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Abstract: Red spicy pepper is traditionally considered as the fundamental ingredient for multiple
authentic products of Eastern Croatia. The objectives of this study were to: (1) evaluate the optimal
interpolation method necessary for modeling of criteria layers; (2) calculate the sustainability and
vulnerability of red spicy pepper cultivation using hybrid Geographic Information System (GIS)-based
multicriteria analysis with the analytical hierarchy process (AHP) method; (3) determine the suitability
classes for red spicy pepper cultivation using K-means unsupervised classification. The inverse
distance weighted interpolation method was selected as optimal as it produced higher accuracies than
ordinary kriging and natural neighbour. Sustainability and vulnerability represented the positive
and negative influences on red spicy pepper production. These values served as the input in the
K-means unsupervised classification of four classes. Classes were ranked by the average of mean class
sustainability and vulnerability values. Top two ranked classes, highest suitability and moderate-high
suitability, produced suitability values of 3.618 and 3.477 out of a possible 4.000, respectively. These
classes were considered as the most suitable for red spicy pepper cultivation, covering an area of
2167.5 ha (6.9% of the total study area). A suitability map for red spicy pepper cultivation was created
as a basis for the establishment of red spicy pepper plantations.

Keywords: GIS; multicriteria analysis; AHP; red spicy pepper; kriging; inverse distance weighted;
unsupervised classification; K-means

1. Introduction

Land use planning and ecological land evaluation are considered the most important tools and
factors of sustainable agricultural production [1]. Investments in agriculture imply knowledge of
the production potential of a particular site, with regards to crop types and optimal agroecological
conditions [2]. Multicriteria analysis provides information on the optimal utilization of available
resources, allowing sustainable crop management [3]. In addition to crop requirements, it is necessary
to have spatial information of the farmland soil, climate and land cover properties [4,5]. The upgrade
of such analysis with a spatial component of GIS allows effective planning and its realization in the
field [6,7]. The GIS-based multicriteria analysis was applied successfully for crop management down
to the county or municipality area [8,9]. Among the multicriteria analysis methods, AHP has become
increasingly popular since it allows the integration of a large quantity of heterogeneous data, making
the process of criteria weight determination straightforward, even for a large number of criteria [10].
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AHP was widely used for suitability analyses in agriculture, including land-use suitability [11–13],
irrigation suitability [14,15], resource evaluation [16] and organic agriculture efficiency [17].

Sustainability and vulnerability are considered as two components of land suitability. Sustainability
represents a positive component and includes criteria that are necessary for optimal crop growth and
development [18]. Vulnerability represents a negative component, indicating risks and threats to
potential crop plantations [19]. Aside from the selection of sustainability and vulnerability criteria,
also named as factors, representing the level of satisfying the selected criteria, Boolean constraint
layers are commonly modelled in similar studies [9]. Constraints commonly had a support role,
only determining suitable or non-suitable areas for the selected purpose due to their lack of ability
to fully incorporate expert’s knowledge in suitability result. In the case of non-suitability, these
areas were masked from the final suitability map or classified in separate permanently non-suitable
class. Application of unsupervised classification algorithms expands the capabilities of multicriteria
analysis while reducing the possibilities of man-made errors in suitability calculations [20]. The most
common cause of human errors in supervised classification algorithms occurs during the creation
of the classification training dataset due to the user’s subjectivity in the process. The process of
training data creation does not apply to the unsupervised classification since its working principle
is the automatic identification and creation of similar data classes, therefore allowing the retention
of the classification objectivity [21]. Such an approach satisfies a demand for the establishment of
management zones in precision agriculture [22]. It also enables the creation of a custom amount of
suitability and non-suitability classes, according to the widely used classification specifications, most
notably by the Food and Agriculture Organization (FAO) [23]. These zones are further applied as
elementary units for variable rate technology in agrotechnical operations [24,25].

