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Abstract: In this study, we synthesized amphiphilic poly(2,7–(9,9–dioctylfluorene))–block–N,N–
(diisopropylamino)ethyl methacrylate (POF–b–PDPMAEMA) rod-coil diblock copolymers by atom
transfer radical polymerization (ATRP). The structure and multifunctional sensing properties of
these copolymers were also investigated. The POF rod segment length of 10 was fixed and the
PDPAEMA coil segment lengths of 90 and 197 were changed, respectively. The micellar aggregates
of POF10–b–PDPAEMA90 rod-coil diblock copolymer in water showed a reversible shape transition
from cylinder bundles to spheres when the temperature was changed from 20 to 80 ◦C or the
pH was changed from 11 to 2. The atomic force microscopy (AFM) and transmission electron
microscopy (TEM) measurements indicated that the temperature had also an obvious influence on
the micelle size. In addition, since POF10–b–PDPAEMA90 had a lower critical solution temperature,
its photoluminescence (PL) intensity in water is thermoreversible. The PL spectra showed that the
POF–b–PDPAEMA copolymer had a reversible on/off profile at elevated temperatures, and thus
could be used as an on/off fluorescent indicator for temperature or pH. The fluorescence intensity
distribution of pH switched from “off–on” to “on–off” as the temperature increased. These results
showed that the POF–b–PDPAEMA copolymer has a potential application for temperature and pH
sensing materials.

Keywords: atom transfer radical polymerization; Rod-coil diblock copolymers; Thermo-reversible
polymers

1. Introduction

The self-assembly of conjugated rod-coil block copolymers has been studied extensively
towards novel structural, functional, and physical properties of supramolecular species [1–3].
The aggregation and microphase separation of such block copolymers driven by various novel
functionalities of p–p interaction through solvent selection or rigid segmentation may result in
various nanosized morphologies [4–6]. Different conjugated rod-coil block copolymers have been
reported in the literature, including those of thiophene [7,8], phenylene [9–11], and quinolone [12,13].
The fluorene-based rod-coil block copolymers were used in this study because of their high
thermal/chemical stability and good fluorescence quantum yield [14–16]. Incorporating the coil
segment into the backbone not only allows the possibility to control the electronic and optoelectronic
properties, but also produces self-assembled nanostructures, such as spheres, worms, honeycombs, or
linear structures [17]. Besides, the combination of the stimulus-responsive coil section and the tunable
photophysical properties will result in novel multifunctional sensing materials [18,19]. Recently, the
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studies of synthesis, self-assembly of a dual thermal and pH-responsive copolymer have been reported
in the literature [20,21]. The micellar morphology of PDMAEMA-based coil-coil block copolymers has
been also applied to biology [22–25]. The aggregation of rod-coil block copolymers in water and THF
mixed solvents caused a reduction of quantum efficiency due to the formation of excimers [26–30].
However, the effects of detailed structure of rod-coil block copolymers on the multifunctional sensing
characteristics and photophysical properties also needs to be explored further.

Two kinds of amphiphilic POF–b–PDPAEMA rod-coil diblock copolymers with different segment
lengths, POF10–b–PDPAEMA90 and POF10–b–PDPAEMA197, were synthesized by atom transfer radical
polymerization (ATRP) for systematic investigation in this study. Some important parameters
such as solution temperature, acid-base value, and water/tetrahydrofuran ratio were used to
study the surface morphology and photophysical properties of copolymers. Micellar aggregation
was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM)
measurements. The photophysical properties of amphiphilic rod-coil diblock copolymer in solution
were discussed by UV–Vis absorption spectra and photoluminescence (PL). The surface structure
and photophysical properties of rod-coil block copolymers are related to rod/coil ratios and stimuli
parameters. The results show that the surface structure and fluorescence characteristics for the
amphiphilic POF–b–PDPAEMA rod-coil diblock copolymers can be manipulated by tuning the mixed
solvent composition, temperature, and pH.

2. Experimental

N,N–(Diisopropylamino) ethyl methacrylate (DPAEMA, Aldrich, 98%, St. Louis, MO, USA) was
purified on an aluminium oxide column. 1,1,4,7,7–Pentamethyldiethyl-enetriamine (Aldrich, 99%),
Copper(I) bromide (Aldrich, 99.99%), 9,9–Dioctyl–2,7–dibromofluorene (Aldrich, 96%), 2–bromoisobutyryl
bromide, 4–bromobenzyl alcohol, anisole, sodium carbonate, tetrakis (triphenylphosphine)palladium,
and N,N–dimethylacetamide sodium carbonate were used without purification. (9,9–dioctylfluorene)–
block–poly(2,7–(9,9–dioctylfluorene))–block–N,N–(Diisopropylamino)ethyl methacrylate) (POF–b–
PDPAEMA) amphiphilic copolymer was prepared by atom transfer radical polymerization.

