
agronomy

Article

Plant Nutrient Availability and pH of Biochars and
Their Fractions, with the Possible Use as a
Component in a Growing Media

Munoo Prasad 1,2,*, Antonios Chrysargyris 2, Nicola McDaniel 3, Anna Kavanagh 3,
Nazim S. Gruda 4 and Nikolaos Tzortzakis 2,*

1 Compost/AD Research & Advisory (IE, CY), Naas, W91 TYH3 Kildare, Ireland
2 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology,

Limassol 3603, Cyprus; a.chrysargyris@cut.ac.cy
3 Bord na Mona Research Centre, Main Street, Newbridge, W12 XR59 Kildare, Ireland;

nicola.mcdaniel@bnm.ie (N.M.); annak62@outlook.ie (A.K.)
4 Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation,

University of Bonn, 53121 Bonn, Germany; ngruda@uni-bonn.de
* Correspondence: munooprasad@yahoo.com (M.P.); nikolaos.tzortzakis@cut.ac.cy (N.T.);

Tel.: +353-866012034 (M.P.); +357-25002280 (N.T.)

Received: 20 November 2019; Accepted: 17 December 2019; Published: 19 December 2019 ����������
�������

Abstract: Biochar has the potential to be used as a growing media component, and therefore plays a
role in reducing peat usage. It has unique properties apart from the ability to sequester carbon. Here we
investigated the nutrient contents of four commercial biochars and their fractions. The biochars’
feedstock was wood waste, except for one with paper fibres and husk. The fine or finer fractions in
wood waste biochars contained higher levels of nutrients that were available to plants. The coarse
fraction of the biochar derived from husk and paper fibre feedstock had a higher level of total N,
P and K in contrast to the other three biochars. The pH of the finer fraction (pH of 9.08) was also
higher compared with coarse fraction (pH of 8.71). It is important that when biochar a is used as a
component of a peat based growing media, particle size information should be provided, as fractions
from the same biochar can have different levels of total extractable nutrients and pH levels. If biochar
is used to replace or reduce lime application rates of a peat-biochar mixtures, one must take into
account the levels of total and extractable Ca and Mg levels, as these can vary. The variation of these
elements was not only between biochars’ feedstocks, even at similar pH-values, but within different
fractions in the same biochar. We concluded that biochars should be characterized from the feedstock
as well as from the particle size aspect, as it could have a profound effect on nutrient availability
of Ca and Mg. This could lead to nutrient imbalances in cultivating plants on substrate mixtures.
In addition to nutrient ratios, the suitable pH-level for a given grown species should be adjusted.

Keywords: peat replacement; particle size; calcium; magnesium; extractable nutrients

1. Introduction

Biochar is an organic carbon-rich solid by-product, which is gaining great interest in research for
its utilization under the environmental and agricultural management [1–3]. Therefore, in addition
to the common use as soil amendment material, biochar is being explored in terms of use for soil
remediation [4–7], water filtration [8] and soilless substrates [9,10]. Recently there has been great
interest in the use of biochar as a bioresource and growing media material [11–14]. Biochar and
hydrothermal carbonization might play more important roles as constituents of growing media [15].
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Biochar can be produced from several organic sources using pyrolysis under minimal oxygen
supply, but also, for the use as growing media, from chunky timber waste; e.g., wood chips are suitable.
This has to be milled to particles sized generally less than 10 mm as a result of crushing, in order to be
considered as a growing media component. A number of commercial producers supply biochars in
different sizes. There are also limitations for the feedstocks used, as soft woody materials (e.g., from
greenhouse crop waste), including stems, are not suitable due to excessive salinity levels [16]. In this
case a hydrothermal carbonization process that requires only moderate temperatures and pressures is
usually used [15].

