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Abstract: The assessment of soil salinization risk at the field scale requires modeling of the spatial
variability of soil salinity. This paper presents a probabilistic approach to estimate and map a risk
index using all available auxiliary information. A probabilistic methodology is proposed to estimate
the conditional probability of exceeding the assigned threshold value of a generic indicator of soil
salinity. A geostatistical non-parametric technique, probability kriging, was used to assess the risk of
soil salinization and delineate different hazard zones within a field. The technique relies on indicator
coding of information. The approach was applied to soil electrical conductivity measurements
collected in an experimental field located in the Nile Delta region in Egypt, and submitted over time
to trials with different fertilization treatments. The application of the method allowed delineation
of a north-eastern zone in the field with a high risk of soil salinization due to its lack of cultivation
for a long time and nearness to buildings that prevent water infiltration. The method proved to be
quite promising from the perspective of precision agriculture and it is easily extendable to any sort
of remote and proximal sensing auxiliary information, including information on the deepest layers
of soil.

Keywords: GIS; indicator kriging; uniform transformation; multivariate geostatistics; probability
kriging; precision agriculture

1. Introduction

Soil salinity is a hazard for agriculture productivity because of its direct and indirect effects on
plant growth, which can cause a decline in crop yield and even total crop failure in severe cases [1–3].
The direct effects limit plant water uptake by reducing the osmotic potential and thus the total soil
water potential, as well as through the toxicity of specific ions such as boron, chloride, and sodium [2].
The indirect effects are mainly due to an increase in the concentration of sodium ions in the exchange
complex of soil, which affects some soil attributes (e.g., porosity, water retention and permeability) and
processes (e.g., swelling, compaction, surface sealing) [2].

The classification of soil salinity is based on the total salt concentration of an equilibrated solution,
which is commonly measured by the electrical conductivity of the saturated paste extract (ECe), as
well as on the concentration of sodium ions relative to calcium and magnesium ions [4].

Nile Delta areas are very vulnerable to soil salinization due to geomorphic, climatic and human
factors [5,6]; recent studies showed that 12% of these areas are at a high hazard level (especially in
the eastern Nile Delta) [6]. Intense soil salinization processes have often been started or intensified
by unsustainable agricultural practices, mostly related to cereal cropping (wheat, rice, maize) [7].
Farmers in Egypt over-apply agrochemicals (fertilizers, pesticides, etc.) in order to maximize yield
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productivity without paying attention to the risks that may result from such practices. The process of
soil salinization is more frequent in heavy soils with high clay content due to poor drainage.

Soil salinity is then a very crucial problem for the Egyptian farmers of the Nile Delta. Also several
other factors tend to increase the salinity of the soils including intense evapotranspiration, high clay
content of the soils that inhibits the internal drainage of water, and soil sealing resulting from the
high sodium content on the surface. Therefore, soil amelioration is often required in order to avoid
significant economic losses in rural areas.

Assessment and mapping of soil salinization risk are useful tools to support sustainable land
planning, and thereby, to mitigate soil degradation. This can be done by individuating specific
indicators of soil salinity, and defining a methodology for appropriately weighting and combining
them with a set of auxiliary information that is assumed to influence the processes of interest [8–11].

Risk assessment is generally based on the estimation of variables, which are subject to extreme
uncertainty [12,13]. This uncertainty depends on both the intrinsic nature of the variables and the cost
of obtaining information about them, which limits the number of samples. Risk assessment consists of
observing the frequency (probability) with which specified criteria are exceeded or fail to be met [14].
A probabilistic approach is preferred to a deterministic one because mechanistic models are generally
unable to describe the complex spatial and temporal variability observed in the attributes of saline
soil. More specifically, the numerous factors involved in the process of soil salinization and the lack of
exact knowledge of their number and interactions lead us to prefer a probabilistic approach. Such an
approach is based on the assumption that our knowledge of natural phenomena is imperfect; therefore,
it is necessary to determine the uncertainty of our inferences or predictions.

