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Abstract: Terpolymer raspberry vesicles contain domains of different chemical affinities. They are 
potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability 
and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative 
particle dynamic (DPD) simulation is employed to investigate how equilibrium aggregate structures 
are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that 
a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium 
aggregates are calculated and the results show that the transition from micelles to vesicles is 
governed by the interactions between the longest solvophobic block and the solvent. In addition, 
the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction 
energy favours solvent encapsulation, although solvent molecules can permeate through the 
vesicle’s shell when repulsive interactions among monomers are low. Thus, one can optimize the 
loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the 
polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential 
step towards designing vesicles for specific purposes. 
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1. Introduction 

Vesicles are nanoaggregates capable of encapsulating chemicals, including solvents, in a closed 
structure. They are important because they can be used as nanoreactors or carriers [1–4]. While 
vesicles are commonly formed using lipids and surfactants, interest in vesicles formed using block 
copolymer has increased recently since they offer a wide range of morphologies and chemical 
affinities [5,6]. Among block copolymers, ABC star terpolymers are particularly attractive because, 
compared to linear block copolymers, they form more stable aggregates [1–3] and their aqueous solutions 
have lower viscosity [4,5,7]. ABC star terpolymers are tri-block copolymers that consists of A-, B- and C-
blocks of different chemistry. To date, star block terpolymers including [poly(ethylethylene)] 
[poly(ethylene oxide)][poly(perfluoropropylene oxide)] PEO-PEE-PFPO [8], [poly(styrene)][poly(L-
lactide)][poly(tert-butyl methacrylate)] PS-MI(PLLA)-P(S/tBMA) [9], [poly(3-ethyl-3-oxetanemethanol)]-
star-[poly(ethylene glycol)] HBPO-star-PEO [10], and [poly(methyl methacrylate)][poly(2-
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(diethylamino) ethyl methacrylate)][poly(poly(ethylene glycol)methyl ether methacrylate)] PMMA-
PDEA-PPEGMA [11] have successfully been used to form vesicles. 

The variety and properties of aggregates formed by ABC terpolymers are related to their 
structures. Star ABC terpolymers are block copolymers composed of blocks connected at one 
common point. The blocks are mutually immiscible and have different solvophobicities. The strong 
repulsion among the blocks causes ABC terpolymers to self-assemble into aggregates with segregated 
A, B, and C nanodomains. These aggregates have a variety of structures, many of which cannot be 
observed in solutions of linear copolymers. Polygonal bilayers [8], nanostructured vesicles [8,12], 
segmented network structures [13], bead-on-string worm micelles [14], and segmented semivesicles 
[12] have all been reported or predicted. 

The equilibrium structures formed by star ABC terpolymers in selective solvents depend on 
concentration [13,15,16], interaction energies among blocks and the solvent (Flory-Huggins 
interaction parameter χ) [9,12,14,15,17], pH [18], and temperature [11,19]. Phase diagrams of 
miktoarm star copolymer melts [20] and solutions [21] have been produced numerically to explore 
the influence of the interaction parameter and solvent quality [9,12,14,15,17] on the self-assembly 
behaviour of miktoarm star copolymers in solution.  

The length of individual blocks of block copolymer determines the morphology and stability of 
the equilibrium aggregates [8,12–15,17,22,23]. Terpolymers with a longer solvophilic block form 
aggregates with discrete multi-domain cores. Decreasing the solvent quality leads to the formation 
of cylindrical or disk-like micelles [17]. As the length of the solvophilic block decreases, the 
aggregates change from raspberry/hamburger micelles, to segmented wormlike micelles and, finally, 
nanostructured bi-layers. Studies to this effect have been conducted both experimentally, on PEO-
PEE-PFPO [8,23], and numerically [12–15,17,22]. When the bilayers are sufficiently large, they can 
fold and form vesicles [22]. These vesicles are referred to as raspberry vesicles, as their surfaces 
consist of segregated solvophobic nanodomains in a solvophilic matrix and resemble the surface of a 
raspberry. The equilibrium morphology of vesicles formed by ABC terpolymers is also affected by 
the length ratio between the solvophobic blocks [12,15,23]. Chemicals with various affinities to each 
domain could be transported concurrently by raspberry vesicles.  

