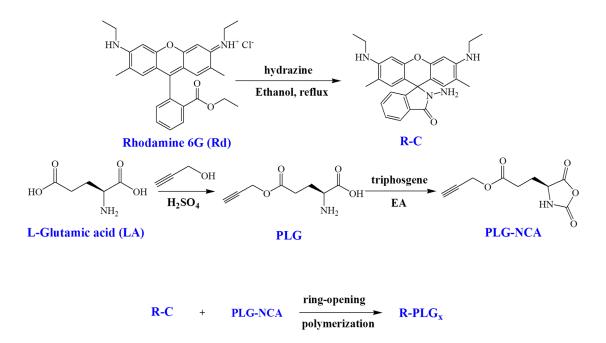
Light-up of rhodamine hydrazide to generate emissive initiator for polymerization and to afford photochromic polypeptide metal complex

Jhen-Yan Gao, Wen-Chih Huang, Pei-Yi Huang, Cheng-Yu Song and Jin-Long


Hong*

Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Experimental section

Materials

DMF (Aldrich) was refluxed and distilled over CaH₂ (Aldrich) under reduced pressure to a flask containing alumina before use. Rhodamine 6G (Acros, 99%) and hydrazine monohydrate (Aldrich, 80%) were used without further purification. γ -Propargyl-Lglutamate N-carboxyanhydride (PLG-NCA) were prepared according to the reported procedures [s1]. Preparation procedures of R-C and R-PLG were illustrated in Scheme S1 and detailed as below:

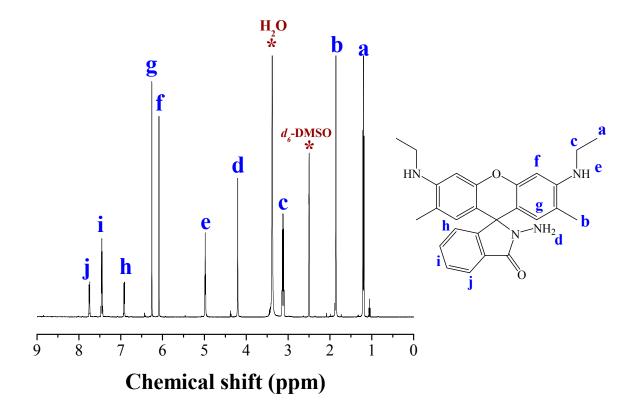
Scheme S1. Syntheses of R-C and PLG-NCA and the following ring-opening polymerization of PLG-NCA monomer initiated by R-C to obtain R-PLG_x.

Preparations of Rhodamine hydrazide (R-C).

R-C was synthesized by using the method previously described [s2,s3]. To a vigorously-stirred solution of rhodamine 6G (2 g, 4 mmol) in ethanol (65 mL), hydrazine monohydrate (6.3 mL, 110 mmol) was added dropwise at room temperature. The mixture was then heated under reflux for 2 h. After cooling to room temperature, the mixture solution was filtered and the solid filtrate was thoroughly washed with ethanol–water (1 : 2) to provide R-C as a pink solid (yield 1.51 g, 87%). ¹H NMR (300 MHz; *d*₆-DMSO): δ 1.21 (6H, t, CH₃), 1.87 (6H, s, CH₂CH₃), 3.10–3.16 (4H, m, NCH₂), 4.21 (2H, s, NH₂), 4.99 (2H, t, *J* = 5.44 Hz, NH), 6.10 (2H, s, ArH), 6.27 (2H, s, ArH), 6.92–6.94 (1H, m, CH), 7.44–7.48 (2H, m, ArH), 7.74–7.77 (1H, m, ArH). (Figure S1)

