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Abstract: Near-infrared (NIR) spectroscopy has been used to non-destructively and rapidly evaluate
the quality of fresh agricultural produce. In this study, two commercially available portable
spectrometers (F-750: Felix Instruments, WA, USA; and SCiO: Consumer Physics, Tel Aviv, Israel)
were evaluated in the wavelength range between 740 and 1070 nm to non-invasively predict quality
attributes, including the dry matter (DM), and total soluble solids (TSS) content of three fresh table
grape cultivars (‘Autumn Royal’, ‘Timpson’, and ‘Sweet Scarlet’) and one peach cultivar (‘Cassie’).
Prediction models were developed using partial least-square regression (PLSR) to correlate the
NIR absorbance spectra with the invasive quality measurements. In regard to grapes, the best DM
prediction models yielded an R2 of 0.83 and 0.81, a ratio of standard error of performance to standard
deviation (RPD) of 2.35 and 2.29, and a root mean square error of prediction (RMSEP) of 1.40 and
1.44; and the best TSS prediction models generated an R2 of 0.97 and 0.95, an RPD of 5.95 and
4.48, and an RMSEP of 0.53 and 0.70 for the F-750 and SCiO spectrometers, respectively. Overall,
PLSR prediction models using both spectrometers were promising to predict table grape quality
attributes. Regarding peach, the PLSR prediction models did not perform as well as in grapes, as DM
prediction models resulted in an R2 of 0.81 and 0.67, an RPD of 2.24 and 1.74, and an RMSEP of 1.28
and 1.66; and TSS resulted in an R2 of 0.62 and 0.55, an RPD of 1.55 and 1.48, and an RMSEP of
1.19 and 1.25 for the F-750 and SCiO spectrometers, respectively. Overall, the F-750 spectrometer
prediction models performed better than those generated by using the SCiO spectrometer data.

Keywords: grape; peach; dry matter; total soluble solids; NIR spectroscopy; partial least-square
regression

1. Introduction

Fruits and vegetables produced in California have a paramount impact on the national economy [1].
Among the top twenty agricultural commodities produced in this state, grapes (Vitis vinifera L.) are the
number one fresh fruit with a total market value of more than 5.8 billion dollars (2017). California also
leads the nation’s production of many other commodities—meaning that it generates 99 percent or
more—among which, peaches (Prunus persica L.) and grapes are again included [1]. Consequently,
fruit producers and farm technicians are interested in devices capable of non-destructively measuring
the internal quality of these fruits [2], and frequently ask for scientific evidence to local extension services.
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With the objective of supplying a high and consistent quality of fresh fruits and vegetables,
various non-destructive technologies including optical (e.g., computer vision system, and spectroscopy)
and electromagnetic techniques (e.g., magnetic resonance imaging) have been evaluated [2].
Among these technologies, visible (VIS) and near-infrared (NIR) spectroscopy is a rapid, non-destructive
and simple method that has gained attraction, as it has been widely used to infer internal and
external physiochemical constituents, and quality attributes of fresh agricultural produce [3,4].
Spectroscopic techniques usually study the VIS (380–720 nm) and NIR (780–2500 nm) wavelengths of the
electromagnetic spectrum based on absorption of energy from molecules or chemical constituents of the
produce within these regions. Signals of major structures and functional groups of organic compounds,
such as the O-H, C-H, and N-H structures, are detected within the NIR range [5]. When incident
light contacts the surface of a fruit, the light undergoes spectral changes as it interacts with the fruit
at a molecular level (at a depth of 1–2 cm below the peel) per a sample’s chemical composition and
internal organic matter. Molecules are excited and experience shifts in their energy levels or states.
Consequently, the light is reflected, transmitted, or absorbed [6]. A specific molecule, such as the water
molecule, can partially or fully absorb the light at a given wavelength or wavelength range resulting in
the absorption spectrum.

The resulting VIS/NIR, VIS, or NIR spectra of a fresh fruit or vegetable are frequently convoluted
due to several interfering factors: Water highly absorbs NIR radiation; low signal-to-noise ratio (SNR)
(i.e., measure of the quality or resolution of a peak); high overlap of combination (i.e., simultaneous
stretching and excitation bands) and overtones (i.e., bands due to transitions of molecules from ground
to higher energy levels) bands; scattering of light (e.g., specular or mirror-like reflectance); instrumental
noise; and complex constitution of the biological sample such as a fruit tissue heterogeneities [5,7–10].
Chemometrics, or computational chemistry, and mathematical and multivariate statistical tools
(e.g., partial least-squares regression) and spectral pre-processing treatments are essential to extract the
fruit quality relevant information from the convoluted VIS/NIR spectrum [8,11–13]. VIS/NIR spectral
data combined with chemometric analysis techniques have been applied to assess maturity, appearance,
and sweetness of several agricultural produce, therefore ensuring that the produce meets specific
quality standards [5,9,14].