A statistical and probabilistic approach relies on the available information (observations) and
consists of estimating the uncertainty of any particular unknown value of the variable of interest
by modeling the data distribution conditional on available information. In Bayesian formalism, any
information that corresponds to knowledge existing prior to the observations of the variable of interest,
is called a prior distribution. Any observation of the variable of interest will update such a distribution
since it contains additional information about its actual value. Such an updated distribution is
called a posterior distribution. The proposed approach of risk assessment is based on this process of
updating the prior distribution to create a posterior distribution. This will be discussed in detail in the
methodological section.

Geostatistics is a set of probabilistic and statistical tools that are suitable for estimating attributes
distributed in space [15] and can then be used for probabilistic interpolation (prediction), where an
error variance is attached to each estimate using, for example, ordinary kriging [16,17]. Unfortunately,
unless a particular parametric (for example, Gaussian) distribution of spatial errors is assumed, error
variance cannot provide a reliable error probability distribution, which is required for risk assessment.
Gaussian error distribution models are symmetric and are fully characterized by two parameters, error
mean and error variance. While such models are suitable for the distribution of measurement errors in
the highly controlled environment of a laboratory, they are of questionable use for spatial interpolation
errors [18]. The spatial distribution of chemical concentrations in soil are generally highly skewed and
thus, they are associated with strongly asymmetric probability density function models that are used for
uncertainty estimation [18]. Moreover, as mentioned above, nature is rarely Gaussian and the spatial
distribution of environmental/earth attributes that do not fall under human control, is almost always
non-Gaussian, unlike the distribution of repetitive measurements in a “highly controlled, carefully
planned, laboratory experiment” [18]. Unfortunately, this is often ignored in a lot of scientific literature.

Non-parametric geostatistics is based on no assumed parametric model of error distribution and
makes the modeling of uncertainty a priority [18,19]. This uncertainty is modeled as a probability
distribution of the variable of interest rather than an estimation error, as in kriging [19]. More specifically,
modeling the probability that the variable at any unsampled location is greater than a given threshold
value is related to the proportion of neighboring data values exceeding the same threshold. Indicator
kriging [19], a non-parametric approach, is based on assigning a binary indicator of 1 or 0 depending
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on whether the observation is greater or less than a threshold value. However, the binary indicator has
no uncertainty because observation is assumed to be certain. The indicator approach has become quite
popular in natural resources studies and many authors have used it [20–24]. However, as Journel [18]
points out, observations are certainly affected by measurement errors and indicator kriging does not
take uncertainty related to measurement errors into account. Moreover, indicator kriging is often faced
with problems that arise when the order relationships are not respected [19]. In order to improve
indicator kriging estimation, another non-parametric approach based on the cokriging estimator has
also been proposed [18]. This method uses the information from all available attributes and considers
the order relations of the observed values [25]. The uniform values, also called standardized ranks, of
all available observed values are considered as auxiliary variables in order to improve the estimation
of the probability of the attribute being greater/lower than the given threshold.

The probability kriging has been shown to perform better than indicator kriging for delineating
contaminated soils [19,21] or groundwater [26].

The objective of this paper is to describe a risk assessment method based on multivariate
non-parametric geostatistics and GIS, in which nine variables affecting soil salinization were selected
and their spatial variability was modeled by using a probability kriging approach.

2. Materials and Methods

2.1. Study Area

An experimental field (3.1 ha) planted with different irrigated vegetable crops within the Faculty
of Agriculture of Zagazig University (Sharkia Governorate, Egypt) (31◦34’16.256” E, 30◦34’6.734” N,
centroid coordinates) [27] was the study area (Figure 1). Soil in the study area is classified as Nile
alluvium soil, which represents 2.58% of Egypt, and the area is old, flat agricultural land according to
the land use/land cover (LULC) classification with a slope gradient of 0.0%–0.2% [28]. The soil texture
is classified as heavy clay according to USDA classification [29]. Water is supplied through a surface
irrigation system using water from the Nile river, and it has electrical conductivity values ranging
between 0.31 and 0.46 dS m−1 [30].
Agronomy 2020, 10, x FOR PEER REVIEW 4 of 14 

 

Figure 1. Location of study area and soil sampling scheme. 

