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Abstract: Nowadays, consumer awareness of the impact of site of origin and method of production
on the quality and safety of foods, and particularly of fresh produce, is driving the research towards
developing various techniques to assist present certifications, traceability, and audit procedures.
With regard to horticultural produce, consumer preferences have shifted to fruit and vegetables,
which are healthy and ecologically produced, and toward processed foods having sustainable or social
certifications and with sites of origin clearly reported on the label. Some recent studies demonstrate the
potentiality of near infrared (NIR) technology (including hyperspectral imaging) for discriminating
fresh and processed horticultural products based on their composition, quality attributes, and origin.
These studies principally mention that each biological tissue possesses a fingerprint NIR spectrum,
which consists of a unique and characteristic pattern of radiation, distinguishing a particular
biological tissue from physically and/or chemically different samples. Particularly, recent studies
discriminated apples, wine, wheat kernels, and derived flours based on their geographical origins.
Spectral information allowed discrimination among growing methods (organic and conventional) for
asparagus and strawberry fruits, and among harvest dates for fennels, table grapes, and artichokes.
Moreover, information about freshness and storage days after minimal processing can be obtained.
Recent literature and original results will be discussed. From our perspective, present results suggest
that these techniques may have a potentiality to increase information about product history, but if
and only if the variability captured by the classification models is vast in terms of diverse samples
belonging to various cultivars, varieties, harvest times, cultural practices, geographical origins, storage
conditions, and maturity stages, while being used as a complementary method to the conventional
ones—either to make an initial screening of critical features, or to add to the amount of available
information. Lacking the inclusion of these parameters could result in good classification results, but
the reliability of the classification in this case would be dubious in terms of assessment of the factor
contributing towards correct classification.
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1. Introduction

Awareness and concerns of the modern food consumers regarding food fraud, safety scandals
and a globalized food production have oriented the research in food industries to develop standards
for effectively interconnecting the systems of food production and distribution [1]. Food fraud and
adulteration, are becoming highly sophisticated, vitalizing the need for high standard control on an
increasing number of samples. As for fresh fruit and vegetables, product authenticity is the major
concern, both from the consumer and the processors who are concerned about unfair competition in

Agronomy 2020, 10, 7; doi:10.3390/agronomy10010007 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
http://dx.doi.org/10.3390/agronomy10010007
http://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/10/1/7?type=check_update&version=2


Agronomy 2020, 10, 7 2 of 10

the market [2]. Location of origin, varieties, and system of production are some of the production
factors that need to be certified. Different labels in Europe are intended to protect the geographic
provenience of a product, recognized for its peculiar characteristics, or use of a particular farming
method; the most important among them being the protected designation of origin (PDO), protected
geographical indication (PGI), and traditional specialty guaranteed (TSG). Higher price is, in fact, paid
for the guarantees derived from these labels, as for social certification of sustainable production or for
organically produced crops, thus increasing the risk of frauds. Traditional techniques, used for food
authentication rely on the detection of trace elements (element profiling) and isotope ratios, which are
particularly important for the authentication of geographical origin and growing system, since plants
derive their composition from the soil and the production system applied, and also the ratio of stable
isotopes varies with climatic conditions, geographical origin, and soil type. Since the conventional
methods are time consuming, expensive, targeted, and labor intensive, alternative techniques such
as near and mid infrared (NIR and MIR) spectroscopy and hyperspectral imaging might be required.
These techniques, combined with chemometric and multivariate methods are being adopted for rapid,
non-destructive, untargeted, and cost effective ways of assessing quality traits. While the use of
NIRS to detect food adulteration has been widely discussed by [3], indicating its good potentiality
to detect the presence of prohibited or non-declared substances which artificially change the quality
and presentation of foods, the potentiality of this technique for fresh product authentication is not
yet confirmed. The potentiality of this method to discriminate among different origins, cultivars,
and growing methods will be discussed along with the fact that due to the lack of proper experimental
design, their practical application is still a challenge. From this perspective, the published literature
and original results will be discussed.