Harvest timing of table grapes and peaches is an important attribute, which has proven to be
challenging to predict and/or estimate. Typically, fruit growers subjectively and visually estimate
harvesting time by observing color changes on the fruit. In some cases, color changes are slight,
undetectable and/or do not reflect the overall maturity of the crop. In addition, growers typically
apply laborious postharvest processing, and/or biochemical assays with expensive chemicals and
specialized lab equipment. Premature and/or delayed harvesting can negatively impact yield and
quality, and may lead to quantitative, qualitative, and nutritional postharvest losses. Several studies
have been performed with promising results to objectively assess table grape and peach maturity and
quality attributes, using NIR spectroscopic techniques. Research performed by [15–17] stated that NIR
spectroscopy techniques have the ability to rapidly and accurately predict several vineyard table grape
quality attributes, including their total soluble solids (TSS) content, and can potentially be used to
infer and monitor table grape maturity/ripeness in the field. In addition, portable VIS/NIR systems to
non-destructively and rapidly predict fresh berry and homogenized sample quality parameters has
also been developed and tested by [18], resulting in classification models with a high accuracy rate of
89% for TSS and 83% for acidity. To evaluate the maturity and quality of peaches, various physical and
chemical properties such as firmness, TSS, dry matter (DM) and titratable acidity were successfully
investigated using NIR spectroscopy methods, as seen in [19–22].

The applications of portable NIR produce quality spectrometers have not been fully addressed,
especially under practical real-life conditions. To date, most studies have focused in laboratory based
spectrometers to non-destructively predict various quality attributes [15] while only in some studies
comparisons with portable devices have been performed [23,24]. Recent advancements in sensorics
and microelectronics have resulted in the creation of hand-held, commercially available NIR produce
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quality spectrometers of several brands, such as the F-750 (Felix Instruments, Camas, WA, USA), and
SCiO (Consumer Physics, Tel Aviv, Israel). The latter belongs to the recent category of miniaturized
spectrometers, with increasing interest nowadays due to their potential application inside mobile
phones [25,26]; its capabilities have been applied to a wide range of studies, from cultivar detection
on seeds [27] to the characterization of pharmacy tablets [23]. Therefore, potential users in particular
agri-food producers, technicians, and extension personnel are interested in scientific studies and
information regarding the prediction performance, and practical application of these equipment.
These tools should be accurate, robust, and easy to use to allow real-time and in-field measurement
conditions. For in-field non-destructive fruit quality attribute prediction, spectrometers should tolerate
differences in fruit maturity, color, varieties, and environment. Thus, the goal of this study was to
evaluate the potential of two commercially available hand-held portable non-invasive VIS/NIR produce
quality spectrometers, including the Felix-750 and SCiO, to predict quality attributes (DM and TSS) in
fresh table grapes and peach fruits.

2. Materials and Methods

2.1. Fruit Samples

Table grapes and peach fruits were selected among other species for this experiment due to two
main reasons: First, their economic importance in local and national economy, and, second, their
different size, which may affect light diffusion in their internal tissues and, therefore, final quality
estimation. Samples were hand harvested from commercial grower fields on July 2017 in Bakersfield,
in the case of table grapes, and in Esparto, CA, USA, in the case of peaches. Table grape samples
included a total of 450 single berries from three cultivars containing different skin colors, ‘Autumn
Royal’ (purple), ‘Timpson Seedless’ (green), and ‘Sweet Scarlett’ (red) (150 berries per cultivar); and
150 peach fruits from one cultivar (‘Cassie’), as summarized in Table 1. Immediately after harvest,
samples were transported in a cooler to the Postharvest Engineering laboratory at UC Davis and stored
in a walk-in cold room (0 ◦C) before spectral measurements.

Table 1. Descriptive statistics for table grape and peach sample quality attributes.

Parameters
DM (%) TSS (◦Brix)

Table Grape
Peach

Table Grape
Peach

Purple Green Red Purple Green Red

No. of samples 150 150 150 150 150 150 150 150
Minimum 9.09 6.12 7.70 9.01 8.2 4.35 6.00 7.30
Maximum 23.85 24.61 22.46 30.72 17.55 21.1 20.6 17.85

Mean 14.45 15.89 17.32 17.04 12.4 14.48 16.15 12.57
Std. deviation 2.74 3.88 2.64 3.11 2.15 3.61 2.49 1.93

DM = dry matter, TSS = total soluble solids.