In the laboratory, the soil samples were dried, crushed and sieved through a 2 mm sieve and 
analyzed for the selected soil properties: (a) electrical conductivity (EC, dS m−1) was determined in 
1:5 soil water extract (ECe) [33] and the results were converted to soil paste extract using the 
multiplicative factor of 7 for clayey soils [34]; (b) soluble ions (Na, K, Ca, Mg, CO3, HCO3, Cl, SO4) 
[33]; (c) soil organic carbon (SOC) as a percent [35], which was then converted into organic matter 
(SOM); (d) available nitrogen NH4-N and NO3-N extracted by KCl 2 N solution and the extracted 
nitrogen was determined using the steam distillation procedure using MgO and Devarda alloy 
(consisting of aluminum (44%–46%), copper (49%–51%) and zinc (4%–6%) [35]; (e) the available 
phosphorus content (P) (mg kg−1) was extracted by the Olsen method [35] with the extracted 
phosphorus measured calorimetrically using the ascorbic acid method with a UV-Vis-NIR 
spectrophotometer; and (f) available potassium (K) (mg kg−1), which was extracted using 1.0 N 
ammonium acetate at pH 7.0 and determined using the flame photometer method [35]. 

2.2. Geostatistical Techniques 

2.2.1. Indicator Kriging 

The proposed geostatistical approach is based on a simple binary transformation, whereby each 
datum of the soil attribute (ECe), assumed as criteria to evaluate salinization risk, is transformed into 
an indicator, i.e., a binary value according to the critical threshold. By convention, data are coded as 
0 or 1, if they lie below or above the given critical threshold value 0z , in conformity with the assumed 
criteria for the definition of soil salinization risk: 

( ) ( )1    if 
;

0   otherwise
α

α

≥
= 


o
0

z z
i z

x
x  (1) 

The characterization of the spatial distribution requires an indicator semivariogram to be 
calculated using the indicator data ( );α 0i zx : 

( ) ( ) ( )
( ) 2

0 0 0
1

1; ; ;
2 ( ) α α

α
γ

=
= − +  

N

I z i z i z
N

h

h x x h
h

 (2) 

Figure 1. Location of study area and soil sampling scheme.

The climate is mainly characterized by hot dry summers and mild winters with very low annual
precipitation of 90–125 mm. Climatic data were measured at the Zagazig meteorological station for
the period 1983–2016. The minimum mean air temperature occurs in January (13 ◦C) whereas the
maximum mean value occurs in August (29.3 ◦C). In the same months, the relative air humidity is 57%
and 43%, respectively [31].
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A total of sixty-six georeferenced soil samples from 0.0 m to 0.20 m in depth were collected using
a core cylinder with a 10 cm diameter and a height of 20 cm at the nodes of a semi-regular 25 m × 25 m
grid (Figure 1). At the time of sampling, the field was planted with wheat and clover.

Twelve soil chemical properties, deemed relevant for characterizing soil salinity and fertility,
were selected: pH, electrical conductivity (ECe, dS m−1), organic matter (OM, %), available nitrogen
(N, mg kg−1), available phosphorus (P, mg kg−1), available potassium (K, mg kg−1), soluble ions
(Ca, Mg, Na, K, mEq L−1), sodium adsorption ratio (SAR) and calcium carbonate content (CaCO3,
g kg−1). In particular, ECe was used as the only indicator variable and its critical threshold was set to
6 dS m−1, since higher values may negatively affect the potential yield of wheat crops [32]. Wheat was
chosen as the reference crop because it is the main winter crop in the Nile Delta area.