2. NIRS Technique and Application for Fruit and Vegetable Authentication

Near infrared spectroscopy has gained wide attention in the food sector due to its potentiality
to attain spectral fingerprints of the various products as a result of the interaction between light and
the molecular structure of food, since every product has a different fingerprint indicating its contrast
with the others [4], being the results of the different pre-harvest factors, which also affect its final
quality and composition. Hyperspectral imaging devices are being used in the food research sector in
a bid to evaluate the quality, class, authenticity, adulteration, or fraud in a rapid and non-destructive
way [5–7]. Chemometric techniques and particularly discriminant analysis are the statistical tools
used for analyzing differences between various samples or groups of samples relative to a number
of variables simultaneously. Soft independent modelling of class analogy (SIMCA) [8], partial least
squares discriminant analysis (PLSDA) [9], artificial neural networks (ANN) [10], discriminant analysis
(DA) [11], and support vector machine (SVM) [12] have been used for addressing discrimination
among fruit and vegetable belonging to different quality classes. Reference [13] discussed different
class modelling methods for addressing the types of potential problems rising during studies related
to food authentication, but there is a need of making state of the art use of spectral information and
chemometric tools for discrimination purposes.

The origin and production methods of the foods significantly impact the health, social, and
environmental domains since consumers have shown increasing awareness regarding these aspects.
Protected designation of origin is, in fact, very important also for processed products as wines [14–17], olive
oil [18,19], flour [20], and tomato sauce [21], for which different studies have proved the potentiality
of the method. As for other horticultural products and seeds, a wide range of products have been
tested, starting from seeds as Arabica coffee and grains up to fruits, as shown in Table 1. Green Arabica
coffee seeds from two years and different genotypes and four different cities of Paranà state (Brazil)
were classified in two subsequent studies [22,23] using PLSDA and SVM, respectively, obtaining 94.4%
and 100% of correct classification of the prediction samples. In these research works, no indication
about cultural practices was provided, therefore not clarifying if the found differences were only due
to the location or also to the impact of different cultural inputs on quality and composition, but the
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effect of location was consistent over the different genotypes. In another study, NIRS was applied for
the determination of geographical origin of 240 wheat samples collected over a period of two years
from four different geographical locations, including main wheat-producing counties and towns and
taking the most common varieties in each province, therefore including many sources of variation [24],
and it was observed that the differences based on the geographical locations were evident in the
classification models.

Table 1. Literature review of studies on discrimination of fresh produce based on geographical origin,
production system, variety/cultivar and harvest time. ‘NIR: near infrared; SVM: support vector
machine; PLS: partial least squares; DA: discriminant analysis; LDA: linear discriminant analysis; DPLS:
discriminant partial least squares; LS-SVM: least squares support vector machine; HSI: hyperspectral
imaging; PLSDA: partial least squares discriminant analysis; nCDA: Normalized canonical discriminant
analysis; FDA: Factorial discriminant analysis; PNN: probabilistic neural networks; PCA: principle
component analysis; ANN: Artificial Neural Network; ANN-BP: back propagation artificial neural
networks; LGR: logistic regression; MCQP: multi-criteria quadratic programming; MW-PLSDA: moving
window partial least squares discriminant analysis; SIMCA: Soft independent modelling by class analogy’.

Objective of the Discrimination Technique/Analysis
Method

Main Results in Terms of Achievements
(Potentiality, Model Parameters) Citations

Classification Based on Geographical Origin

Discrimination of green Arabica
coffee based on 4 different

geographical locations in Brazil
NIR/SVM

The sensitivity and specificity of 100% was
achieved using NIR-SVM approach while

FTIR-SVM yielded slightly low
performance

[22]

Discrimination of Arabica coffee
based on 4 geographical origins

from Brazil
NIR/PLS /DA 94.4% correct classification was achieved in

the validation [23]