A raft of publications has described biochar as a partial peat replacement over last three years [17–21],
with several different organic materials playing an important role in decreasing the C footprint of
the horticultural industry [15]. Peat is the principal material for container growing media in Europe,
and peat production in Europe is more than 40 million m3. Peat currently represents 77%–80% of
the growing media annually used in the horticultural industry in Europe [22–24]. However, peat
comes from peatland ecosystems, which are very important for carbon sequestration. Peatlands are
most important carbon sinks and one of the most important effective eco-systems in the terrestrial
biosphere. The carbon storage in peatlands in Europe is estimated to be approximately 43,000 million
tons [24]. Peat has a low pH, around pH 4, and is generally almost devoid of plant nutrients. It has the
advantage that due to its low pH and nutrient levels, both pH and other nutrients can be brought to
pre-determined levels for crop growth [25]. Hence, when peat is used as a substrate, stored carbon is
released, negatively affecting the environment and CO2 balance [26]. For instance, Vaughn et al. [27]
reported that biochar can substitute peat at levels lower than 15% (v/v), whereas higher rates derived
unsatisfactory results, possible due to the high salinity and pH values, imbalance of nutrients and high
C:N ratio.

Biochar has unique chemical properties. It can reduce leaching of nutrients, including nitrate [28]
and P; act as a bio stimulant, especially affecting the roots and suppressing root disease [10,29,30];
reduce greenhouse gases (GHG) from growing media when ebb and flood irrigation is practiced,
as anoxic conditions occur for short periods; and sequester C at the end of life of growing media, when
it ultimately ends in soil [17]. At present, the costs of biochars are prohibitive. However, if during
the pyrolysis process all products are used, e.g., for heat to generate electricity, bio oil for heating and
using biochar as a minor component of a growing medium, and there is a gate fee for waste wood,
biochar would be particularly viable. Biochar has generally a very high pH and contains nutrient
elements, e.g., K, at quite high levels. These elements could be used for plant nutrition. However, only
in few plant growth trials the nutrients presented in biochar were taken into account when used as a
growing medium [30,31]. On the other hand, biochar’s high pH was considered and the rates of lime
were reduced [32,33]; or lime rate can be eliminated [34], when biochar is added. Bedussi et al. [32]
used biochar that was produced by gasification instead of pyrolysis. Gasification takes place at a much
higher temperature (1100 to 1200 ◦C) than pyrolysis (400 to 600 ◦C). Higher temperature has a major
effect on biochar properties such as pH, total Ca and Mg levels [1,35]. Thus, products from these two
above processes may not be directly comparable.

Numerous papers have evaluated biochar’s positive effects on plant growth [10,11,36], but very few,
such as the studies from Bedussi et al. [32], Kaudal et al. [20] and Mendez et al. [37], have characterized
the biochar used in the growing media. Recently, some studies have been conducted to look at the
effect of biochar particle size on physical properties of growing media [27,38]. Zaccheo et al. [33], have
also shown that biochar having fine granulometry can be more effective in increasing the pH, and
therefore, eliminating the need for liming of peat [32]. The nutrient properties of the particle size of
biochar have been studied but only in terms of soil application [39] or for environmental use [40,41].

We are not aware of relevant studies on pH, total and extractable macronutrients and micronutrient
contents of different biochar particle size fractions. Generally, quite high levels of fine fractions < 1 mm
and < 2 mm have been administered, when biochar has been used in growing media [20,29,30,32,37,38].
In ad hoc trials in a few commercial biochar products with different fractions, we were surprised to
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find differences in pH and nutrient contents in the different fractions from the same biochar. This is in
contrast to peat, as no difference in pH was reported between fine, medium and coarse peat [42]. In the
present study, we studied the pH, total and available macronutrients and micronutrient contents of
biochar fractions from a number of commercial biochars that have the potential for use as growing
media. The nutrient availability test that we used has been found to be very strongly correlated to
plant nutrient uptake in a series of publications [43], and on this basis has been accepted as a European
test [44]. We particularly looked at both total and extractable (available) Ca and Mg in relation to pH
in the biochar fractions.

