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Abstract: Nowadays, consumer awareness of the impact of site of origin and method of production 
on the quality and safety of foods, and particularly of fresh produce, is driving the research towards 
developing various techniques to assist present certifications, traceability, and audit procedures. 
With regard to horticultural produce, consumer preferences have shifted to fruit and vegetables, 
which are healthy and ecologically produced, and toward processed foods having sustainable or 
social certifications and with sites of origin clearly reported on the label. Some recent studies 
demonstrate the potentiality of near infrared (NIR) technology (including hyperspectral imaging) 
for discriminating fresh and processed horticultural products based on their composition, quality 
attributes, and origin. These studies principally mention that each biological tissue possesses a 
fingerprint NIR spectrum, which consists of a unique and characteristic pattern of radiation, 
distinguishing a particular biological tissue from physically and/or chemically different samples. 
Particularly, recent studies discriminated apples, wine, wheat kernels, and derived flours based on 
their geographical origins. Spectral information allowed discrimination among growing methods 
(organic and conventional) for asparagus and strawberry fruits, and among harvest dates for 
fennels, table grapes, and artichokes. Moreover, information about freshness and storage days after 
minimal processing can be obtained. Recent literature and original results will be discussed. From 
our perspective, present results suggest that these techniques may have a potentiality to increase 
information about product history, but if and only if the variability captured by the classification 
models is vast in terms of diverse samples belonging to various cultivars, varieties, harvest times, 
cultural practices, geographical origins, storage conditions, and maturity stages, while being used 
as a complementary method to the conventional ones―either to make an initial screening of critical 
features, or to add to the amount of available information. Lacking the inclusion of these parameters 
could result in good classification results, but the reliability of the classification in this case would 
be dubious in terms of assessment of the factor contributing towards correct classification. 
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1. Introduction 

Awareness and concerns of the modern food consumers regarding food fraud, safety scandals 
and a globalized food production have oriented the research in food industries to develop standards 
for effectively interconnecting the systems of food production and distribution [1]. Food fraud and 
adulteration, are becoming highly sophisticated, vitalizing the need for high standard control on an 
increasing number of samples. As for fresh fruit and vegetables, product authenticity is the major 
concern, both from the consumer and the processors who are concerned about unfair competition in 
the market [2]. Location of origin, varieties, and system of production are some of the production 
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factors that need to be certified. Different labels in Europe are intended to protect the geographic 
provenience of a product, recognized for its peculiar characteristics, or use of a particular farming 
method; the most important among them being the protected designation of origin (PDO), protected 
geographical indication (PGI), and traditional specialty guaranteed (TSG). Higher price is, in fact, 
paid for the guarantees derived from these labels, as for social certification of sustainable production 
or for organically produced crops, thus increasing the risk of frauds. Traditional techniques, used for 
food authentication rely on the detection of trace elements (element profiling) and isotope ratios, 
which are particularly important for the authentication of geographical origin and growing system, 
since plants derive their composition from the soil and the production system applied, and also the 
ratio of stable isotopes varies with climatic conditions, geographical origin, and soil type. Since the 
conventional methods are time consuming, expensive, targeted, and labor intensive, alternative 
techniques such as near and mid infrared (NIR and MIR) spectroscopy and hyperspectral imaging 
might be required. These techniques, combined with chemometric and multivariate methods are 
being adopted for rapid, non-destructive, untargeted, and cost effective ways of assessing quality 
traits. While the use of NIRS to detect food adulteration has been widely discussed by [3], indicating 
its good potentiality to detect the presence of prohibited or non-declared substances which artificially 
change the quality and presentation of foods, the potentiality of this technique for fresh product 
authentication is not yet confirmed. The potentiality of this method to discriminate among different 
origins, cultivars, and growing methods will be discussed along with the fact that due to the lack of 
proper experimental design, their practical application is still a challenge. From this perspective, the 
published literature and original results will be discussed. 