In the laboratory, the soil samples were dried, crushed and sieved through a 2 mm sieve and
analyzed for the selected soil properties: (a) electrical conductivity (EC, dS m−1) was determined
in 1:5 soil water extract (ECe) [33] and the results were converted to soil paste extract using the
multiplicative factor of 7 for clayey soils [34]; (b) soluble ions (Na, K, Ca, Mg, CO3, HCO3, Cl, SO4) [33];
(c) soil organic carbon (SOC) as a percent [35], which was then converted into organic matter (SOM);
(d) available nitrogen NH4-N and NO3-N extracted by KCl 2 N solution and the extracted nitrogen
was determined using the steam distillation procedure using MgO and Devarda alloy (consisting of
aluminum (44%–46%), copper (49%–51%) and zinc (4%–6%) [35]; (e) the available phosphorus content
(P) (mg kg−1) was extracted by the Olsen method [35] with the extracted phosphorus measured
calorimetrically using the ascorbic acid method with a UV-Vis-NIR spectrophotometer; and (f) available
potassium (K) (mg kg−1), which was extracted using 1.0 N ammonium acetate at pH 7.0 and determined
using the flame photometer method [35].

2.2. Geostatistical Techniques

2.2.1. Indicator Kriging

The proposed geostatistical approach is based on a simple binary transformation, whereby each
datum of the soil attribute (ECe), assumed as criteria to evaluate salinization risk, is transformed into
an indicator, i.e., a binary value according to the critical threshold. By convention, data are coded as 0
or 1, if they lie below or above the given critical threshold value z0, in conformity with the assumed
criteria for the definition of soil salinization risk:

i(xα; z0) =

{
1 if z(xα) ≥ zo

0 otherwise
(1)

The characterization of the spatial distribution requires an indicator semivariogram to be calculated
using the indicator data i(xα; z0):

γI(h; z0) =
1

2N(h)

N(h)∑
α=1

[i(xα; z0) − i(xα + h; z0)]
2 (2)

The indicator semivariogram measures how often two values i(xα; z0) and i(xα + h; z0), separated
by a vector h, are on opposite sides of the threshold value zo [19]. An estimation of the unknown
indicator value i∗(xα; z0) in an unsampled point x0 is given by:

i∗(x0; z0) =
n∑
α=1

λα(x0; z0) i(xα; z0) (3)
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where λα is the weight assigned to the indicator datum i(xα; z0). Once a semivariogram model of
the indicator variable i(xα; z0) is fitted, the weights λα(x0; z0) can be obtained by applying ordinary
kriging to a set of n indicator data i(xα; z0) at the neighboring locations xα:

n∑
β=1

λOK
β (x0; z0)γI

(
xα − xβ; z0

)
+ µOK(x0; z0) = γI(xα − x0; z0)

α = 1, . . . , n
n∑
β=1

λOK
β (x0; z0) = 1

(4)

where γI
(
xα − xβ; z0

)
is the semivariogram between a couple of the indicator data i(xα; z0) and i(xβ; z0),

and γI(xα − x0; z0) is the semivariogram between each indicator datum at the neighboring location xα
and the indicator datum being estimated at x0.

Therefore, the unknown value is estimated in Equation (3) as a weighted average of the indicator
data of the same soil attribute (ECe) and the geostatistical technique is called indicator kriging (IK). It is
worth noting that the previous expression is not used as an estimate of the local indicator value i(xα; z0),
although it is built as such, but rather as a probability estimation that the variable of interest (ECe) is
greater than the critical value (6 dS m−1) conditional on the available indicator information [18].

2.2.2. Probability Kriging

IK only uses the indicator part of the variable assumed to measure soil salinity rather than
all the information gathered for soil characterization that relates to the process of salinization.
Probability Kriging (PK) [18] is an enhancement of indicator kriging, because it uses both secondary
information (the laboratory measurements of the other soil attributes) and the primary variable
(indicator information of ECe) at the sampled points xα in a multivariate approach, called coindicator
kriging. In our case, the target variable is a binary variable with values of either 0 or 1, whereas the
correlated variables (soil attributes) are continuous numerical variables. Large differences may occur
between the units of measurement of secondary information and the indicator transforms, which may
cause instability problems when solving the cokriging system.