2. Materials and Methods

For our investigations we selected four commercial grade biochars: three from Europe and one
from China. One of them derived from having cereal husk and paper fibre as a feedstock (Biochar
A—DU). Three were derived from wood-based materials; namely, bamboo (Biochar B—No commercial
name), wood screenings (Biochar C—Verora) and forest wood (Biochar D—Carbon Terra). Following
pyrolysis by different manufactures, the biochars were chunky and had been milled to approximately
less than 10 mm. The four biochars were characterized for pH [45] and electrical conductivity [46] in
water extract at a 1:5 (v:v) ratio. The materials were characterised by extractable NH4-N and NO3-N;
total N, K and P [44]; bulk density; and specific surface areas of the different biochars, including pore
volume and diameter that were measured with a Quantachrome Autosorb-1 surface area Analyser,
using N2 (Brunauer, Emmett and Teller—BET) sorption methods [47].

Each material was sieved to three fractions as < 1 mm, 1–2 mm and 2–4 mm (see Figure A1).
We took care to ensure each entire fraction that passed through the screens for the various fractions was
obtained. For each particle size fraction, 20 to 30 g of biochar was obtained, dried and mixed well prior
to physic-chemical analyses. They were then analysed for total macronutrients and micronutrients,
as described by Chrysargyris et al. [48]. Nitrogen was analysed using Kjeldahl method (Buchi Digest
Automat K 439 and Distillation Kjelflex K 366, Switzerland). Other macro and micronutrients were
ashed and the ash was digested with hydrochloric acid (2N HCl). Ash extracts were analysed using
atomic absorption spectroscopy (PG Instruments AA 500 FG, Leicestershire, UK). The determinations
of K and Na were made using a flame photometer (Lasany Model 1832, Lasany International, Haryana,
India). Results are expressed in g kg−1 and mg kg−1 for macronutrients and micronutrients, respectively.
Biochars’ fractions were extracted for available nutrients using BaCl2/DTPA extraction on volume basis
according to EN 13651 [44]. BaCl2 was used at the same concertation as the standard CaCl2/DTPA, EN
13651 [44]. The extracts were analysed for macro and micronutrients. The four biochar materials by
three particle sizes were assessed for pH [45] in water extracts, at 1:5 (v:v) ratios, and BaCl2/DTPA
extractable NH4-N and NO3-N [44,49]. Determination of BaCl2/DTPA extractable nutrients P, K, Ca,
Mg, Fe, Na, Zn, Cu, Mn and B were determined in the filtered extract by inductively coupled plasma
atomic emission spectrometry (Perkin Elmer ICP-OES, Waltham, MA, USA). Sulphate was measured
in the extract by separating the anions by their affinity for an anion exchange resin packed in the
anion separator column. The concentration of the sulphate anion was determined by measuring the
conductance as it passed through conductivity cell.

Statistical Methods

Data were statistically analysed with the IBM SPSS version 22 (IBM Corp., Armonk, NY, USA)
and results are expressed as means (n = 3) ± standard errors (SEs). Differences between treatment
means were compared at p = 0.05 with ANOVA, followed by Duncan’s multiple range test (DMRT).

3. Results

The characterization of the examined commercial, and an unscreened biochar, showed high pH,
relatively high electrical conductivity, high extractable K and very low extractable N in all four biochars
(Table 1). Extractable P was significantly (p < 0.05) higher in Biochar B compared with the other
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Biochars. The surface area tended to be highest with Biochar D, and lowest with Biochar B. The bulk
density was highest for Biochar D. The pore volume and pore size followed the same trend as the
surface area (Table 1).

The total macronutrients and micronutrients of different fractions of four biochars are given in
Figures 1 and 2, respectively. The pH values and extractable contents of elements of the three fractions
are presented in Figure 2. The extractable macronutrients and extractable micronutrients of three
fractions of four biochars are given in Figures 3 and 4, respectively, while selected correlation analysis
among some elements are presented in Figure 5.