It has been shown that miktoarm star ABC terpolymer with one longer solvophobic arms but 
shorter solvophilic arms can self-assemble into spherical vesicles in a wide range of solvent 
conditions [17]. The system presented in this work corresponds to amphiphilic μ -
[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] ( μ -EOF) star 
terpolymer in aqueous solutions. The three blocks poly(ethylethylene) (PEE), poly(ethylene oxide) 
(PEO), and poly(perfluoropropylene oxide) (PFPO), and the water molecules are represented by four 
kinds of beads :A, B, C, and S, respectively. The solvophilic block is, therefore, block B, while block C 
is the most solvophobic. μ-EOF star terpolymers are known to form nanostructured vesicles [8,22,23]. 
Simulations in this work use A12B6C2 as the model polymer. The chosen length ratio corresponds to a 
solvophilic weight fraction of 35% (±10%) and is known to promote vesicle formation [3]. 
Furthermore, a long solvophobic A-block promotes the formation of aggregates with a raspberry-like 
shell [23,24]. As a result, vesicles are the equilibrium aggregates in many test conditions in this work.  

Using our model system, the equilibrium structure of the aggregates is explored using dissipative 
particle dynamics (DPD) simulations. Effects of the interactions among beads and solvents and that of 
polymer concentration are investigated. Surface morphologies and structures of aggregates are 
examined. The thermodynamics that governs the equilibrium aggregate structures is discussed.  

As vesicles formed with star terpolymers can be efficient carriers, it is necessary to identify 
conditions under which they are the equilibrium structures and to study how their encapsulation 
efficiency and properties vary with their morphological details and with the environment. A state 
diagram showing the equilibrium aggregate structure is constructed to ascertain the optimal 
conditions for vesicle formation. The ability of the aggregates to encapsulate solvent is explored. This 
paper sheds light on how polymer concentration and interaction energies among various blocks of a 
terpolymer and with the solvent govern the equilibrium aggregate structures and their properties. 
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The ability to predict and control these aspects of the vesicles is an essential step towards designing 
vesicles for specific purposes [3].  

The remainder of the paper will present the methodology applied and the major findings of this 
study. Note, figures, and tables denoted by the letter “S” can be found in the accompanying 
supplementary material available online. 

2. Materials and Methods  

Dissipative particle dynamics (DPD) simulations are used to study the spontaneous self-
assembly of ABC star terpolymers in a solvent S. DPD is a particle-based mesoscopic simulation 
technique first introduced by Hoogerbrugge and Koelman [25]. The terpolymer is coarse-grained and 
each DPD particle (or bead) is a collection of molecules. The position  and velocity   of each 
DPD particle is governed by Newton’s equation of motion: = , =  (1) 

Where  is the particle mass,  is the total force exerted on each particle  and consists of four 
components: conservative force , dissipative force , random force , and spring force . The 
first three forces are pairwise contributions and become effective when the distance between two 
beads  and  is within the cut-off radius 	= 	1. The spring force  is a harmonic spring force 
acting on consecutive (bonded) beads. The conservative force 	between nonbonded beads is a soft-
repulsive force and is given by: 

	= 	 1 − ̂ if <0 otherwise
 (2) 

where 	= 	 	−	 , 	= 	 , ̂ 	 = 	 /  and  is the repulsion between beads  and . The 
DPD soft-repulsive force allows simulations of larger length- and time-scales as compared to the 6-
12 Lennard Jones potential used in non-equilibrium molecular dynamics (NEMD) computations. The 

combination of dissipative force  and random force  acts as a thermostat in the simulation. 
The two forces are evaluated as: 	= 	−γω ⋅ ̂  (3) 

	= −σω √Δ ̂  (4) 

where ∆  is the simulation time step, = − , σ, and γ respectively represent the amplitude 
of  and , ω  and ω  are the weight functions, and ξ  is a random number with 
zero mean and unit variance. In order to satisfy the equilibrium Gibbs-Boltzmann distribution and 
the fluctuation-dissipative theorem, the following two relationships are required: 

ω =  (5) 

σ = 2γ T  (6) 

In our simulations, σ is chosen to be 3 [26] and temperature T is chosen to be 1. According 
to Groot and Warren [27], the weight function is expressed as: 

= 1 − if <0 otherwise
 (7) 

D
ijF


R
ijF
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This restricts the interaction among beads only with their neighbours. The dissipative force  
reduces the relative momentum between particles  and . The random forces  impart energy to 
the system. The spring force  between bonded beads is given by: = ( − ) ̂  (8) 

where 	is the spring constant and set as 100.0 [28], and the equilibrium bond length is 	= 	0.86. 
This value results in a slightly smaller distance between bonded particles than non-bonded ones, and 
the sum runs over all particles to which particle 	 is connected. 