Ring-opening polymerization of N-carboxyanhydride to prepare R-PLG₁₃ and R-PLG₂₃

Solution of PLG-NCA (3 g, 14.2 mmol) in anhydrous DMF (20 mL) was stirred and bubbled with argon for 20 min before adding solution of R-C (0.20 g (0.47 mmol) for R-PLG₁₃ and 0.086 g (0.2 mmol) for R-PLG₂₃ in anhydrous DMF (5 mL). The reaction mixture was stirred for 2 days at room temperature and the resulting polymer was precipitated from diethyl ether, and dried in vacuum oven. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.34 (broad, 1H, H_f), 6.1-7.63 (broad, 8H, H_h, H_i), 4.68 (s, 2H, H_b), 3.98 (broad, 1H, H_e), 3.5, 3.2 (2H, H_j), 2.72 (broad, 2H, H_c), 2 - 2.8 (m, H_{a,c,d,k,l}), 1,25 (4H, H_g) (Figure 3). ¹³CNMR (125 MHz, CD₂Cl₂): δ 177.2 (C_f), 173.0 (C_h⁻), 163 (C₆⁻), 132-128 (C₅⁻), 96-94 (C₄⁻), 79.3 (C_g⁻), 76.0 (C_a⁻), 57.5 (C_b⁻), 52.9 (C_e⁻), 41.0 (C₃⁻), 31.9 (C_e⁻), 26.4 (C_d⁻)., 19.0 (C₂⁻), 16.0 (C₁⁻) (Figure S2).


Measurements

¹H NMR spectra were recorded at room temperature using a Bruker AM 500 (500 MHz) spectrometer with tetramethylsilane (TMS) as external standard. To ensure thorough dissolution of the polymers to afford clearly-resolved resonance peaks, one drop of trifluoroacetic acid (TFA) was added to sample solution in CD₂Cl₂. ¹³C CP-MAS NMR spectra were acquired on a Bruker 14.1 T wide-bore Avance III spectrometer equipped with a 4 mm double-resonance magic-angle-spinning (MAS) probe head. The Larmor frequency used for ¹³C NMR was 150.92 MHz and the samples were spun at 12 kHz. The molecular weights (MW) of R-PLG₂₃ and R-PLG₁₃ were determined by a Bruker Autoflex III Maldi-Tof mass spectrometer. The trans-2-[3-(4-tert-Butylphenyl)-2methyl-2-propenylidene]malononitrile (DCTB) containing 1 wt% sodium and potassium salts was used as matrix material. Sample was mixed with the matrix in a weight ratio of 1/10 in acetonitrile to induce crystalline material for analysis. The sample spot was irradiated with a Nd: YAG laser (355 nm; pulse duration, 3 ns; 200 Hz) for desorption and ionization. In total, 1400 laser shots are averaged for each sample analysis to obtain representative mass spectra. Infrared spectra were recorded using a Bruker Tensor 27 Fourier-transform infrared (FTIR) spectrophotometer; 32 scans were collected at a spectral resolution of 1 cm⁻¹. The solid polymer powders were homogeneously blended with KBr before being pressed to make pellets for measurements. The UV absorption spectra were recorded with a JASCO V-770 spectrophotometer. The PL emission spectra were obtained from a LabGuide X350 fluorescence spectrophotometer using a 450 W Xe lamp as the continuous light source. A small quartz cell with dimensions $0.2 \times 1.0 \times 4.5$ cm³ was used to accommodate the solution sample. A "right angle" geometry was employed such that fluorescence was collected at a right angle to the excitation beam used in the spectral measurement. Circular dichroism (CD) spectra were recorded using a JASCO J-810-150S (Japan) spectropolarimeter equipped with a Jascow32 Spectral Manager program. Polymer

solutions with constant concentration of 10⁻⁴ M were used for measurement. The spectra were also curve-fitted using the Jascow32 Spectra Manager program to resolve the fraction of the individual secondary structure. The dimension of the aggregate particles was determined using a dynamic light scattering (DLS) instrument on a Malvern ZetaSizer Nano ZS90 spectrometer. A He –Ne laser operating at 633 nm was used as the light source.

References

- [s1] Y. C. Lin and S. W. Kuo, Polym. Chem. 2012, 3, 162.
- [s2] S. Kang, S. Kim, Y. K. Yang, S. Bae, J. Tae, Tetrahedron Letters 2009, 50, 2010.
- [s3] J. Madsen, N. J. Warren, S. P. Ames. Biomaterials 2011, 12, 2225.