2. NIRS Technique and Application for Fruit and Vegetable Authentication 

Near infrared spectroscopy has gained wide attention in the food sector due to its potentiality 
to attain spectral fingerprints of the various products as a result of the interaction between light and 
the molecular structure of food, since every product has a different fingerprint indicating its contrast 
with the others [4], being the results of the different pre-harvest factors, which also affect its final 
quality and composition. Hyperspectral imaging devices are being used in the food research sector 
in a bid to evaluate the quality, class, authenticity, adulteration, or fraud in a rapid and non-
destructive way [5–7]. Chemometric techniques and particularly discriminant analysis are the 
statistical tools used for analyzing differences between various samples or groups of samples relative 
to a number of variables simultaneously. Soft independent modelling of class analogy (SIMCA) [8], 
partial least squares discriminant analysis (PLSDA) [9], artificial neural networks (ANN) [10], 
discriminant analysis (DA) [11], and support vector machine (SVM) [12] have been used for 
addressing discrimination among fruit and vegetable belonging to different quality classes. Reference 
[13] discussed different class modelling methods for addressing the types of potential problems rising 
during studies related to food authentication, but there is a need of making state of the art use of 
spectral information and chemometric tools for discrimination purposes.  

The origin and production methods of the foods significantly impact the health, social, and 
environmental domains since consumers have shown increasing awareness regarding these aspects. 
Protected designation of origin is, in fact, very important also for processed products as wines [14]; 
[15–17], olive oil [18,19], flour [20], and tomato sauce [21], for which different studies have proved 
the potentiality of the method. As for other horticultural products and seeds, a wide range of products 
have been tested, starting from seeds as Arabica coffee and grains up to fruits, as shown in Table 1. 
Green Arabica coffee seeds from two years and different genotypes and four different cities of Paranà 
state (Brazil) were classified in two subsequent studies [22]; [23] using PLSDA and SVM, respectively, 
obtaining 94.4% and 100% of correct classification of the prediction samples. In these research works, 
no indication about cultural practices was provided, therefore not clarifying if the found differences 
were only due to the location or also to the impact of different cultural inputs on quality and 
composition, but the effect of location was consistent over the different genotypes. In another study, 
NIRS was applied for the determination of geographical origin of 240 wheat samples collected over 
a period of two years from four different geographical locations, including main wheat-producing 
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counties and towns and taking the most common varieties in each province, therefore including 
many sources of variation [24], and it was observed that the differences based on the geographical 
locations were evident in the classification models.  

Table 1. Literature review of studies on discrimination of fresh produce based on geographical origin, 
production system, variety/cultivar and harvest time. ‘NIR: near infrared; SVM: support vector 
machine; PLS: partial least squares; DA: discriminant analysis; LDA: linear discriminant analysis; 
DPLS: discriminant partial least squares; LS-SVM: least squares support vector machine; HSI: 
hyperspectral imaging; PLSDA: partial least squares discriminant analysis; nCDA: Normalized 
canonical discriminant analysis; FDA: Factorial discriminant analysis; PNN: probabilistic neural 
networks; PCA: principle component analysis; ANN: Artificial Neural Network; ANN-BP: back 
propagation artificial neural networks; LGR: logistic regression; MCQP: , multi-criteria quadratic 
programming; MW-PLSDA: moving window partial least squares discriminant analysis; SIMCA: Soft 
independent modelling by class analogy’ 

Objective of the Discrimination 
Technique/Analysis 

Method 
Main Results in Terms of Achievements (Potentiality, Model 

Parameters) 
Citations 

Classification Based on Geographical Origin 
Discrimination of green Arabica 

coffee based on 4 different 
geographical locations in Brazil 

NIR/SVM 
The sensitivity and specificity of 100% was achieved using NIR-

SVM approach while FTIR-SVM yielded slightly low performance 
[22] 

Discrimination of Arabica coffee 
based on 4 geographical origins 

from Brazil 
NIR/PLS /DA 94.4% correct classification was achieved in the validation  [23] 

Discrimination of wheat based on 
4 different geographical origins in 

China 
NIR/LDA, DPLS  

Using DPLS classification accuracies as high as 85%–92.5% were 
achieved 

[24] 

Discrimination of Fuji apples from 
3 major geographical locations in 

China 
NIR/SVM 

92.75% classification rate in the training and 89.86% in the 
prediction set. It was proposed that a combination of imaging and 
SVM classifiers can be a potential way for geographical separation  

[25] 

Classification of persimmon fruit 
origin using NIRS from 7 different 

regions 
LS-SVM 

The samples were clearly distinguished by using the OSC data 
using SVM obtaining an R2 in training 1.00 and 0.99 in prediction. 