Red spicy pepper is an herbaceous, shrubby plant of the Capsicum annum L. species from the
Solanaceae family. Its pharmacological and nutritional significance has been thoroughly described
in [26–28]. Minced dried red spicy pepper traditionally has importance in the human diet in Croatia,
being one of the most commonly used spices and the ingredient for multiple authentic products of
Eastern Croatia. In 2017, red spicy pepper was cultivated on 14.2% of the area in the category of
vegetables for market production in Croatia [29]. A total of 15,547 tons of red spicy pepper was
produced in that category during 2017, with the average yield of 15.2 t/ha.

This study incorporates the mutually complementary methods of GIS-based multicriteria analysis,
AHP, interpolation and unsupervised classification into a suitability model for red spicy pepper
cultivation. Three major objectives of the study were to: (1) evaluate the optimal interpolation method
necessary for modelling of criteria layers; (2) calculate the sustainability and vulnerability of red spicy
pepper cultivation using hybrid Geographic Information System (GIS)-based multicriteria analysis
with the analytical hierarchy process (AHP) method; (3) determine the suitability classes for red spicy
pepper cultivation using K-means unsupervised classification. The purpose of the calculated results is
to enable detection of the most suitable micro-locations for red spicy pepper cultivation, allowing the
increase of high-profitable red spicy pepper quality and branding of related products.

2. Materials and Methods

2.1. Study Area

The municipality of Bilje is located in the lowland part of the Baranya region, in the Northeastern
Croatia (Figure 1). Its most significant natural resources are agricultural land, forests and water
resources. The dominant agricultural activity is farming. The climate in the study area is moist
subhumid, based on the Thornweit scale and Cfwbx based on the Koppen scale. The area is generally
characterized by a moderately warm, humid rainy continental climate, with a regular change in the
seasons. Climate conditions in the study area have little variation and are considered homogeneous,
primarily due to a relatively small municipality area (315 km2).
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Figure 1. Study area with Corine Land Cover 2018 data. 
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(Figure 2). Implementation of the methodology was conducted using open-source software SAGA 
GIS v7.3.0 (Hamburg, Germany) for data processing, interpolation and calculation, alongside QGIS 
v3.8.3 (Grüt, Switzerland) for data visualization. The proposed methodology integrates raster-based 
multicriteria analysis, so all input vector layers were rasterized. Coordinate reference system (CRS) 
for analysis was the Croatian Terrestrial Reference System (HTRS96/TM, EPSG: 3765). Layers which 
initially had different CRS were reprojected to HTRS96/TM and resampled to 50 m spatial resolution. 

Figure 1. Study area with Corine Land Cover 2018 data.

2.2. Hybrid GIS-Based Multicriteria Analysis

The proposed methodology for red spicy pepper suitability calculation contains four major steps:
pre-processing, sustainability calculation, vulnerability calculation and suitability calculation (Figure 2).
Implementation of the methodology was conducted using open-source software SAGA GIS v7.3.0
(Hamburg, Germany) for data processing, interpolation and calculation, alongside QGIS v3.8.3 (Grüt,
Switzerland) for data visualization. The proposed methodology integrates raster-based multicriteria
analysis, so all input vector layers were rasterized. Coordinate reference system (CRS) for analysis
was the Croatian Terrestrial Reference System (HTRS96/TM, EPSG: 3765). Layers which initially had
different CRS were reprojected to HTRS96/TM and resampled to 50 m spatial resolution.
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2.2.1. Input Data

Input criteria layers for red spicy pepper cultivation were collected and classified into sustainability
factors, vulnerability factors and constraints. Sustainability and vulnerability factors continuously
indicated an impact on sustainability and vulnerability, respectively [30]. Constraints contained
Boolean data which indicated a strict possibility or inability of red spicy pepper cultivation [31].
Selected criteria for red spicy pepper cultivation are shown in Table 1. A total of 17 criteria were
selected, with seven sustainability factors, five vulnerability factors and five constraints.