2.2. Fresh Fruit Spectral Measurements

Two commercially available hand-held produce quality spectrometers, as described in Table 2, were
used in this study. The SCiO spectrometer was a brand new piece of equipment, acquired for the purpose
of this experiment, while the F-750 spectrometer have been used before for other scientific projects at
the Biological and Agricultural Engineering Dept. of University of California-Davis, having all the
setup and calibration procedures adequately updated. In order to create temperature-compensated
calibration models, reflectance spectra using the F-750 spectrometer were acquired twice on opposite
sides on the surface of each sample (each berry in the case of grapes, and each peach fruit), at three
different temperatures (0, 10, and 20 ◦C). Fruit samples were allowed to equilibrate in different cold
rooms at the desired temperature for a minimum of 2 h, and spectra acquisition was performed inside
each cold room. The same process was repeated using the SCiO spectrometer but, due to its short
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battery life, this was only performed at two different temperatures (0 and 20 ◦C). For each sample, a
mean spectrum was calculated by averaging the total scan spectra (6 for the F-750 spectrometer, and 4
for the SCiO spectrometer) collected for each berry or fruit at the different temperatures.

In the case of the F-750 spectrometer, recorded spectral data for all of the fruit samples were
transferred to a laptop computer (Intel Core i7-7700HQ CPU 2.80 GHz 16.0 GB RAM) using a Secure
Digital (SD) card and the ‘F-750 Model Builder’ software Version 1.3.0.177 (Felix Instruments, Camas,
WA, USA), and saved using a Comma-Separated Values (CSV) file format for later spectral processing.
For the SCiO spectrometer, measured reflectance spectra were stored in the manufactures cloud service
(Consumer Physics; Tel Aviv, Israel), using an iPhone 6s (Apple Inc. Cupertino, CA, USA), and saved
in a laptop computer using a CSV file format for later spectral processing. Ultimately, reflectance
spectra from the SCiO spectrometer were transformed to absorbance spectra, using Equation (1).

Absorbance = log (1/Reflectance) (1)

After spectral measurement and transformation were performed, data were imported into Matlab
R2018a (version 9.4 Release March 2018, The Mathworks, Natick, Boston, MA, USA). Spectra data
wavelength range selection, pre-processing, data analysis and visualization, and partial least-square
(PLSR) regression calibration and prediction model development were performed in the Matlab
environment and the PLSR Toolbox (version 7, Eigenvector Research, Inc. 2012, Manson, WA, USA).

Table 2. Technical specifications of produce quality spectrometers used in the study.

Characteristics
Device Model (Manufacturer)

F-750 (Felix Instruments, Natick, WA, USA) SCiO (Consumer Physics, Tel Aviv, Israel)

Full range (nm) 285–1200 740–1070
Usable range (nm) in this study 741–1071 740–1070

Resolution (nm) 3 1
Display LCD screen Phone

Interface PC based via USB and SD card iPhone 5 and above with iOS 9 or higher;
Android 4.3 or higher

Measurement Reflectance, absorbance, first derivative Reflectance

Power Four 3100 mAh lithium-ion battery (easy to
replace rechargeable batteries)

Rechargeable internal lithium polymer
battery

Battery life (Approximate number of
measurements) 1600 <500

Dimensions (mm) 180.34 × 120.65 × 44.45 67.7 × 40.2 × 18.8
Weight (g) 1050 35

Price (US$) 8500 (Equipment and local training software) 500 (Equipment)
2950 (Online scientific package)

2.3. Spectral Data Wavelength Range Selection, and Pre-Processing

Acquired spectra from a biological sample, such as a fresh fruit, typically contain high- and/or
low-frequency interferences and irrelevant information, which might influence prediction performance,
and accurate development of calibration/prediction models. Non-relevant information can be present
due to intrinsic equipment electronic noise, dark current, shot and readout noise, sample background
variations, unwanted incidence light (stray light) and scattering, changes in light intensity, and
non-uniform distribution of light over the scanned surface. Defining the usable wavelength range
for each spectrometer, and spectral pre-processing of the originally acquired spectra is imperative to
remove any irrelevant information within the spectra, and to develop reliable and stable calibration
and predictions models [3,28,29]. Therefore, due to differences in color between samples, the VIS
range of the F-750 spectrometer was not included in the development of quality attribute prediction
models. In addition, the usable wavelength range for both spectrometers (740–1070 nm) was further
defined by evaluating their performance (SNR, and signal variation with room temperature) with
25.3 mm diameter Polytetrafluoroethylene (Teflon) spheres as reference standards/phantoms on a
separate experiment. These spheres are chemically inert, moisture and high-heat resistant. Spectra of
the reference sphere were measured on top of the Teflon sphere at three different room temperatures
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(0, 10, and 20 ◦C). For each sphere, the spectrum was measured 5 times in sequence, and a total of 25
spectrums (3 repetitions of 5 measurements) were recorded per temperature. A total of 75 spectrums
were analyzed per spectrophotometer in the spectral range 740–1070 nm. The average coefficient
of variation (CV) of the measured spectrums wavelength by wavelength for each temperature was
calculated, as well as the SNR.