First, POF–Br was prepared by Suzuki coupling [31,32]. The prepared POF–Br solid was
redissolved in a THF solvent and then precipitated for purification by using methanol to obtain
purer POF–Br (Mn = 3240 and PDI = 1.31). The preparation of POF10–b–PDPAEMA90 is described
below. Macroinitiator, PMDETA, CuBr, and N,N–(diisopropylamino)ethyl methacrylate (DPAEMA at
a mole ratio of 1:1:1:267 were mixed with an appropriate amount of anisole solvent. The mixture was
stirred homogeneously at room temperature for 1 h, and then temperature was raised to 90 ◦C for 5.5 h.
Then, the obtained solution was dried in vacuum at 50 ◦C to obtain PF10–b–PDPAEMA90(Mn = 19,200
and PDI = 1.29) as a brown solid (S1). The result of 1H NMR (CDCl3, δ(ppm)) for the POF–b–PDPAEMA
copolymer was as follows: 0.81–0.93 (3H, –CH2C(CH3)–), 1.69–1.89 (2H, –CH2C(CH3)–), 2.32–2.43
(14H, –N(C3H7)2), 2.55 (2H, –OCH2CH2N(C3H7)2), 4.05 (2H, –OCH2CH2N–(C3H7)2), 7.45–7.90 (10H,
POF and phenyl aromatic H). POF–b–PDPAEMA micelles were prepared in different ratios of solutions.
The preparation of POF–b–PDPAEMA micelles using different solvent compositions is described below.
POF–b–PDPAEMA amphiphilic copolymer was dissolved in THF. Then, MeOH was slowly added into
solution to obtain a THF/MeOH mixed solvent solution with a desired MeOH/THF ratio, 10, 25, 50, 75,
and 90 wt %, respectively. The concentration of POF–b–PDPAEMA copolymer in mixed solution was
maintained at 1 mg/mL. To study the thermo-responsive behavior, the POF–b–PDPAEMA amphiphilic
copolymer solution in MeOH (1 mg/mL) was heated to 30, 40, 50, 60, or 80 ◦C, respectively, and
maintained temperature for 50 h to reach the thermodynamic equilibrium. On the other hand, the pH
of POF–b–PDEAEMA amphiphilic copolymer solution was adjusting between 2 and 9 by using HCl
and NaOH for different pH behavior studies. In each run, the solution had to stand for 50 h to reach
equilibrium before measurement.

The chemical structure of synthesized copolymers was confirmed by Fourier transform infrared
(FTIR) spectra (PerkinElmer Spectrum spectrophotometer, Waltham, MA, USA) and NMR spectra
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(Jeol EX-400 spectrometer, Tokyo, Japan). The photophysical properties of copolymer films were
tested by ultraviolet-visible spectrophotometry (Jasco Model V-650, Oklahoma, OK, USA) and
photoluminescence spectroscopy (Horiba Jobin Yvon Fluoromax-4 Spectro fluorometer, Tokyo, Japan).
The adsorption spectra were measured in the range of 200–800 nm and an excitation wavelength
of 450 nm was used in emission spectrum. Gel permeation chromatography calibrated by 0.5 wt %
PS standard in THF with a flowrate of 1 mL/min at 40 ◦C was used to measure the molecular
weight distribution of copolymers. A refractive index detector (Schambeck SFD GmbH, model
RI 2000, Bad Honnef, Germany) with a PLgel 5 µm mixed-C and D column were used in gel
permeation chromatography. Surface structure of copolymers were examined by a transmission
electron microscopy (JEOL 1210) and atomic force microscope (Bruker Nanoscope DI III multimode
AFM, Billerica, MA, USA) measurements under an acceleration voltage of 100 kV and a tapping
mode, respectively.