The integration of the equation of motion (Equation (1)) is carried out using the Velocity-Verlet 
algorithm [29] with a time step ∆ 	 = 	0.04  in DPD units. The unit of time τ	 = 		 / T 
corresponds to 10.45	ps in real time. Each time step then is 0.418	ps. 

The interactions among blocks are varied with a coupling parameter λ: = λ + (1 − λ)  (9) 

The coupling parameter λ  is introduced to allow the calculation of relative free energy 
associated with individual aggregates. This also provides an opportunity to investigate how changes 
in pair-wise interaction energies, in the form of varying λ, affect equilibrium aggregate structures 
and their properties. Details of the free energy calculation are given in Section 3.1. The maximum 
pairwise interactions  are recovered for λ = 1. This corresponds to the interactions among PEE 
(A bead), PEO (B bead), PFPO (C bead), and water (S bead). The values  are reported in Table 1. 

Table 1. Interaction parameters  (in dissipative particle dynamic (DPD) units). 

Type 
of 

Beads 
B A C S 

B 25.0    
A 38.5 25.0   
C 89.4 78.0 25.0  
S 26.0 97.9 125.0 25.0 

The volumes of the repeat unit of PEE, PEO, and PFPO are 122.5, 65.2, and 149 Å  respectively 
[22]. All beads have similar size of 900 Å . This means there are 30 water molecules in one S bead, 7.3 
PEE mer units in one A bead, 14 PEO mer units in one B bead, and six PFPO mer units in one C bead. 
Details on the coarse-grained method and the choice of  values can be found in [22]. 

The present DPD simulations focus on the effect of polymer concentration on the spontaneous 
vesicle formation of A12B6C2 star terpolymer in solutions made of S beads. Each polymer chain has 20 
beads which consists of 12 A beads, six B beads, and two C beads. Unless explicitly stated, results 
presented are from simulations consist of 192,000 DPD beads in a simulation box of 40 × 40 × 
40  with periodic boundary conditions. This corresponds to a box length of 56 nm. The volume 
fraction of polymer in the solution φ  is defined as the total number of polymer beads divided by 
the total number of beads in the simulations. The simulation begins with a homogenous state. A 
minimum of 3 million DPD steps are taken to ensure equilibrium states are achieved. NVT ensemble 
is adopted in the simulation. Temperature is set at 298 K. φ  between 0.02 and 0.10 are investigated. 
This translates to 192–960 chains in the box and the corresponding pressures are 204 (20.7)–212 (21.5) 
atm (MPa), respectively. Simulations have also been conducted with a box size of 80 × 80 × 80 . 

3. Analytical Methodologies 

3.1. Thermodynamic Integration for Free Energies 

Free energies are evaluated to identify the factors driving the aggregation of the terpolymers 
into micelles and vesicles. The free energy (η) results in this paper are free energies of the solution 



Polymers 2017, 9, 275 5 of 15 

 

of concentration φ  with respect to an ideal solution of terpolymers of the same concentration. The 
thermodynamic integration is performed by evaluating the integral: 

(η) = ∂∂ λ (10) 

The integrand  represents the partial derivative of the interaction energy between species  

and  with respect to the coupling parameter λ.  is a function of the coupling parameter itself 
and can be evaluated by ensemble averaging at fixed values of λ. It is, therefore, possible to build an 
approximation of  using Tchebychev polynomials and then perform the integration analytically 
on the polynomial approximation. Eighth-order polynomials are used to approximate the variation 
of  with the varying λ. This procedure has the advantage of returning the variation of the free 
energy as a function of the interaction strength. This is equivalent to studying a family of solutions 
of increasing interaction strength rather than a single chemical system. The transition from a micelle 
to a vesicle is a second-order transition, as can be seen from the variation of internal energy shown 
in Supplementary Materials Figure S1. Thermodynamic integration can, therefore, be carried out 
across this transition. 