Since indicator data i(xα; z0) are valued either 0 or 1, it is necessary to first transform the auxiliary
variables z(xα) to the range (0 to 1) through rank order transform [18]:

k(xα) =
r(xα)

N
(5)

where r(xα) ∈ (1, N) is the rank of the datum z(xα) when data are ranked in increasing order, and N
the total number of sample locations.

Therefore, the PK approach requires calculation of the linear model of regionalization (LMC) of the
whole set of experimental semivariograms of both direct indicator and rank-order transformed variables,
and the cross-semivariograms between each pair of variables, regardless of its type (indicator or
rank) [19,36].

PK is then the ordinary cokriging of the indicator transform i∗(xα; z0) and the rank-order transform
k(xα) of each secondary variable; the probability kriging estimate i∗(x0; z0) is given by:

i∗(x0, z0) =

n1∑
α=1

λα(x0, z0)i(xα, z0) +

nb∑
j=1

n j∑
α=1

να, j(x0, z0)k j(xα) (6)

where n1 and n j are the number of observations of the indicator and rank-order transformed variable
j within the neighborhood of x0, respectively; and nb is the number of secondary variables to take
into account. The weights λα(x0; z0) and Vα, j(x0; z0) are obtained by solving the ordinary cokriging
system [19].
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In our study n1 and n j are the same (isotopic case), however, this is not the case with heterotopic
cokriging or when auxiliary information is exhaustively recorded on a grid (proximal and remote
sensing) [37].

As for IK, it is of paramount importance to realize that Equation (3) does not give the expected
(mean) value of the indicator, but rather, the estimated conditional probability that the ECe exceeds the
critical value of 6 dS m−1 by using all available information. both binary and numerical. Equation (3)
can be extended to any type of auxiliary information including subsoil and nominal variables after
transforming the latter to indicator/dummy variables.

2.2.3. Comparison of the Procedures

IK and PK were compared by applying cross-validation [38], which consists of removing
one observation at a time from the data set and then estimating it from the remaining data and
the corresponding error. The error distributions were compared by calculating different statistics:
minimum, mean, maximum, values, standard deviation (STD) and root mean squared standardized
error (RMSSE), which is the mean squared difference between the observed value and the estimated
value standardized by kriging variance. If the model is accurate, RMSSE should be close to unity [39].
Moreover, the correlation coefficient between observation and estimation (r), and between standardized
error and estimation (ρ) and the number of outliers (n) were calculated.

3. Results and Discussion

Table 1 shows the basic statistics for the twelve study variables. The table shows that there is
large variability in soil salinity over the study area with ECe values varying from 1.86 to 54.78 dS
m−1. Moreover, the data distributions of all variables except pH are strongly asymmetrical with
positive skewness.

Table 1. Basic statistics of soil properties.

Variable Min Max Mean Median St. Dev. Skewness Kurtosis

ECe (dS m−1) 1.86 54.78 7.04 3.96 8.58 3.69 18.76
Ca (mEq L−1) 3.50 87.50 12.15 8.40 13.80 4.15 20.86

CaCO3 (g kg−1) 29.00 57.00 40.15 39.50 5.93 0.50 2.69
K (mEq L−1) 0.41 18.80 3.51 2.18 3.67 2.30 9.16

Mg (mEq L−1) 0.00 99.40 12.26 7.00 16.26 3.53 17.11
Na (mEq L−1) 25.27 381.90 57.66 44.77 47.25 5.06 34.06

OM (%) 3.22 9.41 4.71 4.57 0.83 2.71 16.54
SAR (-) 10.07 39.51 16.98 16.35 4.03 2.63 15.51
pH (-) 7.64 8.16 7.99 8.00 0.10 −0.98 3.86

Avail. K (mg kg−1) 240.84 813.87 420.98 380.66 134.67 1.35 4.02
Avail. N (mg kg−1) 23.66 95.55 46.78 46.41 12.82 0.85 4.74
Avail. P (mg kg−1) 11.19 28.23 18.70 17.56 3.68 0.39 2.41

In addition, the high values of kurtosis, which are much greater than 3 (characteristic of normal
distribution), indicate that most values of each variable are quite similar to the mean but with a
few large values that differ significantly from the mean. The only exception is pH, which has an
average value very close to the median value. These characteristics of the data distributions lead to
the assumption that the soil is quite uniform but with some spots that are characterized by very high,
measured attribute values.