3. Results and Discussion

Figure 1 illustrates the variation of optical transmittance with temperature for the prepared
copolymers, POF10–b–PDPAEMA197 and POF10–b–PDPAEMA90. It shows that the copolymer
with a longer PDEAEMA chain length had a high transmission because of favorable solubility
in water. In addition, the copolymer exhibited a lower critical solution temperatures (LCST) of
40 ◦C. At this temperature, the optical transmission of the copolymer solution decreased, because
the micelle structure of copolymers aggregated, leading to reduced transmittance. The optical
transmittance decreased as the chain length of the DPAEMA segment increased. Therefore, the
reduction of optical transmittance for POF10–b–PDPAEMA197 was more apparent than that obtained
from POF10–b–PDPAEMA90.
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Figure 1. Variation of optical transmittance with temperature (30–80 ◦C): (a) POF10–b–PDPAEMA197

and (b) POF10–b–PDPAEMA90.

Figure 2 illustrates the variation of optical transmittance of POF10–b–PDPAEMA90 and
POF10–b–PDPAEMA197 in water when subjected to a heating (curve a, c)–cooling (curve b, d) cycle
between 30 and 80 ◦C, respectively. It shows the individual heating and cooling curves form a loop for
POF10–b–PDPAEMA90 and POF10–b–PDPAEMA197, respectively. This hysteresis effect results from
the fact that intra-chain and inter-chain hydrogen bonding forms when different segments in the
copolymers aggregate together.
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Figure 2. Variation of optical transmittance of (a,b) POF10–b–PDPAEMA90 and (c,d)
POF10–b–PDPAEMA197 in water at a heating (a,c)–cooling (b,d) cycle between 30–80 ◦C.

Such a thermo-responsive behaviors of copolymers have been reported [33]. The temperature-
sensitive segment of PF10–b–PDPAEMA197 is longer, so its shape changes rapidly as the temperature
changes, resulting in a larger slope of the change in optical transmittance and thus a narrower loop
width than the PF10–b–PDPAEMA90 [34].

Figure 3 illustrates the PL intensity of POF10–b–PDPAEMA90 in water when it was subjected to a
heating and cooling cycle between 30 and 80 ◦C. It shows that the PL intensity decreased at the heating
stage and increased again at the cooling stage. The formation of intramolecular hydrogen bonding
between PDPAEMA chains results in this thermo-responsive phenomenon. Heating the solution above
the LCST (40 ◦C) caused the intramolecular hydrogen bonding of the PDPAEMA and the structure
formed closely packed aggregates that resulted in the reduction of PL intensity [24,33]. On the contrary,
cooling the solution below the LCST led to a swelling of the PDPAEMA corona in water. Consequently,
the POF core can absorb more incident light and increases the light emission intensity.
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Figure 3. Photoluminescence intensity of POF10–b–PDPAEMA90 in water at a heating–cooling cycle
between 30 and 80 ◦C: (a) heating (b) cooling.

Figure 4 illustrates the PL intensity of POF10–b–PDPAEMA197 in water when it was subjected to a
heating and cooling cycle between 30 and 80 ◦C. Comparing Figures 3 and 4 shows that the change of
fluorescence intensity for POF10–b–PDPAEMA197 is significantly faster than POF10–b–PDPAEMA90,
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because POF10–b–PDPAEMA197 has longer thermo-responsive chain lengths that caused a faster
aggregation of micelles and thus the apparent change in photoluminescence.
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Figure 4. Photoluminescence intensity of POF10–b–PDPAEMA197 in water at a heating–cooling cycle
between 30 and 80 ◦C: (a) heating (b) cooling.