Also, with the aim of improving the calibration models, several well-known mathematical
pre-processing techniques were applied to the originally acquired spectra (original), including the
Standard Normal Variate (SNV), Orthogonal Signal Correction (OSC), Multiplicative Scattering
Correction (MSC), First Derivative (FD), and Second Derivative (SD), and smoothing using the
Savitzky–Golay (SG) algorithm [7,13].

2.4. Fruit Quality Attribute Measurements (DM, and TSS)

After spectral measurements, each sample fruit was immediately processed to estimate its DM
(%) and TSS (◦Brix) content, as reference measurements (quality attributes). The initial weight of the
approximate one-quarter of each fruit was recorded and then dehydrated until constant mass was
reached in an oven at 110 ◦C temperature. The DM content of each sample was then calculated by
dividing the dry weight by its corresponding initial (wet) weight.

The second half of each peach sample fruit was juiced using a juice extractor (Big Mouth Pro Juice
Extractor, Hamilton Beach, Glen Allen, VA, USA) and thoroughly mixed. The second half of each table
grape sample fruits were manually squeezed by firmly pressing each fruit, and thoroughly mixed.
Then, to measure the TSS content, a juice aliquot containing 0.3 mL of juice was placed onto a digital
hand-held refractometer (Atago PAL-1, Tokyo 105-0011, Japan) with an accuracy of ±0.2%, as specified
by the manufacturer. DM and TSS reference measurements were performed in duplicate, while fruits
were held at a 20 ◦C constant temperature.

2.5. Modeling the Relationship between Spectral Data and Quality Attributes

Partial Least-squares Regression (PLSR) was employed to model the relationship between the
spectral and invasive quality attribute data (DM, and TSS) of both fruits (table grapes, and peach).
PLSR essentially predict each quality attribute vector (Y) from the spectral matrix (X) by modeling the
shared structure between the two, and extracting a group of orthogonal (or statistically independent)
latent variables (LV), while simultaneously decomposing X and Y [11]. This translates into finding
components along directions of maximal covariance between X and Y. For the regression then the
focus is concentrated on these orthogonal factors to model the relationship [7].

Data were categorized into spectra and quality attributes matrices per the PLSR algorithm and
randomly divided into a 75% for the calibration set, and 25% for the prediction. Cross-Validation
(CV) divided the calibration set into 10-folds with 20 iterations using the Venetian blinds method.
When predicting quality attribute values for the prediction set, the PLSR algorithm calculates new
LV estimates as linear combinations of the original variables from the spectra matrix and uses these
estimates as predictors. Minimum value for the root-mean square error of cross-validation (RMSECV)
is used to select the optimum number of latent variables (LV) (max was fixed as 20) used to internally
calculate the best model for each quality attribute [30–32]. RMSECV is obtained by comparing the
predicted trait value with its reference value. In addition to the number of LV, PLSR statistical
parameters to estimate performance of the selected model included R2

cal and R2
pred (the coefficient of

determination for calibration and prediction, respectively), SEC and SEP (standard error of calibration
and prediction, respectively), RPD (residual predictive deviation), and Bias (average difference between
predicted and actual values). PLSR models with maximum R2 and RPD, and lowest SEC, SEP and
Bias values were selected as the optimum pre-processing method and best regression calibration
models [3,33–36].
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3. Results and Discussion

Depicted in Figure 1 are the original spectra of the samples, averaged per cultivar (green, purple
and red grapes, and peaches), acquired with the SCiO spectrometer. Even though this device records
data in the NIR region between 740 and 1070 nm, larger differences were observed between species
than between varieties, having peach spectra a broader light absorption range than the grape spectrum.
This behavior was also corroborated by NIR+VIS spectra acquired with the Felix device (not shown),
where differences also in the VIS region were larger between fruit species due to their respective skin
and flesh colors. Consequently, data analyses were done from this point on combining the spectra of
all table grapes, with the aim of obtaining robust global models for each fruit species, and not only for
single cultivars.
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Figure 1. Absorbance spectra averaged per cultivar for 150 green grapes, 150 purple grapes, 150 red
grapes and 150 peaches, acquired with the SCiO spectrometer.