Table 2 shows the linear correlation coefficients for the different pairs of variables. Most variables
are significantly correlated with the exception of OM and available N.
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Table 2. Correlation coefficients of the soil properties.

Variable ECe Ca CaCO3 K Mg Na OM SAR pH Av. K Av. N Av. P

ECe 1
Ca 0.96 1

CaCO3 0.42 0.27 1
K 0.92 0.83 0.51 1

Mg 0.98 0.94 0.38 0.89 1
Na 0.95 0.89 0.43 0.85 0.92 1
OM 0.04 0.01 -0.01 0.05 0.06 0.01 1
SAR 0.71 0.58 0.55 0.70 0.62 0.83 −0.03 1
pH −0.43 −0.49 −0.13 −0.39 −0.41 −0.38 0.21 −0.16 1

Av. K 0.36 0.23 0.52 0.65 0.37 0.28 0.13 0.33 −0.09 1
Av. N 0.13 0.20 −0.20 0.14 0.13 0.05 0.05 −0.06 0.02 0.12 1
Av. P 0.40 0.31 0.41 0.48 0.39 0.38 0.03 0.43 0.16 0.47 0.15 1

In particular, ECe is strongly correlated with Ca, K, Mg, Na and SAR and to a lesser extent with
CaCO3, pH, and available K and P, while it is not significantly correlated with OM or available N. Thus,
it seems that the organic component of the soil does not significantly affect the process of salinization.

The indicator transformation of ECe (I_EC) shows that 39% of the data has a value above the
critical threshold of 6 dS m−1. This suggests that soil salinization might be fairly confined but might
also be a warning to take action with some soil remediation work.

However, the above results assume that there is no spatial correlation between observations. Only
a geostatistical structural analysis that specifically considers the cross-semivariograms, can identify the
variables that actually influence the spatial process of soil salinization.

A preliminary variographic analysis between the ECe indicator (I_EC) and the rank-order
transformed variables showed that the cross-semivariograms between I_EC and the transforms of OM,
available N and pH did not exhibit sills significantly different from 0. It was then decided to exclude
them from the subsequent multivariate analysis.

An isotropic linear model of co-regionalization (LMC) was fitted to the set of direct and
cross-semivariograms of I_ECe and the eight rank-order transformed auxiliary variables consisting of
the following spatial structures: a nugget effect and a cubic model with a range of 203 m (Table 3). The
proportion of the random component (error) with respect to the total variance was obtained by adding
the nine eigenvalues of the co-regionalization matrix for the nugget effect (0.132, 0.084, 0.045, 0.042,
0.034, 0.030, 0.016, 0.005, 0.002) [37] and dividing by the total variance of the variables (indicator +

uniform transformed variables). It was approximatively equal to 0.38, which is quite high and could be
reduced by intensifying the point sampling or/and by using a more densely sampled auxiliary variable
with proximal sensing [40].

The goodness of fit was evaluated through a cross-validation test, and the two statistics of mean
and standard deviation of the error standardized by cokriging standard deviation [39] were equal to
0.024 and 1.024, respectively, therefore, they quite close to the optimal values of 0 and 1.

Figure 2 shows the fitted LMC, which shows a sufficiently good fit although the nugget effect is
mostly too high, as previously noted.
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Table 3. Fitted sills of the linear model of co-regionalization relative to the different spatial structures.
The symbol I stands for indicator whereas u stands for uniform transformed.