[26] 

Classification Based on Production System 
Discrimination of green organic 

and conventional asparagus (One 
conventional and one organic) 

NIR/PLSDA 
Three NIR devices were compared for the classification purpose 

and the accuracy ranged between 82.1%–91.3% in class 
unbalanced sets and 83.7%–91.2% in class balanced sets.  

[27] 

Discrimination of strawberries by 
production system (one 

conventional and 2 organics) 
NIR/PLSDA 

The production systems were defined with >95% sensitivity 
and >94% specificity which witness the potentiality of the 

technique for classification purpose  
[28] 

Discrimination of organic potatoes 
from non-organic potatoes and 

sweet potatoes 
(5 conventional and one organic) 

HSI/PLSDA 
Using the PLSDA for the classification of organic potatoes, an 

accuracy of 100% was achieved 
[29] 

Classification Based on Variety/Cultivar 
Discrimination of grapes from 2 

varieties 
NIR/ DA The classification accuracy ranged between 82.7%–96.2% [30] 

Discrimination of strawberries 
from 5 varieties 

NIR/PLSDA 
The classification yielded an accuracy ranging between 57%–78%. 

There is still scope for improvement in varietal discrimination 
[31] 

Discrimination of 2 cherry 
tomatoes varieties 

Multi-spectral imaging 
/DA, LS-SVM 

Classification accuracy using DA was 72.5% and LS-SVM was 
obtained as 80% 

[32] 

Discrimination of tomatoes from 
11 different varieties 

Multi-spectral imaging/ 
nCDA, PLSDA 

Classification by using stepwise PLSDA and a classification 
accuracy of 96% and 86% was obtained. Multispectral imaging 

technology was recommended to be a helpful tool for 
identification of plant varieties and their registration  

[33] 

Discrimination of plums based on 
6 varieties and postharvest storage 

conditions 
NIR /PLSDA 

Varietal classification resulted in 96.5% of the total samples to be 
correctly classified whereas in case of storage time the 

classification accuracy was 94.5% 
[34] 

Varietal discrimination of 4 
varieties of apricots  

NIR/FDA The correct classification ranged from 86%–97% [35] 
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Discrimination of 3 varieties of 
pears  

NIR/DPLS, DA, PNN 
In case of DPLS 97.5%–100% classification accuracy was achieved 
whereas DA provided 100% correct classification for all classes. 
PNN only misclassified one sample giving an accuracy of 99.2%  

[36] 

Discrimination of apples from 3 
varieties  

NIR/PCA, ANN 100% varietal discrimination was achieved using ANN-BP  [37] 

Discrimination of Hazelnut from 3 
varieties 

NIRS/LDA, PLSDA Discrimination results achieved total error of 1%  [38] 

Discrimination of 4 Chinese berry 
varieties using Vis-NIR 

spectroscopy 
PCA, ANN 

Chinese bayberry varieties were discriminated having 30 samples 
in each variety, a total of 120. The PCA-ANN model provided a 

discrimination accuracy of 95% 
[39] 

Classification of 3 orange varieties 
using SW-NIR LGR, MCQP, SVM  [40] 

Classification of 4 varieties of 
apple samples using NIRS 

KNN, PLSDA, MW-
PLSDA 

The highest classification accuracy of 98.08% was achieved using 
MWPLSDA, 96.15% using PLSDA and 86.54% with KNN 

[41] 

Classification Based on Harvest Time  

Discrimination of fennel heads 
based on 7 harvest times 

HSI/PLSDA 
NER of 89.29% in calibration and 88.75% in prediction was 

achieved for the classification of fennel heads based on 7 harvest 
times 

[9] 