3.1. Biochar’s Total Elemental Contents and Correlations

3.1.1. Total Macronutrients N, K, Ca, Mg, P and Na

The fine fraction had significantly (p < 0.05) higher levels of N (25.9%, 19.0% and 18.9%) for the
Biochars B, C and D, respectively, compared with the coarse fraction (Figure 1), while the opposite was
found in case of the Biochar type A. The coarse fraction of 2–4 mm of Biochar A showed 26.41 mg kg−1

N, which was 77% higher than the fine fraction, and that high N level was present only in Biochar
A, which was the opposite to the other three biochars (Figure 1). The total K levels followed the
same pattern as N, except that Biochar C that showed no significant effects of particle size (Figure 1).
The biochar derived by husks and paper fibres, named Biochar A, revealed 17.50 mg kg−1 of K, which
was the highest content at 2–4 mm fraction. Similar to N and K, the higher levels of total P were found
in Biochar B, Biochar C and Biochar D in the finer fraction. An exception was Biochar A, which had the
opposite trend with higher levels in the coarser fraction (Figure 1).

The Ca levels were significantly higher in the fine (<1 mm) and medium (1–2 mm) fractions for
the examined biochars, except for Biochar B, which had no significant differences between fractions
(Figure 1). Similarly, to Ca, the Mg levels were higher in the fractions of < 1 mm and 1–2 mm for the
Biochar A, whereas in Biochar C and Biochar D, greater Mg contents were observed in their fractions
< 1 mm. The total contents of Mg in Biochar B were the same among fractions (Figure 1). No differences
were evident between the fractions for the total Na content, as presented in Figure 1.
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Figure 1. The effects of biochar (A, B, C and D) particle size on total macronutrients. Non-significant
differences are indicated by ns, while significant differences (p < 0.05) among particle size for each
Biochar are indicated by different Latin letters according to Duncan’s Multiple Range test. Error bars
show standard errors-SE.

3.1.2. Total Micronutrients Cu, Mn and Zn

Higher levels of total Cu were found in the finer fractions of two biochars—A and D. There was a
clear-cut trend with the fine fraction with higher levels of Zn for the examined biochars (Figure 2).
This was similar to the results that we got with extractable Zn (Figure 4). Only in Biochar C, the trend
of higher levels of Mn in the fine fraction was present (Figure 2), and the results did not reflect in
extractable Mn (Figure 4).
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Table 1. Characterization of commercial biochars as is (pre-screening). Values are means ± standard errors of two measurements made on pH, electrical conductivity
(µS cm−1) and minerals (mg L−1). Means values followed by the same letter do not differ significantly at p < 0.05.

Feedstock Trade Name pH EC
(µS cm−1)

NH4-N
(mg L−1)

NO3-N
(mg L−1)

N
(mg L−1)

P
(mg L−1)

K
(mg L−1)

BD 1

(g L−1)
BET 2

(m3 g−1)
Pore Vol 3

(cc g−2)
Pore Vol 3

(cc mL−1)
Pore Size 4

(Å)

Biochar A Cereal husk/paper fibre DU 9.56 ± 0.09 a 653 ± 7.5 a 1 ± 0.0 a 1.0 ± 0.0 a 2.0 ± 0.0 a 8.5 ± 1.5 b 891 ± 9.5 c 232 81.3 0.00592 0.00254 29.04
Biochar B Bamboo n/a 8.84 ± 0.08 b 571 ± 12 b 1 ± 0.0 a 0.5 ± 0.5 a 1.5 ± 0.5 a 23.0 ± 2.0 a 1158 ± 13.0 a 296 4.7 0.00021 0.00006 17.90
Biochar C Wood screenings Verora 9.54 ± 0.10 a 410 ± 16 c 1 ± 0.0 a 1.0 ± 0.0 a 2.0 ± 0.0 a 10.5 ± 1.5 b 659 ± 4.5 d 258 62.6 0.0045 0.0017 28.81
Biochar D Forest wood Carbon Terra 9.51 ± 0.04 a 637 ± 5.5 a 1 ± 0.0 a 0.5 ± 0.5 a 1.5 ± 0.5 a 5.5 ± 1.5 b 990 ± 7.0 b 389 243.0 0.146 0.056 24.03