(1) Nugget Effect

Variable I ECe u_Ca u_CaCO3 u_K u_Mg u_Na u_SAR u_av_K u_av_P

I ECe 0.0864
u_Ca 0.0272 0.0485
u_CaCO3 0.0056 0.0061 0.0485
u_K 0.0174 0.0108 0.0141 0.0372
u_Mg 0.0150 0.0065 0.0094 0.0126 0.0199
u_Na 0.0131 0.0105 0.0085 0.0144 0.0078 0.0122
u_SAR 0.0023 −0.0041 0.0061 0.0102 −0.0093 0.0084 0.0349
u_av_K 0.0095 0.0033 0.0160 0.0316 0.0062 0.0096 0.0098 0.0494
u_av_P −0.0154 −0.0152 0.0041 −0.0004 −0.0038 −0.0053 0.0025 0.0050 0.0523

(2) Cubic Model (Range 203 m)

Variable I ECe u_Ca u_CaCO3 u_K u_Mg u_Na u_SAR u_av_K u_av_P

I ECe 0.1693
u_Ca 0.0697 0.0395
u_CaCO3 0.0689 0.0274 0.0421
u_K 0.0961 0.0459 0.0320 0.0619
u_Mg 0.0822 0.0371 0.0350 0.0499 0.0523
u_Na 0.1005 0.0495 0.0474 0.0592 0.0567 0.0727
u_SAR 0.0931 0.0416 0.0476 0.0509 0.0506 0.0641 0.0605
u_av_K 0.0764 0.0332 0.0187 0.0510 0.0407 0.0414 0.0350 0.0483
u_av_P 0.0475 0.0225 0.0153 0.0328 0.0354 0.0306 0.0272 0.0326 0.0354

By focusing in particular on the cross-semivariograms between I_EC and the uniform transformed
variables, and assuming the distance of the cross-semivariogram model from the dashed line
(intrinsic correlation) as a measure of the strength of the spatial correlation between the two variables [37]
(Figure 2), the following observations can be highlighted. The variables that are most strongly spatially
correlated to the indicator variable are the uniform transformed variables of Na, Mg and K, which
represent the cations adsorbed into the solid matrix of soil. Submitting the soil to fertilization trials,
without monitoring soil salinity and eventually adding leaching requirements might raise the salinity
levels in the soil, especially if the soil is left as bare soil for long time, which is actually the case in the
north-east area of the field. The source of salinity is the consecutive application of fertilizers, which are
dissolved by the irrigation water and then penetrate along the profile. Although soil salinization is not
generally expected with irrigated crops, in this case, the high electrical conductivity values might be
due to a lack of compensation between upward capillary movement, due to high evaporation, and
downward movement of water and solutes, due to the poor soil infiltration.

Differently, the uniform transformed P appears to be the least correlated variable to the indicator
variable probably because of its lower mobility and precipitation as di- and/or tri-calcium phosphate
and thus it does not affect soil salinity. Clearly, mapping the study variables can help considerably in
locating areas at risk and interpreting the probable causes of soil salinization. This is why we have
moved from a traditional statistical analysis to a geostatistical analysis. In order to emphasize the
differences between the various structures of spatial dependence within a thematic map, we opted for
a representation in isoquantiles rather than in a linear scale of colors, so that all color classes, having an
equal number of pixels, were equally represented. Figure 3 shows the cokriged map of the probability
of EC exceeding the critical threshold.
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It is evident that there is a well-defined area to the north-east, where the probability of salinization
is very high, that is, greater than 0.8. Moving from this area to the south and south-east, the probability
decreases so we can consider this area is quite safe from salinization. Such a map leads us to search for
local causes for the high risk of salinization of the soil in the proximity of the north-east. The territory
in the north-east area was previously abandoned for many years without cultivation and subsequent
irrigation. The higher salinity levels might be caused by the accumulation of salts on the surface due
to intense evaporation, which has not been balanced by the infiltration water due to the low rainfall.
Moreover, the absence of plants reduces the removal of cations from the soil, which are absorbed as
minor nutrients.

