28.2 ± 0.7 b 7.4 ± 0.3 a 49.7 ± 2.4 b 1.4 ± 0.1 b 3.3 ± 0.2 b 10.6 ± 0.3 a 20.2 ± 0.9 b 65.0 ± 3.8 b 23.4 ± 1.5 a 92.2 ± 16.8
a 1.0 ± 0.2 a

MQ/BK 32.2 ± 0.7 a 8.1 ± 0.3 a 65.7 ± 2.4 a 2.2 ± 0.1 a 4.6 ± 0.2 a 5.9 ± 0.3 b 27.8 ± 0.9 a 104.3 ± 3.8
a 25.5 ± 1.5 a 90.9 ± 16.7

a 1.1 ± 0.2 a

p value 0.008 0.128 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.201 0.664 0.677

z BK = Non-grafted ‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted
‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi
grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means followed by the same letter are not
significantly different at p ≤ 0.05 according to Fisher’s LSD test.

Table 6. Mineral nutrient contents accumulated in leaves of grafted, self-grafted, and non-grafted pac
choi and in taproots of grafted, self-grafted, and non-grafted daikon radish plants at harvest in the
2019 experiment.

Treatment
z

N (mg
Plant−1)

P (mg
Plant−1)

K (mg
Plant−1)

Mg (mg
Plant−1)

Ca (mg
Plant−1)

S (mg
Plant−1)

B (µg
Plant−1)

Zn (µg
Plant−1)

Mn (µg
Plant−1)

Fe (µg
Plant−1)

Cu (µg
Plant−1)

Leaves

MQ 519.6 ± 13.3 a
y

104.2 ± 3.8
a

929.3 ± 25.1
a 64.6 ± 1.9 a 304.6 ± 10.8

a
155.0 ± 5.2

a
450.0 ± 21.1

a
781.9 ± 37.5

b
1819.5 ±

84.7 a
1043.8 ±

69.4 a 6.9 ± 1.2 a

MQ/MQ 481.6 ± 13.3
ab 93.8 ± 3.8 a 862.5 ± 25.1

a 59.9 ± 1.9 a 280.7 ± 10.8
a

138.1 ± 5.2
b

412.9 ± 21.1
a

688.1 ± 37.5
c

1753.8 ±
84.7 a

911.5 ± 69.4
a 6.4 ± 1.2 a

MQ/BK 456.2 ± 13.3 b 91.3 ± 3.8 a 690.4 ± 25.1
b 60.1 ± 1.9 a 300.7 ± 10.8

a 79.7 ± 5.2 c 429.8 ± 21.1
a

1003.4 ±
37.5 a

1707.4 ±
84.7 a

1133.1 ±
69.4 a 10.5 ± 1.2 a

p value 0.025 0.103 <0.001 0.123 0.172 <0.001 0.487 <0.001 0.636 0.081 0.081
Taproot

BK 185.3 ± 5.7 a 49.9 ± 1.5 a 333.8 ± 11.5
a 9.9 ± 0.3 a 21.8 ± 0.5 a 67.4 ± 2.4 a 135.3 ± 4.1

a
414.8 ± 15.9

a
178.4 ± 10.0

a
723.3 ±
106.9 a 6.0 ± 1.2 a

BK/BK 150.2 ± 5.7 b 39.3 ± 1.5 b 264.5 ± 11.5
b 7.7 ± 0.3 b 17.3 ± 0.5 b 56.4 ± 2.4 b 107.5 ± 4.1

b
346.6 ± 15.9

b
124.4 ± 10.0

b
503.8 ±
106.9 ab 5.5 ± 1.2 a

MQ/BK 72.1 ± 5.7 c 18.3 ± 1.5 c 148.2 ± 11.5
c 4.8 ± 0.3 c 10.2 ± 0.5 c 13.2 ± 2.4 c 62.9 ± 4.1 c 235.2 ± 15.9

c 57.8 ± 10.0 c 207.3 ±
106.9 b 2.5 ± 1.2 a

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.027 0.120

z BK = Non-grafted ‘Bora King’ daikon radish; BK/BK = Self-grafted ‘Bora King’ daikon radish; MQ = Non-grafted
‘Mei Qing Choi’ pac choi; MQ/MQ = Self-grafted ‘Mei Qing Choi’ pac choi; MQ/BK = ‘Mei Qing Choi’ pac choi
grafted onto ‘Bora King’ daikon radish. y Mean ± SE (standard error); means followed by the same letter are not
significantly different at p ≤ 0.05 according to Fisher’s LSD test.

With respect to leaf nutrient accumulation, MQ/BK had 37% greater Zn accumulation compared
with the average of MQ/MQ and MQ (Table 6). However, MQ/BK decreased N, K, and S content by
12%, 26%, and 49%, respectively, compared with MQ. In terms of nutrient accumulation in the taproot,
MQ/BK showed significantly lower accumulation of all measured minerals except Fe and Cu relative
to BK and BK/BK, which was likely associated with the small size of the taproot in MQ/BK. The lower
accumulation of nutrients in the taproot demonstrated that pac choi–daikon radish favored growth of
the pac choi leaves at the expense of the radish taproot.
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4. Conclusions

Successful grafts were produced between B. rapa var. chinensis and R. sativus var. longipinnatus in
this study, resulting in a novel ‘pac choi–daikon radish’ product that may help save growing space and
have added-value as perceived by farmers and consumers. More research is needed to optimize the
seeding time and management of seedling production to help further improve the graft survival rate.
Grafting pac choi with daikon radish did not severely impair the growth of the above-ground parts as
grafted pac choi had similar SPAD value, canopy size, leaf number, and above-ground DW compared
with non-grafted pac choi. Interestingly, grafting with radish increased the photosynthetic ability of
the pac choi. However, grafting the daikon radish with pac choi decreased the taproot formation as
reflected by the reduced length, diameter, FW and DW of the taproot. Future studies could explore
different approaches such as cultivar selection and nutrient management to better balance the sizes of
the above- and below-ground parts of this new pac choi–daikon radish product. Given the wide range
of B. rapa var. chinensis and R. sativus var. longipinnatus cultivars, it would be interesting to explore
different grafting combinations to characterize the range of graft performance. We only tested the graft
performance under greenhouse conditions, and the grafted plants need to be further evaluated in field
growing systems where biotic and abiotic stressors can be intensified. Generally, grafting between pac
choi and daikon radish showed more negative impacts on mineral nutrient levels in radish taproots
than in pac choi leaves. Sensory properties of the ‘pac choi–daikon radish’ product are unknown, and
this aspect deserves further assessment. The inter-generic grafting between B. rapa var. chinensis and R.
sativus var. longipinnatus could also provide a unique model system to further our understanding of
scion-rootstock synergy and above- and below-ground sink competition in horticultural crops toward
improving the use of grafting technology in sustainable vegetable production.
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