1 Specific surface area. 2 Total pore volumes for pores with diameters less than 31917.2. 3 Average pore diameters. 4 Å at P/Po = 0.99940.
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3.2. Biochars’ Extractable Elemental Contents

3.2.1. The pH and Extractable Macronutrients N, K, P, Ca, Mg, Na and SO4

The pH was higher in the fine fraction for all four biochars (Figure 3). The pH levels revealed the
same values for the medium (1–2 mm) and coarse (2–4 mm) fractions for Biochar A, Biochar B and
Biochar D.
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Levels of NH4-N and NO3-N were very low, with values < 2 mg L−1 (data not presented).
There was a clear trend of increasing K in the fine fraction (Figure 4). The two biochars, C and D, based
on wood waste material, had a similar trend. Biochar B from paper fibre and cereal husk had higher
(2535 mg L−1) levels of K (Figure 2).

The finer fraction (<1 mm) had significantly higher levels of extractable P in three (A, B and C) of
the four biochars, while no significant differences were found among 1–2 mm and 2–4 mm fractions.
Biochar D had very low values of extractable P in all the three fractions and there was no significant
effect of biochar fraction (Figure 4).

Regarding extractable Ca, there was also a clear significant trend of the fine fraction containing
higher levels calcium, with the woody materials, Biochars C and D, being very similar. The level of
calcium in the Biochar A was high (up to 1094 mg L−1 at < 1 mm), while in the Biochar B, even in the
fine fraction it was very low (up to 271 mg L−1 at < 1 mm) (Figure 4).

The fine fraction had significantly higher levels of magnesium but there was no significant
difference between 1–2 mm and 2–4 mm. As with potassium the levels, in the biochar derived by
bamboo (B), Mg was high, reaching 145.7 mg L−1 of extractable Mg (Figure 4).

Only in two types of the biochars, namely, A and D, did the fine fraction have significantly higher
levels of Na, while biochars B and C did not differ among the fractions examined (Figure 4). There
were no significant differences between the fine and coarser fractions among the biochars in relation to
extractable SO4 (Figure 4).
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3.2.2. Extractable Micronutrients (Zn, Mn, Fe, B and Cu)

There was a clear significant trend of higher levels of Zn in the fine fraction for all four biochars,
but the differences between 1–2 mm and 2–4 mm were not significant (Figure 5). Biochars derived
by bamboo revealed the higher (4.72 mg L−1) Zn levels in the < 1 mm fraction. Manganese levels
were particularly low in Biochar A and Biochar C, while both Biochar B and Biochar D revealed high
(ranged from 18.82 to 20.85 mg L−1) levels of Mn in their fine fractions (Figure 5).

Higher levels of extractable Cu were found in the finer fractions of two biochars, A and D, those
being the same biochars with higher levels of total Cu (Figure 2). There was no clear trend regarding
the four biochars in the fractions regarding the Fe and B levels (Figure 5).
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3.3. Correlations