Figure 2 shows the mean of absorbance spectra of 450 table grapes and 150 peach fruits acquired by
the F-750 and SCiO spectrometers at NIR region 740–1070 nm, respectively. Although the absorbance
intensity varied, all the spectra had similarities in their overall pattern and shape. It is seen that
the spectra showed one broad absorbance peak around 975 nm, which can be associated with water
and sugar absorption [37,38]. The raw spectral data also contain undesirable interferences such
as overlapped bands, scattering and random noises, and therefore these spectra were subjected to
pre-processing methods. The spectra that generated the combination of the minimum RMSE, higher
R2 and RPD, bias near zero, and optimized numbers of LV were considered for the PLSR modelling.
As mentioned, for model development and performance evaluation for predicting DM and TSS for
table grapes and peach, only the NIR range from 740 to 1070 nm was considered for both spectrometers,
discarding the VIS wavelengths of F-750.
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3.1. PLSR Models for Predicting the DM and TSS of Table Grape and Peach Fruits

Calibration and prediction models based on PLSR to infer the DM and TSS of table grapes and
peach fruits were developed in the range of 740–1070 nm region using the F-750 and SCiO spectrometers.
The results obtained for the original and pre-treatment spectral data of both spectrometers in calibration
and prediction models are shown in Table 3 for table grapes and peach. Regarding the different
pre-processing techniques applied, the PLSR calibration model using OSC performed better for
predicting table grape DM using the F-750 and SCiO spectrometers, which had the highest R2 (0.79 and
0.75), lowest RMSEC (1.55 and 1.66), and highest RPD (2.17 and 2.02), and contained optimal number
of LV (nine and 11). Similarly, the best PLSR calibration models were obtained for SNV spectra for
predicting TSS in table grapes using both spectrometers, showing a very high value of R2 (0.99 with
F-750, and 0.97 with SCiO), RPD (8.96 and 5.87) and a fairly low value of RMSEC (0.36 and 0.55) with a
larger number of LV (19 and 14) than for DM. The overall calibration results obtained in the original
and pre-processing spectra were not noticeable predictors for DM and TSS in peach, but slightly better
results were obtained in prediction (e.g., larger value of R2 and RPD, and smaller value of RMSEP)
using pre-processing techniques as shown in Table 4. The obtained results using SD pre-processing
with eight LV and FD pre-processing with six LVs performed better for the F-750 spectrometer, and SG
with nine LV and SNV with eight LV performed better for the SCiO spectrometer for the prediction of
peach DM and TSS, respectively.
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Table 3. Partial least-square regression calibration and prediction model results for table grape and peach quality attributes.

Quality
Attribute

Spectra No. of LV
Calibration Prediction

R2 RMSEC RPD R2 RMSEP RPD Bias

F-750 SCiO F-750 SCiO F-750 SCiO F-750 SCiO F-750 SCiO F-750 SCiO F-750 SCiO F-750 SCiO

DM (%) for
Table Grapes

Original 9 12 0.77 0.75 1.60 1.69 2.10 1.98 0.82 0.78 1.41 1.56 2.34 2.12 −0.18 −0.07
SNV 9 11 0.79 0.77 1.54 1.62 2.17 2.07 0.80 0.78 1.52 1.55 2.17 2.13 −0.31 −0.17
OSC 9 11 0.79 0.75 1.55 1.66 2.17 2.02 0.83 0.81 1.40 1.44 2.35 2.29 −0.27 −0.09
FD 9 11 0.47 0.41 2.45 2.58 1.37 1.30 0.52 0.58 4.11 2.26 0.80 1.46 0.88 0.23
SD 9 11 0.77 0.76 1.61 1.64 2.09 2.05 0.82 0.80 1.43 1.47 2.32 2.25 −0.21 −0.13
SG 9 11 0.76 0.74 1.63 1.70 2.06 1.98 0.82 0.81 1.40 1.45 2.35 2.27 −0.16 −0.16

DM (%) for
Peach

Original 8 12 0.60 0.61 2.02 1.99 1.58 1.60 0.72 0.58 2.32 1.89 1.24 1.53 −0.30 0.23
SNV 8 9 0.64 0.58 1.90 2.05 1.68 1.56 0.15 0.63 3.59 1.78 0.80 1.61 0.50 0.33
OSC 8 9 0.64 0.58 1.91 2.05 1.67 1.55 0.30 0.65 2.85 1.71 1.00 1.68 0.47 0.29
FD 8 9 0.61 0.57 1.99 2.09 1.60 1.53 0.64 0.45 33.6 2.44 0.09 1.18 13.1 1.00
SD 8 9 0.60 0.63 2.00 1.93 1.59 1.65 0.81 0.61 1.28 1.80 2.24 1.60 0.01 0.28
SG 8 9 0.59 0.56 2.04 2.11 1.56 1.51 0.17 0.67 3.32 1.66 0.86 1.74 0.48 0.24

TSS (◦Brix) for
Table Grapes

Original 20 15 0.98 0.95 0.50 0.71 6.41 4.54 0.97 0.96 0.53 0.72 5.99 4.41 0.02 −0.04
SNV 19 14 0.99 0.97 0.36 0.55 8.96 5.87 0.98 0.97 0.39 0.58 8.03 5.43 0.00 −0.01
OSC 19 14 0.99 0.95 0.39 0.70 8.36 4.58 0.98 0.96 0.43 0.71 7.33 4.45 −0.02 −0.05
FD 19 14 0.67 0.54 1.86 2.16 1.73 1.45 0.48 0.21 4.41 3.13 0.72 1.00 0.33 0.72
SD 19 14 0.98 0.95 0.42 0.70 7.74 4.61 0.98 0.96 0.42 0.72 7.48 4.39 0.00 −0.07
SG 19 14 0.98 0.94 0.40 0.77 7.98 4.20 0.98 0.95 0.41 0.77 7.74 4.09 −0.02 −0.00