Sustainability factors primarily indicate soil potential for sustainable red spicy pepper cultivation.
Fertility represented overall production potential based on soil type, derived from a modified Basic
Soil Map of Croatia [32]. Proper soil drainage prevents precipitation stagnation near stalks, which
leads to deterioration of the roots [33]. Soil organic content influences soil structure and diversity of
soil organisms [34]. Two of the most important soil nutrients for red spicy pepper are potassium oxide
(K2O) and phosphorus pentoxide (P2O5). A sufficient amount of P2O5 enables the development of the
roots and flowering. Plant growth is conditioned by the K2O amount, as well as the formation of the
optimal size of fruits. Neutral and mildly acidic soils allow optimal absorption of soil nutrients for red
spicy pepper. Terrain slope was selected as the last sustainability factor.

Vulnerability factors consolidated diverse factors with potentially unfavourable effects on red
spicy pepper production. The unused construction area is considered vulnerable due to the potential
construction of residential and industrial structures. Forests under private ownership are classified
into two classes, first having high wood potential and second with dominant natural vegetation.
Forests with high wood potential are considered more vulnerable than forests with dominant natural
vegetation since they represent a raw material for carpentry. Lower categories of water wells protection
denote only organic farming and restricted irrigation. Agricultural plots on archaeological localities
can potentially be repurposed to amenities in the interest of cultural tourism.

Constraints represent areas unavailable for red spicy pepper cultivation (built-up area, water
bodies and wetland area) and areas prohibited by the government (forests and first category water
well protection area). The most significant constrained area is Kopački rit, a wetland area designated
as a nature park. The selected criteria are dominantly quantitative, except for the qualitative fertility
and drainage criteria.

Table 1. Criteria selected for calculation of red spicy pepper suitability.

Criteria Type Criteria Name Description

Factors (sustainability)

Fertility Soil type
Drainage Soil drainage level
Humus Organic matter soil content [mg/100 g]

K2O Potassium oxide soil content [mg/100 g]
P2O5 Phosphorous pentoxide soil content [mg/100 g]
pH Soil pH value

Slope Terrain slope [%]

Factors (vulnerability)

A Private forests with high wood potential
B Second and third category water well protection
C Unused construction area
D Archaeological localities

E Private forests with dominant natural
vegetation

Constraints

Built-up Residential and infrastructural objects
Forests Forests under government jurisdiction
Water Water bodies

Wetlands Swamp area
Wells First category water well protection
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2.2.2. Interpolation Methods Evaluation

The interpolation of soil features was conducted as a mandatory operation in the pre-processing
of the four criteria layers that are sampled in the field: humus, K2O, P2O5 and pH. Due to the multiple
possible options for interpolation regarding the selection of the interpolation method and its parameters,
an evaluation of the interpolation methods was conducted. The selection of the optimal interpolation
method was proven to have an impact on the suitability result, as the performance of interpolation
methods depends on the characteristics of the input samples [35,36]. Tested interpolation methods
were ordinary kriging (OK), inverse distance weighted (IDW) and natural neighbour (NN). Selected
methods are mutually complementary considering the input samples’ properties. OK belongs to
geostatistical methods and performs best when samples possess normality, stationarity and regular
sample distribution [37,38]. IDW and NN are deterministic methods that are considered more practical
when samples do not possess a normal distribution and are irregularly spaced [39,40].