Figure S1. ¹H NMR spectra of R-C (in d_6 -DMSO).

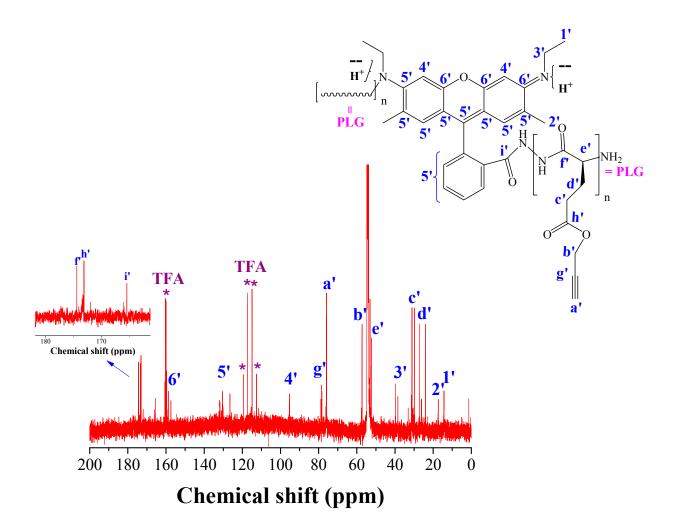
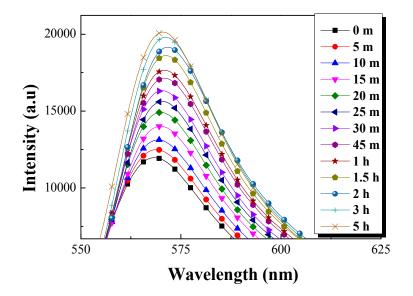



Figure S2 ¹³C NMR spectra of R-PPLG₁₃ in CD₂Cl₂/TFA(trace).

Figure S3. Variations of emission spectra of R-C/PLG-NCA ([R-C] = 5 x 10^{-3} M, [PLG-NCA] = 5 x 10^{-1} M) mixture solution in DMF over time. ($\lambda_{ex} = 490$ nm)