TSS (◦Brix) for
Peach

Original 13 7 0.72 0.40 1.04 1.53 1.89 1.28 0.51 0.46 1.32 1.40 1.40 1.32 0.22 0.38
SNV 6 8 0.52 0.52 1.35 1.35 1.45 1.45 0.48 0.55 1.32 1.25 1.40 1.48 0.18 0.15
OSC 6 8 0.53 0.53 1.35 1.35 1.46 1.46 0.52 0.49 1.29 1.30 1.43 1.42 0.24 0.02
FD 6 8 0.44 0.51 1.47 1.38 1.34 1.43 0.62 0.74 1.19 5.22 1.55 0.35 0.31 0.05
SD 6 8 0.53 0.55 1.33 1.31 1.47 1.50 0.49 0.52 1.32 1.28 1.40 1.45 0.22 −0.04
SG 6 8 0.19 0.50 1.36 1.38 1.11 1.42 0.07 0.51 1.45 1.29 1.02 1.43 −0.32 0.08

SNV = Standard Normal Variate, OSC = Orthogonal Signal Correction, FD = First Derivative, SD = Second Derivative, and SG = Smoothing using the Savitzky–Golay algorithm.
Bolded figures indicate best performance models, depending on spectra preprocessing, and trait.
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The calculated RMSECV values for PLSR is plotted as a function of the number of LVs in Figure 3.
Overall, the number of LVs considered for model development were in the acceptable range for all of
the models, because the number of samples within the calibration data set were ten times larger than the
LVs [39]. However, the minimum RMSECV was observed in the 19th and 14th LVs for the prediction
of TSS in table grapes using the F-750 and SCiO spectrometers, respectively. The latter indicates that a
large number of factors were interpreted to construct the models. From Figure 3, it is seen that the first
minimum RMSECV value was observed in the 7th LV (marked by blue dotted circle) to predict the TSS
using the F-750, capturing 100% of the variance by the regressor and explaining 97.16% of its variance
(Table 3). The difference of the RMSECV between the 7th and 8th LVs and thereafter were relatively
low and insignificant, indicating that LVs above seven might contain irrelevant information and will
cause an over fitted model. Hence, 7 were the optimal number of LVs chosen to predict table grape
TSS using the F-750 spectrometer. Similarly, to avoid irrelevant information and model over fitting, the
optimal number of LVs (marked by blue dot circle) to predict the TSS in table grapes using the SCiO
spectrometer was equal to 9.

Figure 3. Number of latent variables (LV) versus root-mean square error of cross-validation (RMSECV)
values in the partial least-squares regression (PLSR) calibration model to predict dry matter (DM) and
total soluble solids (TSS) in table grapes and peach fruits using the F-750 and SCiO spectrometers.
Circles indicate optimized number of LV for each model; when two circled points are present in a
calibration model, blue dot circle indicates further adjustment to avoid over fitting.

Table 4. Total percent variance of X and Y explained by the optimum number of latent variables (LV)
captured by the regression model using PLSR.

Fruit Meter Constituents Preprocessing LV RMSECV X-Block Y-Block

Table grapes
F-750

DM OSC 9 1.736 99.99 78.66
TSS SNV 7 0.584 100.00 97.16

SCiO
DM OSC 11 1.871 100.00 75.46
TSS SNV 9 0.924 100.00 95.35

Peach
F-750

DM SD 8 2.294 100.00 60.10
TSS FD 6 1.478 99.99 43.48

SCiO
DM SG 9 2.656 100.00 55.71
TSS SNV 8 1.576 100.00 52.09
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3.2. Model Prediction Performance to Infer DM Content in Table Grapes and Peach