3.2. Skin Characterisations  

The majority of the analysis carried out in this work concerns properties of surfaces of 
aggregates, which we refer to as “skin”. Take a vesicle as an example: a vesicle is made of a 
membrane, with a cavity inside. The membrane is made of three parts; the inner shell, which is 
adjacent to the cavity; the outer shell, which is the surface exposed to the surroundings; and the inner 
leaflet, which separates the two shells (see Scheme 1). The outer shell of a vesicle consists of A-, B-, 
and C-beads which (1) are in contact with S-beads and (2) are located more than  units away from 
the center of mass of the aggregate. The definition of the inner shell is similar to that of the outer shell 
except, in this case, the beads on the inner shell must be at most  away from the center of mass of 
the aggregate.  ( ) is the minimum (maximum) distance between the centre of mass of the 
aggregate and the hydrophilic blocks near its outer (inner) surface. The second condition is in place 
to avoid counting beads that are not on the surface, but have contact with S-beads that have 
permeated into the aggregate membrane. The shell is subdivided into two parts. The beads with only 
one S-neighbour form the skin of the aggregate. Those with more than one S-neighbour are part of 
the hydration layer. Beads in the membrane that have no contact with the S-bead form the inner 
leaflet of the membrane. A-, B-, C-, and S- beads in the membrane that do not belong to the shell, and 
S-beads in the centre cavity, form the core of the aggregate. For micelles, only the outer shell exists. 
The rest of the beads, including any trapped S-beads in a micelle, form its core. 

 
Scheme 1. Definition of various terms used to describe the membranes. The colour codes for A-, B-, C-, 
and S-beads are green, yellow, red, and grey, respectively.  is the minimum distance between the 
centre of mass of the aggregate and the hydrophilic B-beads located near the outer surface of the 
aggregate. ,  is used, if the aggregate is a vesicle, to define the inner shell and is the maximum 
distance between the centre of mass of the aggregate and the B-beads near the inner surface.  is the 
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distance between the centre of mass to the average mid-plane of the membrane. The definition of the 
membrane excludes the hydrated layer. 

The aggregate size , excluding its hydration layer, is defined as: 

= 13 ( + + ) (11) 

where < <  are the principal moments of inertia of the aggregate with respect to its center of 
mass. The skin can be mapped in spherical coordinate ( ,θ,ψ) where  is the distance from the center 
of mass, and θ and ψ are the longitude and latitude angles, referring to the principal directions of 
the tensor of inertia of the aggregate, as shown in supplementary materials Figure S2a.  

4. Results and Discussion 

4.1. General Descriptions of Equilibrium Aggregate Structures 

The equilibrium aggregates formed at various values of λ and φ  are shown in Figure 1. At the 
lowest value of λ	 = 	0.10, where the interactions among various beads are relatively weak, A12B6C2 
star terpolymers form fragmented aggregates at low φ  and networks of rings and cylinders at high φ  (see Figure 1). In these cases, B- and C-beads (yellow and red beads in Figure 1) reside on the 
surface of the aggregates with relatively low surface coverage. As a result, many A-beads (green) are 
exposed to the solvent (S-beads omitted for cases with λ	 = 	0.10). No distinct C-domain is formed. 

 

Figure 1. Aggregate structures for λ = 0.10, 0.59 and 0.98 at various φ . Green, yellow, red, and grey 
beads refer to A-, B-, C-, and S-beads, respectively. For λ = 0.10, S-beads (grey) are omitted for clarity.  

At λ	 =	0.98, spherical raspberry micelles with A-bead cores (green) are formed at low φ . These 
micelles have shells that are made mainly of B-beads (yellow) with small C-bead domains (red) that 
give these micelles the appearance of raspberries. Some B-bead segments on the shell are hydrated 
by S-beads. The hydrated B-beads extend out of the skin into the solvent space (grey) as yellow ‘hair’ 
growing out of the aggregates. The shapes of these raspberry micelles change from spherical (φ  = 
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0.02) to disc-like (φ  = 0.06) as φ  increases. The observation that micelles become less circular as 
they approach the micelle-vesicle boundary is general and is quantified in the supplementary 
material Figure S3 (see also Section 4.2). As φ 	≥ 0.08, spherical nanostructured bilayer vesicles 
form. The vesicles contain encapsulated S-beads (grey) in the cavity. The membrane consists of an 
inner and an outer shells with skins made of B-bead layers (yellow) decorated with C-bead (red) 
domains. The skins are separated by the inner leaflet of the membrane made of A-beads (green). 