Discrimination of wheat based on
4 different geographical origins

in China
NIR/LDA, DPLS Using DPLS classification accuracies as

high as 85%–92.5% were achieved [24]

Discrimination of Fuji apples from
3 major geographical locations

in China
NIR/SVM

92.75% classification rate in the training and
89.86% in the prediction set. It was

proposed that a combination of imaging
and SVM classifiers can be a potential way

for geographical separation

[25]

Classification of persimmon fruit
origin using NIRS from

7 different regions
LS-SVM

The samples were clearly distinguished by
using the OSC data using SVM obtaining

an R2 in training 1.00 and 0.99 in prediction.
[26]

Classification Based on Production System

Discrimination of green organic and
conventional asparagus

(One conventional and one organic)
NIR/PLSDA

Three NIR devices were compared for the
classification purpose and the accuracy
ranged between 82.1%–91.3% in class

unbalanced sets and 83.7%–91.2% in class
balanced sets.

[27]

Discrimination of strawberries by
production system

(one conventional and 2 organics)
NIR/PLSDA

The production systems were defined with
>95% sensitivity and >94% specificity
which witness the potentiality of the
technique for classification purpose

[28]

Discrimination of organic potatoes
from non-organic potatoes and

sweet potatoes (5 conventional and
one organic)

HSI/PLSDA
Using the PLSDA for the classification of

organic potatoes, an accuracy of 100%
was achieved

[29]
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Table 1. Cont.

Objective of the Discrimination Technique/Analysis
Method

Main Results in Terms of Achievements
(Potentiality, Model Parameters) Citations

Classification Based on Variety/Cultivar

Discrimination of grapes from
2 varieties NIR/ DA The classification accuracy ranged between

82.7%–96.2% [30]

Discrimination of strawberries from
5 varieties NIR/PLSDA

The classification yielded an accuracy
ranging between 57%–78%. There is still

scope for improvement in varietal
discrimination

[31]

Discrimination of 2 cherry
tomatoes varieties

Multi-spectral
imaging /DA,

LS-SVM

Classification accuracy using DA was 72.5%
and LS-SVM was obtained as 80% [32]

Discrimination of tomatoes from
11 different varieties

Multi-spectral
imaging/ nCDA,

PLSDA

Classification by using stepwise PLSDA
and a classification accuracy of 96% and

86% was obtained. Multispectral imaging
technology was recommended to be a
helpful tool for identification of plant

varieties and their registration

[33]

Discrimination of plums based on
6 varieties and postharvest storage

conditions
NIR /PLSDA

Varietal classification resulted in 96.5% of
the total samples to be correctly classified

whereas in case of storage time the
classification accuracy was 94.5%

[34]

Varietal discrimination of 4 varieties
of apricots NIR/FDA The correct classification ranged from

86%–97% [35]

Discrimination of 3 varieties of pears NIR/DPLS, DA, PNN

In case of DPLS 97.5%–100% classification
accuracy was achieved whereas DA

provided 100% correct classification for all
classes. PNN only misclassified one sample

giving an accuracy of 99.2%

[36]

Discrimination of apples from
3 varieties NIR/PCA, ANN 100% varietal discrimination was achieved

using ANN-BP [37]

Discrimination of Hazelnut from
3 varieties NIRS/LDA, PLSDA Discrimination results achieved total error

of 1% [38]

Discrimination of 4 Chinese berry
varieties using Vis-NIR

spectroscopy
PCA, ANN

Chinese bayberry varieties were
discriminated having 30 samples in each

variety, a total of 120. The PCA-ANN model
provided a discrimination accuracy of 95%

[39]

Classification of 3 orange varieties
using SW-NIR LGR, MCQP, SVM [40]

Classification of 4 varieties of apple
samples using NIRS

KNN, PLSDA,
MW-PLSDA

The highest classification accuracy of
98.08% was achieved using MWPLSDA,

96.15% using PLSDA and 86.54% with KNN
[41]