Figure 4A–D show the results for the prediction of table grape DM in PLSR regression using the
best calibration model developed by OSC spectra using the F-750 and SCiO spectrometers, respectively.
These figures demonstrated that good results were obtained for table grape DM prediction using both
produce quality spectrometers. These results are aligned with the ones obtained by [24] using also the
F-750 and SCiO spectrometers for DM assessment on apples and kiwis, with R2 values between 0.8 and
0.95. In the case of the F-750 spectrometer, the coefficient of determination, RMSEP, and RPD for the
DM prediction set varied from 0.52 to 0.83, 1.40 to 4.11, and 0.80 to 2.35, respectively (Table 3). As seen
in Table 4 the application of pre-processing techniques on the PLSR model had less effect on prediction
performance but the calibration model using OSC was slightly improved the model’s predictive power
with R2 = 0.83, RMSEP = 1.40, RPD = 2.35, and bias = −0.27 (Figure 4B). On the other-hand, R2, RMSEP,
and RPD for the DM prediction set using the SCiO spectrometer varied between 0.58–0.81, 1.45–2.66,
and 1.46–2.29, respectively (Table 3). The PLSR model with OSC and smoothing spectra showed the
same coefficient of determination (R2 = 0.81) but considering other statistical parameters, the PLSR
model with OSC (Figure 4D) was chosen as the best model for the prediction of DA in table grapes
using the SCiO spectrometer. There is no previous study that addressed the direct measurement of
DM in fresh table grapes using NIR spectroscopy. However, ref. [40] have reported the measurement
of DM in homogenized table grape samples using the NIR region from 1100 to 2500 nm. They found
better prediction results (R2 = 0.90, SEP = 1.34, RPD = 2.2, and bias = 0.48) in their NIR-based PLSR
model. Figure 4E–H show the results of PLSR models developed for the prediction of peach DM
using the F-750 and SCiO spectrometers, respectively. These figures and Table 4 revealed that for both
spectrometers, improved results were obtained in the prediction set than in calibration after applying
pre-processing. The R2 and RPD were achieved at 0.81 and 2.24 for the F-750 spectrometer using the
best PLSR model in SD spectra and eight LVs (Figure 4F) and 0.67 and 1.74 for the SCiO spectrometer
using the best PLSR model in SG spectra and nine LV (Figure 4H). One study was found that measured
the DM content in peach using NIR technique but obtained unsatisfactory results [19]. Considering the
model chemometric indicators, overall, the F-750 spectrometer performed comparatively better than
the SCiO spectrometer for measuring the DM in peach fruits; this can be associated with a lower
variability of measurements, as explained later in Section 3.4.

3.3. Model Prediction Performance to Infer TSS Content in Table Grapes and Peach

The models developed with SNV spectra to predict the TSS in table grapes using the F-750
and SCiO spectrometers achieved an excellent value for the coefficient of determination for both
spectrometers across the range of 4.35–21.1 ◦Brix. Figure 5A–D shows the results of correlation
between the measured and predicted values of table grape TSS in calibration and prediction using
the PLSR model and SNV pre-processing. The application of SNV pre-processing technique on the
PLSR model significantly improved the results of both calibration and prediction. In particular, the
value of RPD increased solidly in comparison with original spectra. In prediction, the R2, RMSEP,
RPD, and bias was obtained at 0.97, 0.53, 5.95, and 0.01, respectively, using seven LV for the F-750
spectrometer, and was obtained at 0.95, 0.70, 4.48, and 0.08, respectively, using nine LV for the SCiO
spectrometer, evidently showing excellent model performance [41]. These results also demonstrated
that the developed model for direct measurement of TSS in fresh grapes produced better prediction
results when compared with the results obtained by [42] (R2 = 0.95, RMSEP = 1.011), [15] (R2 = 0.91,
RMSEP = 1.42, RPD = 3.36), [43] (R2 = 0.94, SECV = 1.0, RPD = 4.12), and [18] (R2 = 0.82, RMSEP = 1.48).
RPD is one of the important model performance evaluation chemometric indexes and the higher
RPD confirmed the model prediction accuracy and robustness [9]. Considering the value of RPD,
it is also seen that the F-750 spectrometer performed best for measuring TSS in table grape fruits
than the SCiO spectrometer. Figure 5E–H shows the results of the PLSR models of TSS prediction in
peach using the F-750 and SCIO spectrometers, respectively. The R2, RMSEP, RPD, and bias of the
external validation set were 0.62, 1.19, 1.55, and 0.31, respectively, for F-750 and 0.55, 1.25, 1.48, and
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0.15, respectively, for the SCiO spectrometer (Table 4). These model evaluation indexes indicated that
the PLSR prediction model for TSS in fresh peach were not satisfactory for either of the spectrometers
and had poor predictive performance in comparison to table grapes. Two reasons may explain this
result: First, the number of samples (berries) in the grape models was three times higher than in the
case of peaches; second, the maturity state of some of the peaches was quite high (too ripe), resulting
in a narrower range of TSS (4.35–21.1 Brix for grapes, and 21.1–17.85 Brix for peaches, Table 1).Agronomy 2020, 10, x FOR PEER REVIEW 
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Figure 4. Scatter plot of measured versus predicted dry matter (DM) values of table grapes (A–D) and
peach (E–H) calculated using the best PLSR calibration model for the F-750 and SCiO spectrometers.
The black line represents the linear correlation between the measured values obtained from the
reference quality attribute and their prediction by the model. LV = latent variables, R2 = coefficient of
determination, RMSEC = root mean squared error of calibration, RMSEP = root mean squared error of
prediction, RPD = performance to deviation ratio.
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With the aim of summarizing these results, it can be stated that the chemometric indexes for DM
and TSS models showed acceptable results and demonstrated that the NIR spectra region (740–1100 nm)
coupled with PLSR regression could effectively predict the DM and TSS across the range of 6.12–24.61%
and 4.35–21.1 ◦Brix, respectively, in table grapes using the F-750 and SCiO spectrometers. Both quality
spectrometers therefore could be used to non-destructively determine DM and TSS quality attributes
in fresh table grapes. The PLSR results of fresh peach DM and TSS were poorly predicted by both
spectrometers. Based on the chemometric indicators of the DM prediction set, the F-750 spectrometer
produced relatively better results than SCiO with R2 = 0.81, RMSEP = 1.28, and RPD = 2.24 and could
potentially be used for determination of DM in peach using PLSR regression. Overall, it can be inferred
that the F-750 had a higher performance in comparison to the SCiO for the prediction of DM and TSS;
again, this can be due to more stable spectral readings, according to results of Section 3.4.Agronomy 2020, 10, x FOR PEER REVIEW 
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Figure 5. Scatter plot of measured versus predicted total soluble solids (TSS) values of table grapes
(A–D) and peach (E–H) calculated using the best PLSR calibration model for the F-750 and SCiO
spectrometers. The black line represents the linear correlation between the measured values obtained
from the reference quality attribute and their prediction by the model.
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3.4. Performance Evaluation Using Reference Spheres