Figure 5 illustrates the variation in the surface structures for the POF10–b–PDPAEMA90 in water
with temperature. It shows that the surface structure consisted of cylinder bundles at 30 ◦C (below the
LCST), but changed to cylinders at 50 ◦C (above the LCST). However, the surface structure exhibited
spheres at 60 ◦C, and the spheres aggregated at 80 ◦C. The described structural change of the micelles
can be attributed to the variation in the hydrophilic/hydrophobic property of PDEAEMA. The highly
hydrophilic PDPAEMA block showed an extended corona conformation as the temperature was below
its LCST. However, as the temperature was raised above the LCST, the formation of intramolecular
hydrogen bonding between the PDPAEMA chains caused a closely packed arrangement, thus water
molecules were excluded from the corona.
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Figure 5. AFM images of POF10–b–PDPAEMA90 aggregates in water at temperatures of (a) 30 ◦C,
(b) 50 ◦C, (c) 60 ◦C, (d) 80 ◦C.
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Therefore, the radius of cylindrical micelles became smaller. Nevertheless, increasing the
temperature from 60 to 80 ◦C could enhance the intramolecular hydrogen bonding of the corona; thus,
the corona became highly contracted, disrupting the POF aggregation. Figure 6 shows the variation in
the surface structures for the POF10–b–PDPAEMA197 in water with temperature. The surface structure
consisted of cylinder bundles at 30 ◦C, but changed to spheres at 50 ◦C (above the LCST) because of
the longer chain length of the hydrophobic PDPAEMA segment [35]. Aggregates of spherical micelles
were observed at higher temperatures (60–80 ◦C) because the long hydrophobic segment reduced the
colloidal stability in water, resulting in larger interconnected micelles, as shown in Figure 6c,d.
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Figure 7 illustrates the PL spectra of POF10–b–PDPAEMA90 in water at different solution
pH. It can be seen that the PL intensity was weak at acidic pH, but strengthened as the pH
increased from pH = 2 to 9. Over pH = 9, the PL intensity decreased again with increasing pH.
This is because the PDPAEMA chains at acidic pH led to the formation of large polymer spheres
so that scarcely any incident light was absorbed by the POF core, resulting in weak emission
intensity. In addition, the pH-sensitive PDPAEMA segment undergoes a decrease in the conjugate
plane resulting from the aggregation of the deprotonated chains in the high pH environment,
resulting in a decrease in the fluorescence intensity [36,37]. Figure 8 illustrates the PL intensity
of POF10–b–PDPAEMA90 and POF10–b–PDPAEMA197 in water at different solution pH. It shows that
the PL intensity of POF10–b–PDPAEMA197 decreased at lower pH levels (pH = 7) than that (pH = 9)
of POF10–b–PDPAEMA90, because the copolymer with a longer PDPMAEMA segment more readily
undergoes aggregation at lower pH levels.
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Figure 7. Photoluminescence spectra of POF10–b–PDPAEMA90 in water at different pH levels: (a) 2,
(b) 5, (c) 7, (d) 9, (e) 11.
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Figure 8. Variation of photoluminescence intensity of (a) POF10–b–PDPAEMA197 and (b)
POF10–b–PDPAEMA90 with different pH levels.

Figures 9 and 10 illustrate the TEM images of the POF10–b–PDPAEMA90 and POF10–b–
PDPAEMA197 micellar aggregates to show the structural change induced by pH variation. It shows
that the spherical small micelles were observed at pH = 2, as shown in Figure 9a. As the pH increased
to 7, the cylinder bundles were observed as shown in Figure 9b due to the interaction between the
PDPAEMA and the POF π–π bond at both ends of the POF, the PDPAEMA is deprotonated and induces
the aggregation, resulting in the transformation of the structure into shorter and coarse cylindrical
micelles. As the pH value continues to rise, its morphology is transformed into a single monoclinic
micelle, because the increase in the pH value suppresses the electrostatic repulsion of PDPAEMA, and
the diameter becomes smaller into a thin cylindrical micelle as shown in Figure 9c. The result indicates
that the pH value controls the degree of charge in the corona of the PDPAEMA block and induces
swelling or shrinking because of the electrostatic repulsion. It means that the addition or removal of a
proton (H) to or from PDPAEMA has an obvious influence on the copolymer structure. As shown in
Figure 10, the POF10–b–PDPAEMA197 copolymers show a similar structural transformation.
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4. Conclusions

In this study, we have synthesized the POF–b–PDPAEMA rod-coil block copolymers that show
a significant variation in their surface structure and photophysical properties with respect to the
temperature and pH. The micellar aggregates of POF10–b–PDPAEMA90 in water show a reversible
change of surface structure from cylinder bundles to spheres under a heating–cooling cycle of
30–80 ◦C. The LCST of POF10–b–PDMAEMA90 decreased with an increase in solution pH values
due to the deprotonation of the PDPAEMA block. On the other hand, the light emission intensity
for POF10–b–PDPAEMA90 in water was thermo-responsive, depending on its lower critical solution
temperatures. It means that the prepared copolymers in this study can be applied as on/off fluorescence
indicators and thus as temperature and acid-base value sensory materials, since the POF–b–PDPAEMA
copolymer shows a stable and reversible “on–off” profile.

Supplementary Materials: Supplementary Materials are available online at www.mdpi.com/2073-4360/9/8/
340/s1. The GPC curves could be found in Figure S1.
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