Similar structures are observed for intermediate values of λ. As an example, for λ		 =	 0.57, 
aggregates change from micelles to vesicles as φ  increases, with one exception: at φ 	= 0.06, a 
semivesicle is observed. A semivesicle is formed due to segregation of segments in a micelle, giving 
rise to a solvophobic C-bead center core. At φ 	≥ 0.08, vesicles are the equilibrium structures. 

The equilibrium structures at high λ have been observed both in experiments [8] and simulations 
[22]. The transition from micelles to vesicles with increasing λ [12,30] and φ  is consistent with reports 
from the literature [31]. The network structure presents at the lowest values of λ  are rarely seen 
experimentally. This is probably due to the lack of terpolymers with such weak repulsive interactions. 

4.2. State Diagram 

To illustrate the effect of interactions among various beads in the star terpolymer and the 
solvent, equilibrium structures for various φ  and λ are presented in Figure 2 in the form of a state 
diagram. Note equilibrium structures of low λ solutions obtained using initializations with 
homogeneous systems are identical to those obtained from the final states of simulations at higher λ. 
This verifies that results shown in Figures 1 and 2 are independent of transformation paths.  

 
Figure 2. The effects of polymer concentration and interaction energies among beads on the 
equilibrium aggregate structures. Solid and open symbols correspond to micellar and vesicular 
aggregates, respectively. 

At very low λ, where interactions among all beads and the solvent are equal or relatively small, 
the solvent and the terpolymer mix well (disordered state, × in Figure 2). Most terpolymer chains 
remain as individual chains. An increase in λ favours self-assembly of terpolymers driven by 
repulsion among beads. At λ ~ 0.1, fragmented or branched aggregates are observed ( in Figure 2). 
These aggregates are only stable at low λ. At higher λ, two main types of aggregate structures emerge, 
micelles and vesicles (solid and open circles, respectively, in Figure 2). They divide the remaining 
part of the state diagram into two regions, with low and high φ  favouring the formation of micelles 
and vesicles, respectively. The boundary between micelles and vesicles is located approximately at φ = 0.07. The value of φ  above which vesicle formation is observed exhibits a weak dependence 
on λ: at λ	 = 	0.4, the vesicles are formed above φ 	= 	0.05. Note that, in this study, a change in 
concentration corresponds to a change in the total mass of the aggregates. Results in Figure 2, thus, 
suggest the existence of a critical mass for vesicle formation. This critical mass is approximately 670 
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0.02

0.04

0.06

0.08

0.10

 disorder  fragmented aggregate  micelle  vesicle  semivesicle

ϕ p

λ



Polymers 2017, 9, 275 8 of 15 

 

chains. The smallest vesicles generated in computations on a system containing a total number of 
particles eight times larger have approximately 700 chains, supporting an existence of a critical mass. 

The geometry (size and shape) of aggregates can be characterized by their principal moments of 
inertia , , and . Note the hydration layers are excluded from consideration. These values 
indicate how mass is distributed within an aggregate. Hence, their ratios reveal information about 

aggregate shapes. Contours of  and  normalized by 1I  ( 	= 	  and 	= 	 ) are presented 

in Supplementary Materials Figure S3. For a spherical aggregate 	= 	 	= 	 , hence, 	= 	 	= 	1. 
Most vesicles (above the grey dash line in supplementary materials Figure S3) are nearly spherical. 
For micelles, however, 	≠ 	  in most cases. Depending on the ratio between  and , the 
micelles range from spherical to disc-like, cylindrical, and elliptical.  and  deviate most from 1 
for those micellar aggregates formed near the micelle-vesicle boundary. This shows that the transition 
from micelle to vesicle involves substantial geometric adjustment of aggregates. 

4.3. Free Energy 

The relative total free energy  (excluding the hydration layer), total skin energy  
(energy contributed by beads on the skins) and total core energy 	= 	 	−	  per 
terpolymer chain with respect to the ideal solution were calculated as functions of φ  and  and 
shown in the form of contour maps (see Figure 3). Note that the contributions for entrapped S-beads 
in the aggregates are included in these calculations. 