Classification Based on Harvest Time

Discrimination of fennel heads
based on 7 harvest times HSI/PLSDA

NER of 89.29% in calibration and 88.75% in
prediction was achieved for the

classification of fennel heads based on
7 harvest times

[9]

Discrimination of table grapes based
on 5 harvest times HSI/ SIMCA, PLSDA PLSDA proved better than SIMCA with

100% classification rate. [8]

Discrimination of table grapes based
on 4 harvest times and correlation

with days before harvest
HSI/ LDA A classification accuracy of 99.2% was

achieved by just using 14 variables [42]

Discrimination of apricots based on
4 harvest times NIR/ SIMCA The mean classification rate using SIMCA

was 87% [43]

Discrimination of of white
asparagus based on 3 harvest times NIR/PCA, DA

71% of the asparagus samples were
classified correctly in this study, the base of

asparagus being the best part for the
purpose of harvest date discrimination

[44]
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Hyperspectral imaging has proved to be a useful tool for the discrimination of “Fuji apples” from
three major production regions of China [25], where two-hundred and seven samples of apple from
these three major production regions of China were analyzed, with about 60–70 samples per location.
K-nearest neighbor (KNN), partial least squares discriminant analysis (PLSDA), and moving window
partial least squares discriminant analysis (MW-PLSDA) were also compared for the discrimination
of apples belonging to four different geographical locations in another study [41] with classification
accuracy as high as 98.61%, and MW-PLSDA in this case was recommended to be the most suitable
for this purpose. The apples for this experiment were obtained from six local markets and a total of
500 apple samples were collected. There were four varieties of apple samples (200 ‘Fuji’, 200 ‘New
Jonagold’, 50 ‘Red Star’, 50 ‘Ralls Janet’ samples, respectively), which were collected. The Fuji samples
were collected from four geographical origins (Japan, Shanxi, Shandong, Hebei in China), having
50 fruits per location, and all fruit were first grade. The ‘New Jonagold’ samples from Shandong in
China were composed of 50 Special grade, 50 First grade, 50 Second grade, and 50 substandard grade
samples, respectively. In this study, samples from different varieties, locations, and grades highly
enhanced the model performance and reliability but it would be interesting to investigate if these
classification models possess the capability to coup with the effects of different production systems in
case of the future samples. Reference [26] studied the geographical distribution of persimmon fruit
from seven different geographical locations in Spain and used LS-SVM as a classification algorithm
for 166 samples taken over two years. Among these samples 122 were produced under the Protected
denomination of Origin ‘Ribera del Xúquer’, and a few samples represented the other classes (from
four to 13 samples), without a specification of sample distribution over the two years nor on cultural
factors, which might have contributed to the discrimination results (classification result of 1.00 and
0.99, in training and prediction models, respectively).

As for production systems, [27] investigated the potentiality of the NIRS technology for the
discrimination of the green asparagus grown under the organic and conventional methods, comparing
three different spectrophotometers. For the study, 300 asparagus (180 conventional and 120 organic)
were tested, harvesting asparagus spears in two different months, but apparently from the same plot.
The classification results showed very good performances (91% of correct classification) using the
diode array instrument, but in absence of growing system replications, it is difficult to ensure the
reliability of the potentiality of this method for this purpose. Organic standards refer to allowed
practices and technical tools but its application may largely vary depending on the producer. A more
recent study developed a classification model for the authentication of the strawberries [28] from one
conventional and two organic production systems, with different nutrient input and controlled growth
conditions. The results confirmed and even improved the accuracy of results, in comparison to the
previous studies, but also in this case only one experimental field per growing condition was used.
Nonetheless, the study proved that the method could detect differences among organic fruits obtained
by only varying the fertilization management.

Finally, the approach of using these techniques is interesting to discriminate minimally processed
products, for which the morphological traits, characterizing the genotype are lost. [29] conducted
a research for determining the reliability of the hyperspectral imaging along with the multivariate
techniques for the authentication of sliced organic potatoes from non-organic tubers for which the
samples were taken from four different geographical locations. Organic potatoes were discriminated
from conventional tubers with a classification accuracy of 100%.