Discrimination of table grapes 
based on 5 harvest times 

HSI/ SIMCA, PLSDA PLSDA proved better than SIMCA with 100% classification rate.  [8] 

Discrimination of table grapes 
based on 4 harvest times and 
correlation with days before 

harvest 

HSI/ LDA 
A classification accuracy of 99.2% was achieved by just using 14 

variables  
[42] 

Discrimination of apricots based 
on 4 harvest times 

NIR/ SIMCA  The mean classification rate using SIMCA was 87%  [43] 

Discrimination of of white 
asparagus based on 3 harvest 

times 
NIR/PCA, DA  

71% of the asparagus samples were classified correctly in this 
study, the base of asparagus being the best part for the purpose of 

harvest date discrimination  
[44] 

Hyperspectral imaging has proved to be a useful tool for the discrimination of “Fuji apples” 
from three major production regions of China [25], where two-hundred and seven samples of apple 
from these three major production regions of China were analyzed, with about 60–70 samples per 
location. K-nearest neighbor (KNN), partial least squares discriminant analysis (PLSDA), and moving 
window partial least squares discriminant analysis (MW-PLSDA) were also compared for the 
discrimination of apples belonging to four different geographical locations in another study [41] with 
classification accuracy as high as 98.61%, and MW-PLSDA in this case was recommended to be the 
most suitable for this purpose. The apples for this experiment were obtained from six local markets 
and a total of 500 apple samples were collected. There were four varieties of apple samples (200 ‘Fuji’, 
200 ‘New Jonagold’, 50 ‘Red Star’, 50 ‘Ralls Janet’ samples, respectively), which were collected. The 
Fuji samples were collected from four geographical origins (Japan, Shanxi, Shandong, Hebei in 
China), having 50 fruits per location, and all fruit were first grade. The ‘New Jonagold’ samples from 
Shandong in China were composed of 50 Special grade, 50 First grade, 50 Second grade, and 50 
substandard grade samples, respectively. In this study, samples from different varieties, locations, 
and grades highly enhanced the model performance and reliability but it would be interesting to 
investigate if these classification models possess the capability to coup with the effects of different 
production systems in case of the future samples. Reference [26] studied the geographical distribution 
of persimmon fruit from seven different geographical locations in Spain and used LS-SVM as a 
classification algorithm for 166 samples taken over two years. Among these samples 122 were 
produced under the Protected denomination of Origin ‘Ribera del Xúquer’, and a few samples 
represented the other classes (from four to 13 samples), without a specification of sample distribution 
over the two years nor on cultural factors, which might have contributed to the discrimination results 
(classification result of 1.00 and 0.99, in training and prediction models, respectively).  

As for production systems, [27] investigated the potentiality of the NIRS technology for the 
discrimination of the green asparagus grown under the organic and conventional methods, 
comparing three different spectrophotometers. For the study, 300 asparagus (180 conventional and 
120 organic) were tested, harvesting asparagus spears in two different months, but apparently from 
the same plot. The classification results showed very good performances (91% of correct 
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classification) using the diode array instrument, but in absence of growing system replications, it is 
difficult to ensure the reliability of the potentiality of this method for this purpose. Organic standards 
refer to allowed practices and technical tools but its application may largely vary depending on the 
producer. A more recent study developed a classification model for the authentication of the 
strawberries [28] from one conventional and two organic production systems, with different nutrient 
input and controlled growth conditions. The results confirmed and even improved the accuracy of 
results, in comparison to the previous studies, but also in this case only one experimental field per 
growing condition was used. Nonetheless, the study proved that the method could detect differences 
among organic fruits obtained by only varying the fertilization management.  

Finally, the approach of using these techniques is interesting to discriminate minimally 
processed products, for which the morphological traits, characterizing the genotype are lost. [29] 
conducted a research for determining the reliability of the hyperspectral imaging along with the 
multivariate techniques for the authentication of sliced organic potatoes from non-organic tubers for 
which the samples were taken from four different geographical locations. Organic potatoes were 
discriminated from conventional tubers with a classification accuracy of 100%.  