The interpolation accuracy test was calculated with the random split-sample method in five
independent repetitions. For each repetition, the input sample consisting of 171 samples was split
randomly into training (70%) and test data (30%), as used in [41]. Using the described method, we
divided the input samples to 120 training and 51 test samples, which remained consistent for all five
iterations. Coefficients of determination were selected as accuracy assessment values. Inner accuracy
(R2

inner) shows the relation of training data and their corresponding interpolated values. Inner accuracy
represents how much an interpolation method preserves field sample values in the interpolation result,
as those values are regarded as absolutely accurate. Outer accuracy (R2

outer) shows the relation of test
data and their corresponding interpolated values. Outer accuracy measures the accuracy of prediction
for tested interpolation methods. Both R2

inner and R2
outer were calculated for each of five datasets

and four soil features, resulting in a total of 20 tested interpolation variations. Descriptive statistics
consisting of mean, coefficient of variation (CV), skewness (SK) and kurtosis (KT) were calculated for
the determination of data normality and stationarity. These values served as a basis for the selection of
interpolation parameters. This particularly refers to ordinary kriging, where normality and stationarity
are prerequisites for its calculation. The interpolation of soil features was conducted using the most
accurate interpolation method.

2.2.3. Sustainability and Vulnerability Calculation Method

Sustainability and vulnerability factors were separately used for the determination of the criteria
impact for sustainability or vulnerability [42,43]. The identical procedure of multicriteria analysis was
applied for the calculation of sustainability and vulnerability. The same constraints were used for both
calculations. The conducted multicriteria analysis is based on AHP [44]. This procedure integrated the
standardization of factor values, factor weights determination and the aggregation of selected factors
and constraints.

Standardization was performed by stepwise standardization methods in four classes in 1–4
number intervals, where 1 denotes the lowest and 4 denotes the highest impact on the result. This
approach allowed the integration of quantitative and qualitative factor types [45], which are common in
the multicriteria analysis of crops [46]. Weight determination of the individual factors was performed
using pairwise comparison matrices, as part of the AHP method [47]. Pairwise comparison incorporates
a scale of preference between every combination of two factors, with preference factors ranging from 1
(equal preference) to 9 (extreme preference). A detailed procedure of pairwise comparison is described
in [48]. Its consistency was calculated by the consistency index (CI) and consistency ratio (CR), as
shown in Equations (1) and (2). The random consistency index (RI) represents an average CI from a
random matrix, λ is the average value of consistency vector and n is the number of parameters [49]:

CR =
CI
RI

, (1)
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CI =
λ− n
n− 1

. (2)

An acceptable value of inconsistency is CR ≤ 0.10, while larger values indicate a necessity for
modification of pairwise comparisons [50,51]. Aggregation of factors and constraints was conducted
using the weighted linear combination. Such a procedure is commonly used in multicriteria analysis
for criteria aggregation [52]. A weighted linear combination (score) for the calculation of sustainability
and vulnerability was calculated using the Equation (3) [53]:

score =
∑

wiXi × C (3)

where wi is the weight of the factor i, Xi is standardized values of the factor i and C is a Boolean layer
of constraints. Sustainability and vulnerability results range from 1 to 4. The ascending nature of these
values represents the increase of sustainability and a decrease of vulnerability.

2.2.4. Suitability Calculation Method

The hybridization of the multicriteria analysis procedure was performed by unsupervised
classification for suitability calculation. The selected classification algorithm was K-means, which was,
in multiple studies, applied in multicriteria analysis [54,55] and various branches of agriculture [56–58].
Classification inputs were sustainability and vulnerability rasters, with equal impact on classification
result. Unconstrained pixels were classified into four suitability classes: highest suitability,
moderate-high suitability, moderate-low suitability and lowest suitability. Such classification meets
the standards set by FAO, in which the land suitability evaluation is generally represented by suitable
and unsuitable regions and mainly categorized in the five suitability classes [23]. In this research, four
suitable classes were calculated during the unsupervised classification and one permanently unsuitable
class is represented by constraints, completing the five class representation. Ranking of the suitable
classes was performed based on the suitability value, calculated as an average of mean sustainability
and vulnerability class values. These two values are considered as equally impactful on the suitability
result, which is the reason that the regular average was selected for the integration of sustainability
and vulnerability values.