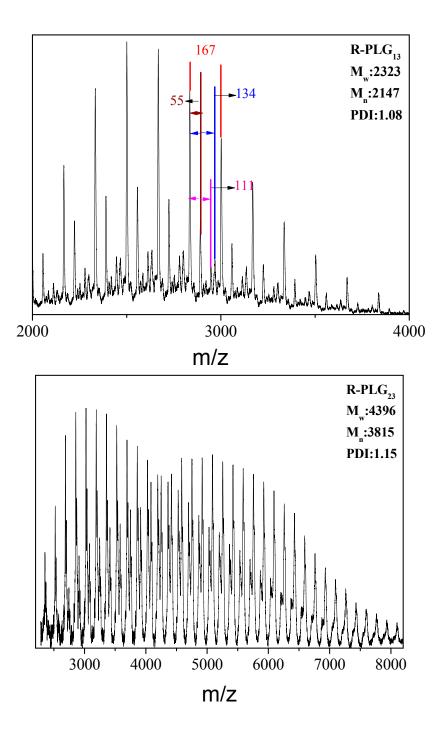
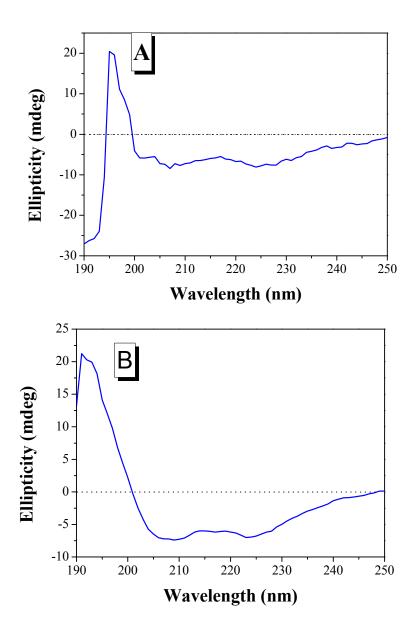
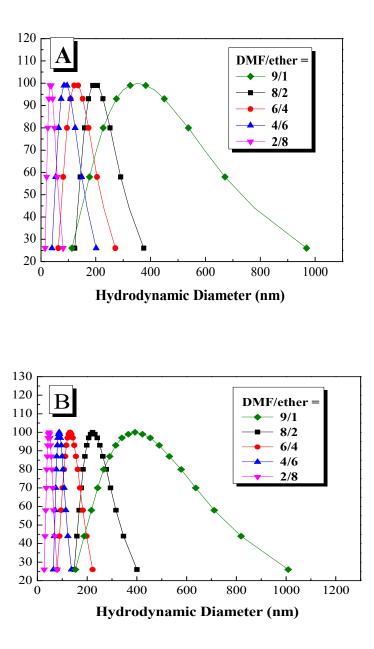
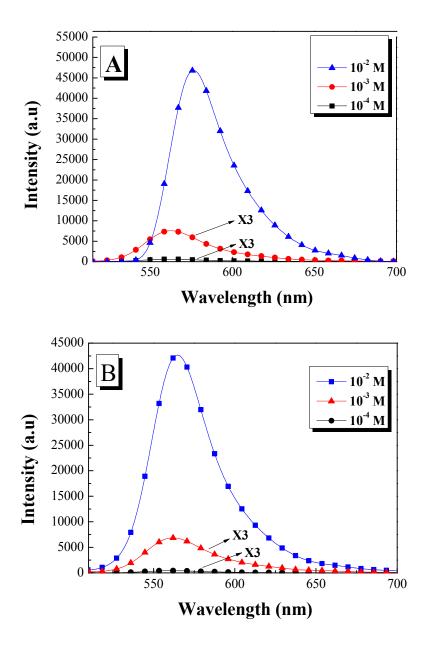
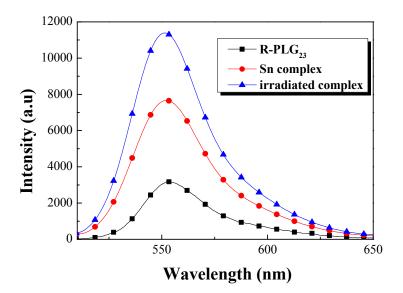


Figure S4. Madi-Tof mass spectra of R-PLG₁₃ and R-PLG₂₃.


Figure S5. CD spectra of (a) R-PLG₁₃ and (b) R-PLG₂₃ in methanol.

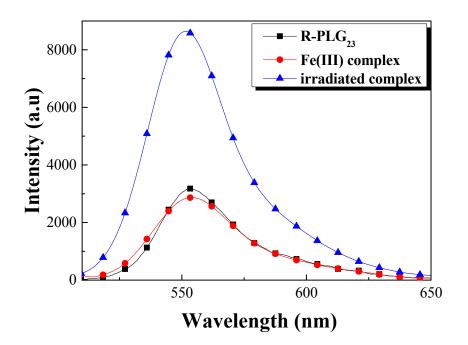

Figure S6. Particle sizes of (a) R-PLG₂₃ (10^{-4} M) and (b) R-PLG₁₃ (10^{-4} M) in solution mixtures of DMF/ether of different compositions.

Figure S7. Emission spectra of (A) R-PLG₂₃ (10⁻⁴ M) and (B) R-PLG₁₃ (10⁻⁴ M) solutions in DMF of different concentrations ($\lambda_{ex} = 490$ nm).

Figure S8. Solution emission spectra of R-PLG₂₃, Sn(II) metal complex and the complex solution upon UV irradiation ([R-PLG₂₃] = 10^{-4} M, [SnCl₂] = 10^{-3} M in THF, λ_{ex} = 490 nm)

Figure S9. Solution emission spectra of R-PLG₂₃, Fe(III) metal complex and the complex solution upon UV irradiation ([R-PLG₂₃] = 10^{-4} M, [FeCl₃] = 10^{-3} M in THF, $\lambda_{ex} = 490$ nm)