Moreover, the production system is also relevant for wine derived from organically grown 
grapes. MIR and discriminant analysis have been used for the classification of Australian organic and 
inorganic wines from 13 different regions in Australia [11]. More than 85% of the wines belonging to 
organic or inorganic classes were correctly identified in their respective classes. For wine grapes, 
variety certification is also highly significant. Two varieties (red and white) of wine grapes grown in 
the same geographical location were classified based on type and irrigation regime [30], with a 
miniature fiber optic NIR spectrometer obtaining accuracy higher than 82%. In this case, a total of 55 
samples were used out of which 23 samples belonged to the white grapes and 31 samples belonged 
to red grapes grown under two different irrigation regimes. An overall rate of correct PLSDA 
classification based on the irrigation regime during ripening was 82.69% out of which 53.85% of the 
grapes belonging to RDI regime were correctly classified with a non-error rate of 92.31% for rain-fed 
regime. It was concluded by the study that the higher rate of incorrect classification for regulated 
defect irrigation regime grapes was due to the lower number of samples as compared to the other 
class. Discrimination of five strawberry varieties was not so satisfying, where [31] used 300 
strawberries from five different varieties (60 samples from each variety) grown under the same 
geographical location for classification purposes, but the classification rate varied from 57% for the 
‘Camarosa’ variety to 78% for ‘Antilla Fnm’. In this case, all the samples from different varieties 
belonged to the same geographical origin and the same ripeness stage so it may be important to 
enlarge the dataset based on geographical locations. Classification accuracy was higher in a study 
comparing 11 tomato cultivars for which the tomato seeds were acquired from the same geographical 
origin, and they were grown under similar conditions and fertilization routines aiming towards the 
minimization of variations occurring due to seasons or growing conditions. In this case, the 
classification modelling approach yielded 96% and 86% for the high and low sensitivity [33]. In this 
regard, the classification accuracy was quite reliable in terms of significant relation to cultivar 
discrimination. Four Chinese bayberry varieties were successfully classified using a PCA-ANN 
model with a classification accuracy of 95% [39]. Three different classification algorithms were used 
for classification of three orange varieties [40], with a classification accuracy of 95% in the case of each 
algorithm, and specially, LGR was demonstrated to reach a classification accuracy of 100%. Two-
hundred apples belonging to four different varieties and collected from four different geographical 
locations (50 samples of each variety and geographical location) were discriminated using KNN, 
PLSDA and MWPLSDA, and the classification accuracies were found to be higher for MWPLSDA 
(98.08%) and PLSDA (96.15%), while the KNN model yielded a lower classification accuracy [41]. 
Even better results were obtained from three different hazelnut cultivars [38], five different plum 
varieties [34], and four varieties of apricots [35], pears [36], and apples [37], where 100% correct 
classification was achieved. Harvest time significantly influences the quality of the fresh produce and 
is an important factor in postharvest processing and marketing. Therefore, determination of the 
optimal harvest time contributes towards better quality, prolonged shelf life, increased profitability, 
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and enhanced consumer satisfaction. Many non-destructive techniques have been used in various 
studies for the classification of the produce based on harvest time. Classification models worked 
satisfactorily for the classification of grapes, which are one of the most widely consumed fruit in the 
world, and for which the decision of correct time to harvest is very critical. Authors obtained 100% 
correct classification of samples belonging from five harvest times [8]. Moreover, in a recent study, 
[42] showed that analyzing spectra changes over time during on-vine holding of table grapes was 
possible to monitor ripening and to correctly classify grapes by harvest time, using only 14 
wavelengths. These findings encourage further implementation of this method to monitor ripening 
of table grapes in the vineyard and better define the most suitable harvest time. Harvest time based 
classification models were also developed for the apricots [43]. Additionally, [9] conducted a study 
to classify the fennels based on harvest times using hyperspectral imaging. Fennels were harvested 
form the same field/plot and same production system at seven different times over a span of three 
weeks. The results depicted that all classes have almost been correctly classified (non-error rate of 
88.75% in the prediction set). White asparagus was classified according to the harvest time [44]; the 
product was harvested over a time span of two years (2003-2004) in nine lots, yielding 71% 
classification accuracy. Amodio et al. (submitted) classified two different cultivars of artichokes, 
namely, ’Catanese di Brindisi’ and ’Violetto Foggiano’, belonging to two different geographical 
locations (Brindisi and Foggia in the Apulia region of Italy) using hyperspectral imaging in the range 
of 400–1000 nm. ‘Catanese’ samples were collected over a period from January to April (four harvest 
times) while ‘Violetto Foggiano’ samples were collected over a time span from December to May (six 
harvest times), allowing also the classification based on harvest times. Additionally in this case, the 
effect of the location and of the different cultural practices may have contributed to differentiate the 
two varieties, and therefore a wide sampling over different producers and location would be 
advisable for more reliable results.  