 

Figure 3. Relative (a) total free energy ; (b) total skin energy ; and (c) core energy  per 
terpolymer chain with respective to the ideal solution of aggregates formed at various φ . The dashed 
line shows the phase boundary. 

The dominant contribution to the free energy for all clusters is .  is never larger than 
20% of the total free energy per chain. It is however an increasing fraction of the total free energy for 
larger vesicles (larger φ ) and at higher values of λ. The micelle/vesicle stability boundary (grey 
dashed line, Figure 3) follows closely the contours of . Hence, the relative stability of the micelle 
and vesicle phases is largely determined by their surface energy. Note the two phases have the same 
energy at the transition boundary, but the free energy of the micelle phase at concentrations higher 
than the critical concentration is larger than that of the corresponding vesicle phase. The 
rearrangement from micelles to vesicles allows  to decrease, at the expense of a small increase 
in .  

Further insight into the contributions to the free energy can be gained from Supplementary 
Materials Figure S4, showing the contributions of B-S, A-S, and C-S interactions to the total free 
energy of aggregates. A-S interaction dominates, and it exhibits a discontinuity during the 
micelle/vesicle transition due to rearrangement of polymers on the surface. 
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4.4. Morphology of Clusters 

Various combinations of φ  and λ can result in geometrically similar aggregates, with subtle 
differences in bead distribution. Detailed structures and morphologies of equilibrated aggregates 
observed in Figures 1 and 2 are described in this section. In this discussion, aggregates are divided 
into two parts, the shell and the core, as described in Section 3.2. 

Information about aggregate sizes (excluding hydrated layers), in the form of average radii , 
is presented in Supplementary Materials Figure S5a.  increases with φ  since there are more 
terpolymers per aggregate. At a given φ , it is largely insensitive to λ. At 	= 0.1,  (solid 
squares, Supplementary Materials Figure S5b) decreases slightly with λ. This is inconsistent with 
how the radii of gyration  of the terpolymer chains, and those of individual A-bead and B-bead 
segments, are affected by λ and φ , as shown in Supplementary Materials Figure S6. The size of B-
bead segments (Supplementary Materials Figures S6b) is relatively constant while that of A-bead 
segments (Supplementary Materials Figure S6c) increases slightly with λ. Since the aggregates are 
made mainly of A-beads, the increase in size of A-bead segments translates to an increase in  of 
polymer chains (Supplementary Materials Figure S6a). However  decreases with λ  (see 
Supplementary Materials Figure S5a). Note, as λ decreases, the interactions among all beads become 
more favourable, so that S-beads swell the membrane more (see Section 4.5.2 for details). These 
vesicles formed at low λ encapsulate more S-beads as their vesicle membranes are also thinner (see 
difference between solid squares and open circles, Supplementary Materials Figure S5b), resulting in 
larger . This suggests that the size of vesicles of a given mass is controlled by the strength of the 
interaction between the solvent and polymer beads. 

Composition profiles, showing how fractions of various beads  (  = A, B, C, and S-beads) 
change from the centre of mass of micelles ( / 	= 0) to their peripheries for φ = 0.02 are presented 
in Figure 4a,b for λ	 =	0.98 and 0.24 respectively. All micelles feature an A-bead (inverted triangles) 
center surrounded by a shell made mainly of B- (circles) and C-beads (squares). The B-beads (circles) 
and C-beads (squares) are most abundant at ≈ 	0.6 − 0.7. Lower values of λ favour hydration of 

the B-beads (circles in Figure 4b). In addition, S-beads penetrate slightly deeper into the A-bead center 
(stars in Figure 4b). Overall, the effect of λ on the details of micelle morphology and size are small.  

 
Figure 4. Composition profiles of aggregates (including skins and hydrated layers) formed under 
various conditions. Note the horizontal axis is the distance  from the center of mass of the aggregate 
normalized by the radius of the aggregate . The vertical axis is the number fraction of bead , , in 
a particular /  and is the ratio of numbers of bead 	to the total numbers of beads situated at a 
distance  away from the centre of mass. 
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Vesicles contain S beads in their cavities. Their inner and outer shells have properties generally 
similar to shells of micelles (see Figure 4c,d for φ 	= 0.1 λ	 = 	0.98 and 0.24, respectively). The 
locations of B beads (circles) and S-beads (stars) overlap, suggesting a large portion of the B-beads 
are hydrated (see also Figure S7a,b in the Supplementary Information for compositional profiles of 
vesicles, excluding their shells). For the inner shells,  (circles) and  (squares) peak near / 	≈ 
0.2–0.3 and 0.3–0.4 respectively. Some hydrated B-beads extend to the centre of the aggregates. For 
outer shells,  and  peak near / 	≈ 0.8 and 0.7, respectively. Similar to that of the inner shell, 
B-beads at the outer shell are highly hydrated and  are higher than . 