The pH value was correlated with total Ca (r = 0.518; Figure 6), and with total Mg (r = 0.364;
Figure 6), respectively. However, the correlation was poor with extractable Ca (r = 0.272; Figure 6)
and extractable Mg (r = 0.191; Figure 6). There was a strong correlation between total K and total N
(r = 0.870) at level of p ≤ 0.01 (Figure 7). There was a very strong correlation between total Ca and total
Mg (r = 0.862) at level of p ≤ 0.001 (Figure 7), indicating when Ca is high or low, the Mg content would
follow a similar pattern. There was a very strong correlation (p ≤ 0.001) between extractable Ca and
total Ca (r = 0.711) and total Mg (r = 0.823, Figure 7). Moreover, there was a very strong correlation
(p = 0.001) between extractable K and total Mg (r = 0.941). There was fairly a strong correlation
(p = 0.001) between extractable Zn and extractable SO4 (r = 0.616), extractable Fe (r = 0.602), extractable
Cu (r = 0.857), respectively. Additionally, there was a strong correlation (p ≤ 0.001) between extractable
Mn and extractable Zn (r = 0.795), and a fairly good correlation (r = 0.640) between extractable Mn and
extractable Cu.
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4. Discussion

It is well known that feedstock, pyrolysis temperature and residence time have a major effect
on pH and nutrient content of a biochar [1,14,35]. We investigated four commercial biochars and
found a high variation between them with regard to total nutrients. This variation can be partially
explained on the basis of different processing conditions and differences in feedstock. However, due to
the propriety nature of the materials used in the current study, exact information on processing and
feedstocks are lacking. In the present study, the levels of total N, P and K were in the same range as
previously reported [20,28,32,49]. Biochar A was an exception, having particularly high nutrient levels.
The feedstock of this material was different from the other three, as it was based on paper fibre and
cereal husk.

The finer fraction has higher levels of total macronutrients, and to a lesser extent, micronutrients,
for the three-wood based biochar. The percentage of finer fraction of a biochar is of importance through
the dependence of nutrients on the particle size. Regarding the biochars used in the present study,
their particle sizes have been investigated previously; they have fine particles less than 1 mm in the
range of 23% to 64% [30]. Biochar B in that study had 49.5% less than 1 mm. Other authors who
investigated biochars derived from woody material, reported levels of less than 1 mm of 40%–81% [29],
21%–79% [37], 38%–73% [20] and 2%–98% [38]. It is most likely that the partial removal of the fine
fraction (<1 mm) could make it suitable as a component of a growing media. This could be explained
on the basis that different particle size of feedstock may lead to differential heating during pyrolysis
and the finer fraction could have been more carbonized than the coarser fraction. Kloss et al. [35] have
shown that the levels of cations Ca, Mg and K increase with greater carbonization. They, however,
found that total N levels fall as carbonization increases. However, other authors have found that N
levels can increase with carbonization [41,50–52].

He et al. [41] studied the chemical properties of biochar fractions of 2–5 mm, 1–2 mm and 0.5–1 mm
but also seven fractions below 0.5 mm made from pine wood. In the three fractions, which were
somewhat similar to our fractions, they found an increase in total N, Ca and Mg contents in the
finer fraction. The authors argued that longitudinal and transverse heterogeneity of biochar and the
dominant cleavage during the preparation process may be responsible for the significant differences in
properties initiated by particle size. In our investigation, N, P and K of Biochar A derived from cereal
husk and paper fibre, were higher in the coarser fraction.

Generally, all the extractable nutrients were higher in the fine fraction. The fact that the availability
of nutrients based on extraction with BaCl2/DTPA increases as the fraction size decreases can be
explained to some extent, as it is understandable, due to the greater surface area of the fine material
that allows the extractant to extract more nutrients. It may also be due to higher bulk density.

In the present study, we showed that particle size of the same biochar can have different levels on
pH and total and extractable macro and micro nutrients in the different fractions (i.e., higher in the fine
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fraction) in the context of its use as a component of a growing media. This would ultimately affect the
acidity and macro and some micronutrient content and availability of peat-biochar growing media due
to fact that each fraction, particularly the fine fraction has significantly different levels of nutrients
and acidity.