Moreover, the production system is also relevant for wine derived from organically grown grapes.
MIR and discriminant analysis have been used for the classification of Australian organic and inorganic
wines from 13 different regions in Australia [11]. More than 85% of the wines belonging to organic
or inorganic classes were correctly identified in their respective classes. For wine grapes, variety
certification is also highly significant. Two varieties (red and white) of wine grapes grown in the same
geographical location were classified based on type and irrigation regime [30], with a miniature fiber
optic NIR spectrometer obtaining accuracy higher than 82%. In this case, a total of 55 samples were



Agronomy 2020, 10, 7 6 of 10

used out of which 23 samples belonged to the white grapes and 31 samples belonged to red grapes
grown under two different irrigation regimes. An overall rate of correct PLSDA classification based
on the irrigation regime during ripening was 82.69% out of which 53.85% of the grapes belonging
to RDI regime were correctly classified with a non-error rate of 92.31% for rain-fed regime. It was
concluded by the study that the higher rate of incorrect classification for regulated defect irrigation
regime grapes was due to the lower number of samples as compared to the other class. Discrimination
of five strawberry varieties was not so satisfying, where [31] used 300 strawberries from five different
varieties (60 samples from each variety) grown under the same geographical location for classification
purposes, but the classification rate varied from 57% for the ‘Camarosa’ variety to 78% for ‘Antilla
Fnm’. In this case, all the samples from different varieties belonged to the same geographical origin and
the same ripeness stage so it may be important to enlarge the dataset based on geographical locations.
Classification accuracy was higher in a study comparing 11 tomato cultivars for which the tomato seeds
were acquired from the same geographical origin, and they were grown under similar conditions and
fertilization routines aiming towards the minimization of variations occurring due to seasons or growing
conditions. In this case, the classification modelling approach yielded 96% and 86% for the high and
low sensitivity [33]. In this regard, the classification accuracy was quite reliable in terms of significant
relation to cultivar discrimination. Four Chinese bayberry varieties were successfully classified using a
PCA-ANN model with a classification accuracy of 95% [39]. Three different classification algorithms
were used for classification of three orange varieties [40], with a classification accuracy of 95% in the
case of each algorithm, and specially, LGR was demonstrated to reach a classification accuracy of 100%.
Two-hundred apples belonging to four different varieties and collected from four different geographical
locations (50 samples of each variety and geographical location) were discriminated using KNN,
PLSDA and MWPLSDA, and the classification accuracies were found to be higher for MWPLSDA
(98.08%) and PLSDA (96.15%), while the KNN model yielded a lower classification accuracy [41].
Even better results were obtained from three different hazelnut cultivars [38], five different plum
varieties [34], and four varieties of apricots [35], pears [36], and apples [37], where 100% correct
classification was achieved. Harvest time significantly influences the quality of the fresh produce
and is an important factor in postharvest processing and marketing. Therefore, determination of the
optimal harvest time contributes towards better quality, prolonged shelf life, increased profitability,
and enhanced consumer satisfaction. Many non-destructive techniques have been used in various
studies for the classification of the produce based on harvest time. Classification models worked
satisfactorily for the classification of grapes, which are one of the most widely consumed fruit in the
world, and for which the decision of correct time to harvest is very critical. Authors obtained 100%
correct classification of samples belonging from five harvest times [8]. Moreover, in a recent study, [42]
showed that analyzing spectra changes over time during on-vine holding of table grapes was possible
to monitor ripening and to correctly classify grapes by harvest time, using only 14 wavelengths. These
findings encourage further implementation of this method to monitor ripening of table grapes in the
vineyard and better define the most suitable harvest time. Harvest time based classification models
were also developed for the apricots [43]. Additionally, [9] conducted a study to classify the fennels
based on harvest times using hyperspectral imaging. Fennels were harvested form the same field/plot
and same production system at seven different times over a span of three weeks. The results depicted
that all classes have almost been correctly classified (non-error rate of 88.75% in the prediction set).
White asparagus was classified according to the harvest time [44]; the product was harvested over a
time span of two years (2003-2004) in nine lots, yielding 71% classification accuracy. Amodio et al.
(submitted) classified two different cultivars of artichokes, namely, ’Catanese di Brindisi’ and ’Violetto
Foggiano’, belonging to two different geographical locations (Brindisi and Foggia in the Apulia region
of Italy) using hyperspectral imaging in the range of 400–1000 nm. ‘Catanese’ samples were collected
over a period from January to April (four harvest times) while ‘Violetto Foggiano’ samples were
collected over a time span from December to May (six harvest times), allowing also the classification
based on harvest times. Additionally in this case, the effect of the location and of the different cultural
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practices may have contributed to differentiate the two varieties, and therefore a wide sampling over
different producers and location would be advisable for more reliable results.