From the overall comparison of the models obtained using the two produce quality meters, it is
suggested that the F-750 DM and TSS prediction performance is higher in comparison to the SCiO and
can be suitable to non-destructively measure fruit quality attributes. However, the performance of
both meters was further investigated using a solid object (inert reference) to confirm the PLS results.

The spectra acquisition with biological samples is often complicated and contains high- and/or
low-frequency interferences and irrelevant information due to non-uniform distribution of light over
the surface [29]. Hence, a wavelength by wavelength comparison was made between the spectrum
of F-750 and SCiO meters obtained using a standard solid object (white Teflon sphere). The average
coefficient of variation (CV) of the measured spectrums for each temperature is shown in Table 5.
It is seen that the SCiO spectrometer yielded a higher variation per wavelength within the spectrum
range acquired at each temperature, and as well as between the spectrum acquired at different room
temperatures with an overall mean variation equal to 18.39%. The percent of variation per wavelength
within and between the spectrums observed was almost zero for F-750, indicating that the acquired
spectra using this meter apparently showed a similar pattern for all three different room conditions,
and the lowest variability between the spectrometers.

Table 5. Summary of the average coefficient of variation of measured Teflon spectra in absorbance values.

Meter
Coefficient of Variation (%) Overall Average

0 ◦C 10 ◦C 20 ◦C

SCiO 13.91 24.99 16.26 18.39
F-750 0.41 0.13 0.15 0.23

When inferring the SNR of the acquired absorbance Teflon spectra with both spectrometers
(Figure 6), strong differences between the devices can be observed. Highly noisy signals can be
observed near the limits of their wavelength ranges, and even though both meters react to sample
temperature variations at different levels, both show stable signals in the NIR region used to build
prediction PLSR models in this study (740 to 1070 nm). However, the SNR in the case of the F-750 is one
hundred times higher than for the SCiO, potentially affecting the performance of the PLRS prediction
models. The higher noise in the F-750 spectrometer did not seem to affect its overall prediction
performance as it is still better than the SCiO performance. This variation can be potentially due to
the intrinsic design of each of the spectrometers, including the incident light intensity and type, and
additional electrical components.
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4. Conclusions

Two NIR produce quality spectrometers were investigated in this study to evaluate their
performance to non-invasively determine quality attributes for three table grape cultivars (‘Autumn
Royal’, ‘Timpson’, and ‘Sweet Scarlet’) and one peach cultivar (‘Cassie’) using PLSR models in the
740–1070 nm wavelength range and various pre-processing techniques. Results indicated that both
spectrometers performed well in predicting DM (R2 > 80%) and TSS (R2 > 90%) contents in fresh
table grapes. Regarding peach, the F-750 spectrometer performed comparatively better than the SCiO
spectrometer and yielded high prediction accuracy DM (R2 = 0.81 and RPD = 2.24). Overall, both
spectrometers were not effective in predicting the TSS of fresh peach. Among the two spectrometers,
the F-750 spectrometer seems suitable for practical use and could readily be used for field applications
for predicting the quality attributes in fresh table grapes and peach fruits. To improve the modeling
performance and to confirm the reliability of both spectrometers to predict quality attributes of fresh
peaches, especially the content of TSS, further studies are recommended.
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