Numerous studies have been published showing the beneficial effects on crops due to the addition
of biochar to peat; however, only in a limited number of studies has the particle size of the biochar
been presented. There have been a few publications that showed the particle size of the biochar has a
marked effect on physical properties of the growing media [27,32,38]. Our results indicate that in the
use of biochars in growing media, particle size should be taken into serious consideration not only for
physical properties, but just as importantly, chemical properties. This information should be essential
when formulating nutrients/lime addition and subsequent nutrient management during cropping.

The higher nutrient availability from the four biochars in fine fractions as found in the present
study, are in agreement with previous reports [39]. However, Angst and Sohi [39] examined the effect
of particle size in context of a soil application of biochar, which is different from the growing media
conditions. They found that the availability and the release of limited number of nutrients, namely,
magnesium, potassium and phosphorus, were affected by particle size with the fine fraction material
showing greater water-soluble contents of these nutrients, and better release. The fraction sizes they
looked at were smaller than ours, as they studied fractions of 0.15 µm to 0.60 µm, 0.60 µm to 1.8 mm,
1.8 mm to 4 mm and > 4 mm. For K and Mg, the differences between the finer fractions were relatively
small but the differences were greater between the fine fractions, that was, < 4 mm, and > 4 mm. For P
the differences in the finer fraction were even less and the difference between the finer fraction and
> 4 mm was less than for K and Mg [39]. The extraction solution might affect the nutrients extracted
derived by different fractions of biochar. Angst and Sohi [39] carried out six extractions and for K there
was little change but for Mg and P the amount and the difference between the fractions increased.
They used water as an extractant, unlike our extractant which had a cation in it. One is aware that
biochar has a high cation exchange capacity and also has the ability to bind nitrate nitrogen, and as such
a stronger extraction, which includes a cation and contains DTPA, which may give a bigger difference
between the fractions and perhaps better picture on plant availability in growing media. In any case
the extractant used here has been strongly correlated the plant uptake of some macro nutrients and
micronutrients in a growing media situation [30,43].

Due to the nature of biochar coming from woodchips, thereby the need for crushing and relatively
easy break down of particles, variation in particle size is likely to occur between batches, and this
could possibly have reflected variation in physical and chemical properties of growing media, when
biochar is added to peat. Our findings point to the need to be vigilant about particle size for each
batch. However, the use of dolomitic lime was added not only to neutralize the acidity of peat but
also to supply essential nutrients such as calcium and magnesium. The pH values in biochar can vary
according to the pyrolysis temperature, as biochars produced from sewage sludge at low temperatures
(300 and 400 ◦C) were acidic, whereas at high temperatures (500 and 600 ◦C), they were alkaline [53].

The levels for the Cu, Zn and Mn were in the same range as found by Altland and Locke [28] and
Bedussi et al. [32]. The average extractable K, Ca and Mg as a percentage (%) of the total K, Ca and Mg
for Biochar A, Biochar B, Biochar C and Biochar D were as follows: for K—Approximately 18%, 34%,
31% and 48%, respectively; for Ca—24%,16%,16% and 19%, respectively; and for Mg—14%, 9%, 11%
and 28%, respectively. Angst and Sohi [39] found greater water extractability of K compared to Mg,
probably reflecting the feedstock.

It is well known that most biochars have high pH-values [31], and peats have very low pH-values,
ranging from 3 to 4 [54]. Therefore, peat requires additional lime, e.g., in form of a dolomitic lime,
to adjust the pH to values to around 5.5, while other substrates, e.g., wood fibres, do not need it [55].
A number of researchers suggested that biochars could be used to replace lime application [30,34].
However, surprisingly, biochar-peat blends can contain up to 80% biochar without raising the pH
above 7 [34]. Unfortunately, these studies do not give any information on particle size; one can surmise
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it was a coarse material. Zaccheo et al. [33] reported that particle size can have an effect in increasing
the pH of growing medium. Furthermore, the same authors found that the finer fraction, 0–3.3 mm,
was more effective at raising the pH of a peat-biochar mixture [33]. This is in agreement with our
findings, as the finer fraction had a higher pH and a higher content on Ca and Mg. However, in the
same study of Zaccheo et al. [33], the premise that dolomitic lime or ordinary lime is added not only to
increase the pH but also supply Ca and Mg, which are essential plant nutrients with very low levels in
peat, was not taken into consideration [32]. In our study, despite the minor differences in pH, the levels
of extractable Ca varied enormously between Biochar A with very high extractable Ca and Biochar B
with very low extractable Ca. In addition, most biochars contain high levels of K. This could depress
and reduce Mg uptake by plants, due to the cation antagonism among them. Increased K-rates, varied
from 4.61–5.39 g kg−1 by different biochars, were also reported by Gasco et al. [31], being in agreement
with the findings of the present study.