3. Method Potentiality and Conclusions

Most of the fresh produce users (consumers, distributors, etc.) are interested in attaining simple
answers to their concerns about the quality or origins of their products in the form of good/bad sample
or yes/no for queries such as geographical origin. As it has been shown, spectral information derived
with different techniques and devices, combined with chemometric and multivariate methods, are able
to discriminate among different crops according to the product history. This is due to the fact that every
biological sample has a fingerprint NIR spectrum which distinguishes it from other biological tissues.
On the other hand, based on the experimental designs, each sample can significantly vary from the
other, but the actual focus should be the diagnosis and assignment of the reason for these differences.
All the supervised classification methods, such as partial least square-discriminant analysis, are, in fact,
planned to maximize differences among different samples, so they work very well on laboratory-size
experiments. Very often, due to the small number of cases analyzed in each experiment, without
real replications (in different fields/locations/years as for instance for variety screening and farming
system) it is difficult to guarantee that differences in the spectra fingerprints are due to a particular
factor of interest and therefore the reliability of the model cannot be ensured with complete confidence.
A majority of the presented studies are in fact comparing, different varieties (usually grown in different
locations, with different agricultural practices), different farming systems (usually under similar
environmental conditions, but without farming replication), and different geographical origins (also in
this case corresponding to different agricultural practices), so the found differences are sometime
the result of different factors. If the classification modelling is aimed at varietal discrimination, it
would be interesting to know that in fact the variety itself is being discriminated without any external
influence of other parameters/factors including origin or farming systems, or a combination of these
factors. Currently this is a recurrent problem already inside the agricultural studies, where differences
in composition and organoleptic traits are often attributed to varieties, without considering that the
different growing conditions may have affected the quality of the crop. Addressing this problem is
imperative and a potentially reliable option in this case is to enlarge the variability of the experiment
design which might result in finding changes in the spectra, still detectable, after subtracting a large
part of variation due to different location/years/farming input. In addition different chemometric
methods can be applied to assign part of the variance to the different factors. Having robust results of
discrimination over a large dataset will increase chances of correct and reliable classification of the new
unknown samples (test sets). The samples that eventually do not belong to the conditions included
in the calibration models can still behave as the main classifying group, provided that this would be
very large. Standing to these considerations, the state of the art is still far away from assessing the
potentiality of the methods, and new case studies should be designed to assess these issues. Once
the screening capacity would be really assessed, the implementation of these methods should be
questioned. It is very unlikely that spectral techniques will substitute routine analysis, but according
to our opinion they can be a valuable tool to complete the official procedures, allowing a previous
screening of an unlimited number of products to help identifying possible samples laying out of the
borders (clouds) of what is expected for that sample (outliers). In addition, another possible perspective
is that these methods will allow to add some additional information about the product history. Due to
the capability of NIR devices to also predict internal constituents, it is in fact, desirable to develop NIR
sensor devices to be placed at the retail, which can help consumers to make their choices, providing
information about product quality and origins.
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