3. Results

3.1. Evaluation of Tested Interpolation Methods

The study area was expanded with a 1 km buffer area for soil sampling to avoid extrapolation on
sparsely sampled areas. All of the collected 171 samples in the field were analysed in the laboratory for
humus, K2O, P2O5 and pH. Descriptive statistics for all five random training sets are calculated as
shown in Table 2, using the Python v3.7.1 (Wilmington, Delaware, United States of America) SciPy
library. The mean values of five datasets for all soil features showed moderate variability. The difference
of highest and lowest mean value is largest for K2O, and amounts 0.82 mg/100 g. CV values remained
consistent for all sets, which, in combination with mean values, indicate moderate data stationarity.
High variability of skewness and kurtosis was observed. The values of pH are considered fairly
symmetrical due to the mean skewness of −0.43. Humus and K2O resulted in moderate skewness, with
mean skewness values of 0.59 and 0.64, respectively. P2O5 was determined as highly skewed, having
a mean skewness of 1.31. Mean kurtosis values range from −1.29 for pH to 0.90 for P2O5, implying
platykurtic distribution. All mean kurtosis values deviate from normal distribution kurtosis with a
value of 3. Considering skewness and kurtosis values of analysed soil features, it was determined that
none of them possess normal distribution.
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Table 2. Descriptive statistics of interpolation methods evaluation training datasets.

Soil Feature Value Set 1 Set 2 Set 3 Set 4 Set 5

Humus

Mean 2.77 2.72 2.67 2.71 2.68
CV 0.38 0.37 0.38 0.39 0.38
SK −0.32 0.71 0.88 0.82 0.87
KT 0.83 −0.64 −0.18 −0.37 −0.44

K2O

Mean 16.81 16.56 17.38 16.57 16.96
CV 0.48 0.44 0.43 0.43 0.44
SK 0.85 0.65 0.61 0.56 0.55
KT 0.95 −0.08 −0.19 −0.25 −0.39

P2O5

Mean 16.91 16.43 16.40 16.32 16.49
CV 0.66 0.67 0.70 0.68 0.69
SK 1.29 1.31 1.28 1.39 1.30
KT 0.88 0.99 0.71 1.12 0.78

pH

Mean 7.19 7.14 7.03 7.11 7.03
CV 0.15 0.15 0.15 0.15 0.15
SK −0.59 −0.47 −0.39 −0.39 −0.32
KT −1.16 −1.30 −1.34 −1.30 −1.33

CV: Coefficient of variation, SK: Skewness, KT: Kurtosis.

Since datasets do not possess a normal distribution, logarithmic transformation was performed as
a preliminary step to OK. The variogram model and fitting range were selected based on the internal
goodness-of-fit values. Combinations with the highest coefficients of determination between the
variogram model and empirical variogram were selected. Tested mathematical models were linear,
logarithmic, Gaussian and spherical. The Gaussian model was selected as optimal for the interpolation
of humus, K2O and pH. The spherical model produced the highest goodness-of-fit values for low
stationarity P2O5 samples. IDW was conducted with inverse distance to a power function, with a
weighting coefficient of 3. The Sibson method was used for interpolation using NN. Table 3 contains
R2

inner and R2
outer values for each tested interpolation combination.

Table 3. Interpolation methods accuracy values by datasets and soil features.

Soil
Feature

Interp. Set 1 Set 2 Set 3 Set 4 Set 5
R2

inner R2
outer R2

inner R2
outer R2

inner R2
outer R2

inner R2
outer R2

inner R2
outer

Humus
OK 0.821 0.785 0.876 0.680 0.794 0.853 0.826 0.772 0.878 0.619

IDW 0.997 0.700 0.999 0.626 0.996 0.754 0.996 0.591 0.997 0.644
NN 0.983 0.719 0.991 0.654 0.968 0.816 0.983 0.525 0.986 0.615