In addition, this area is close to buildings, which hamper the movement of water and cause it to
accumulate in the area. Further, the area is at a low level compared to the whole field, which favors
water accumulation, and thus the deposit of salts on the surface due to the effect of high evaporation.
The salt accumulation is also enhanced by the high clay content in the soil. In order to improve the
interpretation of the risk map, the maps for the auxiliary variables (the values varying between 0 and
1) selected in this study, are also displayed (Figure 4).
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An overview of these maps suggests that they are strongly consistent since they all show the
highest values in the north-east area. This is an indication that the study variables are different
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representations of the same spatial processes that cause soil salinization in this part of the field. Thus,
the maps support our hypothesis that the salinization process is essentially attributable to the fact that
this area was uncultivated for many years owing to its nearness to buildings, which inhibit the free
circulation of water and solutes in the soil/subsoil.

Finally, these maps can be helpful in the practice of precision agriculture, or more generally, in
site-specific land management [27]. They allow delineation of the area at highest risk once a probability
threshold has been selected, for example 0.8. Different levels of probability can also be set, with
different levels of intervention priority assigned to them. In this way, various remediation operations
will be performed only on this/these area(s) and not uniformly over the entire field. This will lead to
considerable economic savings (less use of chemicals, energy and man/machine working hours), and
the environmental impact will also be significantly reduced. Above all, our analysis clearly stresses the
need to carry out a local analysis, since the causes of pollution can differ significantly in space and
time, even in a small agricultural field.

The above discussion of the results has highlighted the advantages of using a multivariate
approach, which assesses and models the spatial relationships between the various soil attributes
through LMC in order to provide useful insights on the possible causes of the ongoing salinization
process. However, in comparing the two procedures, applying cross-validation made the differences
between the univariate (IK) and the multivariate (PK) non-parametric approaches more objective
(Table 4).

Table 4. Results of cross-validation test for the procedures indicator kriging (Err IK) and probability
kriging (Err PK). RMSSE is the root mean squared standardized error; r is the correlation coefficient
between observation and estimation; ρ is the correlation coefficient between standardized error and
estimation; n is the number of outliers.

Variable Min Max Mean St. Dev. RMSSE r ρ n

Err IK −1.00 0.87 0.005 0.33 1.01 0.73 0.002 3
Err PK −0.54 0.68 0.007 0.26 1.02 0.84 0.004 1

The results of cross-validation show that both procedures perform quite well (Table 4), so the
probability estimates of exceeding the critical threshold for ECe can be regarded as unbiased and
accurate for both methods. However, compared to IK, PK has less variability of errors, smaller
minimum and maximum absolute errors, higher correlation between observations and estimates, and
fewer outliers.

4. Conclusions

A probabilistic multivariate geostatistical approach was proposed to assess salinization risk. Maps
were produced for both the individual soil indicator and the soil attributes expressed in relative terms.
Thus, the procedure allowed for the identification of both the areas of high salinization risk, and the
variables that mainly affect the process in those zones.

The method could be extended to any type of soil contaminant and auxiliary information, even
with different spatial support after data homogenization, using the geostatistical techniques of data
fusion, which explicitly take change of support into account [41]. The approach also proved to be quite
promising from the perspective of precision agriculture, because it can effectively delineate the field
into zones with different levels of priority and management for soil recovery. Moreover, the profusion
of big data from current technology makes the approach easily extendable to any sort of remote and
proximal sensing auxiliary information for assessment and modelling of soil contamination in view of
precision remediation of potentially contaminated sites. Actually, risk analysis can benefit greatly from
the use of remote and proximal sensing because the outcomes of the sensors can be used, according
to the proposed approach, in conjunction with sparse ground measurements of the variables more
directly related to the risk being assessed. In particular, the use of geophysical sensors such as ground
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penetrating radar exploring the deeper depths of subsoil, in conjunction with analytical measurements
of shallow soil, would allow for a better interpretation of the possible causes of soil salinization and the
separation of natural from anthropogenic sources of variation, which provides the basis for efficient
and effective remediation action.
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