3. Method Potentiality and Conclusions 

Most of the fresh produce users (consumers, distributors, etc.) are interested in attaining simple 
answers to their concerns about the quality or origins of their products in the form of good/bad 
sample or yes/no for queries such as geographical origin. As it has been shown, spectral information 
derived with different techniques and devices, combined with chemometric and multivariate 
methods, are able to discriminate among different crops according to the product history. This is due 
to the fact that every biological sample has a fingerprint NIR spectrum which distinguishes it from 
other biological tissues. On the other hand, based on the experimental designs, each sample can 
significantly vary from the other, but the actual focus should be the diagnosis and assignment of the 
reason for these differences. All the supervised classification methods, such as partial least square-
discriminant analysis, are, in fact, planned to maximize differences among different samples, so they 
work very well on laboratory-size experiments. Very often, due to the small number of cases analyzed 
in each experiment, without real replications (in different fields/locations/years as for instance for 
variety screening and farming system) it is difficult to guarantee that differences in the spectra 
fingerprints are due to a particular factor of interest and therefore the reliability of the model cannot 
be ensured with complete confidence. A majority of the presented studies are in fact comparing, 
different varieties (usually grown in different locations, with different agricultural practices), 
different farming systems (usually under similar environmental conditions, but without farming 
replication), and different geographical origins (also in this case corresponding to different 
agricultural practices), so the found differences are sometime the result of different factors. If the 
classification modelling is aimed at varietal discrimination, it would be interesting to know that in 
fact the variety itself is being discriminated without any external influence of other 
parameters/factors including origin or farming systems, or a combination of these factors. Currently 
this is a recurrent problem already inside the agricultural studies, where differences in composition 
and organoleptic traits are often attributed to varieties, without considering that the different 
growing conditions may have affected the quality of the crop. Addressing this problem is imperative 
and a potentially reliable option in this case is to enlarge the variability of the experiment design 
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which might result in finding changes in the spectra, still detectable, after subtracting a large part of 
variation due to different location/years/farming input. In addition different chemometric methods 
can be applied to assign part of the variance to the different factors. Having robust results of 
discrimination over a large dataset will increase chances of correct and reliable classification of the 
new unknown samples (test sets). The samples that eventually do not belong to the conditions 
included in the calibration models can still behave as the main classifying group, provided that this 
would be very large. Standing to these considerations, the state of the art is still far away from 
assessing the potentiality of the methods, and new case studies should be designed to assess these 
issues. Once the screening capacity would be really assessed, the implementation of these methods 
should be questioned. It is very unlikely that spectral techniques will substitute routine analysis, but 
according to our opinion they can be a valuable tool to complete the official procedures, allowing a 
previous screening of an unlimited number of products to help identifying possible samples laying 
out of the borders (clouds) of what is expected for that sample (outliers). In addition, another possible 
perspective is that these methods will allow to add some additional information about the product 
history. Due to the capability of NIR devices to also predict internal constituents, it is in fact, desirable 
to develop NIR sensor devices to be placed at the retail, which can help consumers to make their 
choices, providing information about product quality and origins. 

Author Contributions: M.L.A., and G.C. provided the manuscript outline and substantial contribution to 
drafting, and to correcting the manuscript; M.M.A.C. provided substantial contribution to first drafting and 
correcting the manuscript. All authors have read and agreed to the published version of the manuscript. 
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