K2O
OK 0.729 0.646 0.717 0.606 0.718 0.515 0.788 0.446 0.731 0.556

IDW 0.993 0.803 0.992 0.792 0.992 0.684 0.991 0.503 0.992 0.821
NN 0.992 0.795 0.991 0.600 0.984 0.707 0.985 0.472 0.985 0.758

P2O5

OK 0.852 0.315 0.682 0.374 0.732 0.153 0.700 0.255 0.795 0.292
IDW 0.989 0.301 0.988 0.524 0.989 0.349 0.988 0.435 0.989 0.498
NN 0.986 0.428 0.987 0.496 0.979 0.398 0.976 0.363 0.979 0.359

pH
OK 0.850 0.650 0.800 0.725 0.896 0.552 0.794 0.748 0.789 0.767

IDW 0.998 0.630 0.999 0.663 0.999 0.564 0.998 0.712 0.998 0.809
NN 0.989 0.633 0.992 0.661 0.992 0.610 0.990 0.703 0.987 0.825

OK: Ordinary kriging, IDW: Inverse distance weighted, NN: Natural neighbour, R2
inner: Inner interpolation accuracy,

R2
outer: Outer interpolation accuracy.

IDW constantly produced the highest average R2
inner for all soil features, closely followed by NN

(Table 4). OK had an average of 0.206 lower R2
inner value than IDW, being the least favourable option

based on inner accuracy test. IDW performed best with both R2
inner and R2

outer on samples with lowest
stationarity (K2O) data and highly skewed samples (P2O5). OK resulted with higher R2

outer the more
samples were closer to having a normal distribution and high stationarity. An unevenness of these
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properties caused a major variability of average R2
outer values for OK, ranging from 0.278 for P2O5 to

0.742 for humus. NN remained consistent with the second-highest average accuracy values for all
tested soil features. Considering the interpolation accuracies of all four soil features, IDW was selected
as an optimal interpolation method.

Table 4. Interpolation methods accuracy values by datasets and soil features.

Interp. Humus K2O P2O5 pH
R2

inner R2
outer R2

inner R2
outer R2

inner R2
outer R2

inner R2
outer

OK 0.839 0.742 0.737 0.554 0.752 0.278 0.826 0.688
IDW 0.997 0.663 0.992 0.721 0.989 0.422 0.998 0.675
NN 0.982 0.666 0.987 0.667 0.981 0.409 0.990 0.686

OK: Ordinary kriging, IDW: Inverse distance weighted, NN: Natural neighbour, R2
inner: Inner interpolation accuracy,

R2
outer: Outer interpolation accuracy.

3.2. Sustainability and Vulnerability Calculation

Standardization of sustainability factors was conducted as shown in Table 5. Qualitative factors
were standardized by assigning a standardized value to each subclass. Standardization of quantitative
factors was performed by the reclassification of the selected value interval to new standardized values.
Qualitative vulnerability factors were standardized by the binary reclassification of vulnerable classes
to 1 and non-vulnerable classes to 4.

Pairwise comparison matrices were created by vegetable cultivation expert for sustainability
(Table 6) and vulnerability factors (Table 7). Consistency values show that both pairwise comparison
matrices resulted in acceptable consistency. Fertility and dainage factors were considered most
influential in a first pairwise comparison, with combined 56.9% of the total impact on sustainability.
Private forests with high wood potential resulted as the most vulnerable factor, comprising almost 45%
of the total vulnerability impact.

Table 5. Standardization of sustainability factor values.

Factor
Standardized Value

1 2 3 4

Fertility Other soils Eugley soils Hydroameliorated soils Semigley soils
Drainage Very low Low Moderate High
Humus <2.5 2.5–3.0 3.0–3.5 3.5>

K2O <5.0 5.0–10.0 10.0–15.0 15.0>
P2O5 <6.0 6.0–10.0 10.0–20.0 20.0>
pH <5.0, 7.3> 5.0–5.6 5.6–6.4 6.5–7.2

Slope 2.0> 1.5–2.0 1.0–1.5 <1.0

Table 6. Sustainability pairwise comparison matrix.