Although generally there is good relationship between pH and total calcium and magnesium
content, in our case the relationship would not be good enough to predict Ca and Mg levels. This is
related to the poorer relationship of pH and available and extractable Ca and Mg content in biochars.
The example of a good relationship or otherwise between Ca and Mg is important, as in peat dolomitic
lime is added not only to adjust pH but to supply Ca and Mg. Extractable levels of Ca are generally
very low in peat. The good relationship found in our study indicates that biochar is a similar material
to dolomitic lime rather than calcitic lime. The good relationship between extractable Ca and total
Ca gives confidence on the supply of Ca, whereas a poor relationship would invoke doubt, either
from total Ca or extractable Ca: extractable Ca gives an indication of short term availability, while
total Ca gives an indication of long term availability. P levels are too low to have any significance as
a biochar is added at low rates with peat. However, K would be of importance. For instance, data
from Bedussi et al. [32] shows that the finer biochar from poplar using pyrogasification has higher
contents of total N, P, Ca, Mg and many micronutrients. The poplar biochar had higher contents of
total Ca and Mg, despite having a lower pH. In addition, Bedussi et al. [32] measured water-soluble
N, P and K which were higher for these nutrients, but found lower levels of Ca and no difference for
Mg. Therefore, a blanket recommendation or a suggestion that biochar can replace lime in peat-based
media needs serious rethinking. We feel it is essential that the total Ca and total Mg and available Ca
and available Mg, should be analysed in biochar and taken into account when recommending lime
application rates if biochar has been added to peat. This is in agreement with our previous works.
As the biochar component increases in a peat/biochar-mixtures, this is affecting nutrient levels in
plants; for example, the levels of Mg content in a leaf dropped due to the antagonistic effect of K on
Mg [30]. This is primarily due to the excessive level of K, which is a feature of most but not all biochars.
Additionally, in our resent study, K, P and Cu accumulation and Mg deficiency in cabbage leaves were
related to the biochar presence and feedstock [10]. In that study, the biochar’s feedstock, rate and the
addition of fertilizers could affect the cabbage seedling performance.

5. Conclusions

The results of the present study have shown that within the same batch of biochar, total
macronutrient and micronutrient levels are different in different fraction sizes. One can clearly state
from our data that the use of a biochar when added to peat and when it is considered as a substitute for
lime, due to its high pH, may not be valid in many cases, as Ca levels in biochars do not always equate
to a pH value. Extractable Ca and perhaps total Ca in biochars need to be considered when advising
biochar rates and lime rates to peat. Moreover, the particle size of biochar is very important regarding
electrical conductivity and nutrient availability, especially K. This has far reaching consequences
regarding nutrient imbalances in growing media and in formulating a base dressing and a liquid
feeding programme. To our knowledge, this is the first time that it has been reported for biochar in
context of growing media. The variation in total nutrients in biochar fractions of the same biochar was
an unexpected result for a growing media. Our recommendation is to partially take out the biochar
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fraction < 1 mm if the EC levels and nutrients are particularly high and use it for other purposes.
The reduction of EC and extractable K would, thus, make the biochar suitable as a component of a
growing medium.
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