Fertility Drainage Humus K2O P2O5 pH Slope Weights

Fertility 1 2 2 4 5 7 8 0.329
Drainage 1/2 1 2 3 4 6 7 0.240
Humus 1/2 1/2 1 3 4 5 6 0.190

K2O 1/4 1/3 1/3 1 2 4 5 0.105
P2O5 1/5 1/4 1/4 1/2 1 2 4 0.067
pH 1/7 1/6 1/5 1/4 1/2 1 3 0.043

Slope 1/8 1/7 1/6 1/5 1/4 1/3 1 0.026

n = 7, CI = 0.071, RI = 1.32, CR = 0.054.
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Table 7. Vulnerability pairwise comparison matrix.

A B C D E Weights

A 1 2 4 5 8 0.446
B 1/2 1 3 4 6 0.288
C 1/4 1/3 1 2 4 0.132
D 1/5 1/4 1/2 1 4 0.095
E 1/8 1/6 1/4 1/4 1 0.039

n = 5, CI = 0.058, RI = 1.12, CR = 0.052.

Individual Boolean constraint criteria layers were multiplied mutually to form a constraints layer.
A total of 85.1% of the study area was constrained during criteria aggregation, which resulted in the
area of 47 km2 available for red spicy pepper cultivation. Sustainability values ranged from 1.77 to
3.63, indicating moderate sustainability with no extreme values. Vulnerability resulted in the value
range of 1.50–4.00, indicating a high variability of vulnerability on the calculated area. A total of 35.6%
of the area resulted as non-vulnerable with the most favourable value (4.00).

3.3. Suitability Calculation

K-means classification resulted in four classes, with their mean sustainability and vulnerability
shown in Table 8. The classification was performed with 20 maximum iterations. The mean suitability
values of each class were ranked and the description to each class was added. The highest suitability
class was dominantly located in the northwest of the municipality and covered over one-third of the
unconstrained area. The top two classes are considered as suitable for red spicy pepper cultivation
based on the relative suitability values between classes, covering the area of 2167.5 ha. The bottom two
classes had significant limitations in the form of high vulnerability (moderate-low suitability) or low
sustainability (lowest suitability). The final red spicy pepper suitability map was shown in Figure 3,
alongside sustainability and vulnerability maps.

Table 8. Calculation of suitability values from unsupervised classification results.

Suitability Class Area (ha) Mean
Sustainability

Mean
Vulnerability Suitability Value

Highest suitability 1667.0 3.267 3.968 3.618
Moderate-high

suitability 500.5 2.993 3.961 3.477

Moderate-low
suitability 1330.5 3.197 3.118 3.158

Lowest suitability 1178.8 2.216 3.965 3.091
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4. Discussion

The versatility of applied methods in the process of suitability calculation ensures the repeatability
of the process, not related to the study area size or its location in the world. Existing studies on the
application of multicriteria analysis on crop suitability are developed in similar areas, like the study
area in this research, and imply the applicability of this methodology on larger areas [15,35,59–61].
The same studies noted the flexibility of the used methods regarding the input data selection. Thus,
the addition or deduction of new individual criteria or the criteria group is supported by the applied
methods. Consequentially, the applicability of the suitability calculation proposed in this study is
possible on almost any crop type, with the prerequisite of the input criteria adjustment to the selected
crop type and the specificities of the study area. Evaluation of interpolation methods produced
results that are contrary to multiple studies in which kriging methods resulted in better interpolation
accuracy than deterministic methods [62,63]. The primary cause of the better accuracy of IDW than
OK in this study is the low normality and moderately low data stationarity. Considering that OK
produced higher accuracy, the closer the sample data are to a normal distribution, it is assumed that
OK would be optimal interpolation method for the majority of samples in practice. Nevertheless,
this case demonstrated that the evaluation of the interpolation method was an important step in the
multicriteria analysis and that kriging is not always superior to deterministic methods. Evaluation of
interpolation methods can be expanded using additional statistical indicators like root mean square
error and mean relative error [64,65].

The climate criteria group, consisting of air temperature, precipitation and solar radiation, were
not applied to this analysis due to homogenous climate conditions in the study area. However, in the
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case of more diverse conditions, these data have a major impact on the suitability results [66]. Similarly,
the addition of the soil nitrogen content was strongly considered as a sustainability factor, but was
dismissed due to its high homogeneity in the study area. The potential importance of soil nitrogen
content as a fundamental macronutrient for red spicy pepper suitability calculation increases with its
variability in the study area, presenting a base of future research. Stepwise standardization allowed
better control and more expert influence on standardization in contrast to common linear scaling.
This is primarily obvious in the case of a few extremely high or low pixel values. Fuzzy membership
methods for standardization offer a potential upgrade to standardization [67] and will be a subject of
future research. One of the main disadvantages of AHP is an expert’s subjectivity in the creation of
pairwise comparison matrices, which could be a source of inaccuracies in the suitability result [68].
These inaccuracies can be reduced in the form of fuzzy AHP [69] or by aggregating estimations of
multiple experts [14].

The separation of input criteria to sustainability and vulnerability factors enabled the calculation
of positive and negative impacts of red spicy pepper production. The number of input criteria
for red spicy pepper cultivation can easily grow and cause cluttering since it includes soil, climate,
infrastructure and economic criteria groups. Such a procedure reduces the overemphasis of positive or
negative influences and prevents redundancy of factors in the individual analysis [70]. Separation of
sustainability and vulnerability allows the limiting of the factors to seven per analysis, which is the
maximum recommended number of input criteria in AHP [71]. It is also considered that reducing of the
pairwise matrices’ complexity leads to a decrease in possible inaccuracies during weight determination.
During that procedure, the expert’s subjectivity is also restricted, which reduces one of AHP’s main
drawbacks. The application of unsupervised classification for suitability calculation allowed objective
and rule-based calculation, further reducing the probability of error due to expert’s subjectivity [72].

The difference in suitability values of the highest and lowest-ranked class is relatively small,
0.527 out of a possible 3.000. Classes were ranked relatively with regard to the mutual relationship
of class suitability values. Absolute suitability scales like FAO land-crop suitability scale [73] were
considered inappropriate since the distinctively designate top and bottom classes as completely suitable
or non-suitable. Further research is planned on suitability result validation with ground-truth data
and the measurement of the calculated suitability impact on potential economic profits. Agricultural
plots with similar cultivation methods are required for planned research, alongside yield data for each
observed plot.

5. Conclusions

The proposed methodology was based on the hybridization of multicriteria analysis and
unsupervised classification for the calculation of red spicy pepper cultivation suitability. One of the
main advantages of the proposed methods is the interpolation methods evaluation, as four soil feature
criteria required interpolation as part of the pre-processing. It was observed that the IDW method
performed best out of the three tested interpolation methods, contrary to most cases where OK had an
advantage over deterministic methods. Another advantage of methodology was the separation of
sustainability and vulnerability multicriteria analysis. These results were used for the calculation of
suitability, but can be used independently if necessary. The criteria separation procedure prevented
criteria redundancy by limiting the number of criteria for each analysis to seven. It also reduced
inaccuracies in calculation due to expert subjectivity. The final advantage represents an aggregation of
sustainability and vulnerability results in suitability classes using unsupervised classification. That
procedure further reduced errors caused by an expert’s subjectivity. It was also used to create ranked
classes that are easily applicable in the planning of new red spicy pepper plantations. With the use of
unsupervised classification, 2167.5 ha (6.9% of the total study area) was determined as suitable for red
spicy pepper cultivation. Further research is planned on the validation of the calculated results using
ground-truth data and the integration of fuzzy methods with the multicriteria analysis procedure.
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