An inner leaflet made of A-beads (inverted triangles, with 	~ 1) separates the inner and outer 
shells of vesicles. A comparison of profiles from high (red) and low (black)  is shown in Figure 4e. 
For φ = 0.1 the thickness of the inner leaflet increases with  (see also supplementary materials 
Figure S5b). The results in Figure 4a,b,e and Supplementary Materials Figure S5b suggest that an 
increase in the strength of interactions among various beads (by increasing λ) gives rise to vesicles 
with thicker and more well-defined bilayer membrane. They have a thicker solvated B-bead layer, a 
thicker A-bead inner leaflet, and an inner- and an outer- shells that are more effective in isolating the 
inner leaflet A-beads from S-beads.  

Profiles of vesicles from φ 	=  0.1 with λ ≥ 0.41 show similar composition profiles (see 
Supplementary Materials Figure S8a–d) and they are of similar sizes (see Supplementary Materials 
Figure S5a), suggest that these vesicles might have already reached their densest possible packing. 
Vesicles are also formed at lower φ  (see supplementary materials Figure S8f–j). While these vesicles 
are smaller (see Supplementary Materials Figure S5a), the effect of λ on the structure of these vesicles 
are similar to those formed with φ 	=0.1.  

For φ = 0.06 and λ	 = 0.59, a semivesicle is formed (see Figures 1 and 4f). Semivesicles have 
been observed in computational simulations [32–34]. The difference between a vesicle and the 
semivesicle is clearly seen in Figure 4d,f. While the semivesicle has an inner and an outer shell, its 
centre is made of C-beads (squares, 	= 1) instead of S-beads as seen in vesicles. 

4.5. Properties of Shells of Aggregates  

4.5.1. Skin Morphology 

The properties of the skins of the aggregates are discussed and results are presented in the form 
of maps in spherical coordinates. The definition of the spherical coordinates ψ-θ and the selection 
criteria for the shell and skin beads are shown diagrammatically in Supplementary Materials Figure 
S2a and in Scheme 1 (details in Section 3.1).  

The distributions of various beads on the aggregates outer skins are presented in Supplementary 
Materials Figure S2b,c. How the composition of the skin (inner and outer skins combined) changes 
with φ  and λ is quantified in Figure 5. As λ increases, the percentage of A-beads decreases while 
the percentage of B-beads increases. This reflects the fact that the interactions between A- and S-beads 
are increasingly repulsive and the penalty of mixing increases as λ increases. The percentage of A-
and B-beads is insensitive to φ  for λ  0.5. For higher values of λ, transitioning from micelles to 
vesicles decreases the percentage of A-beads in favour of B-beads (see Figure 5a,b). This gives A-
beads better protection from S-beads and confirms that the transition of micelle to vesicle is governed 
by unfavourable interactions between A- and S-beads. The amount of surface A-beads are always 
substantial since it is the longest block of the terpolymer. The local percentage of C-beads remains 
relatively constant for all test conditions (see Figure 5c). This is because the C-block is the shortest 
block of the terpolymer. Thermodynamics and the physical constraints of the polymer architecture 
result in the C-block on the skins. 

Examining the spatial distributions of beads on skins of aggregates show that C-beads aggregate 
and form domains at high λ (grey symbols, supplementary materials Figure S2b). Radial distribution 
functions of C-C beads on outer skins of spherical vesicles with high λ show peaks irrespective of φ  (see black symbols in supplementary materials Figure S9a,b), suggesting these C-domains form 
orderly patterns on the skin. Formation of ordered structures by block copolymer and terpolymer is 

≤
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common and is controlled by the repulsive interactions among beads [20,21,35,36]. As λ drops, the 
magnitude of repulsion drops and so does the orderliness of the skins morphology (see white 
symbols in Supplementary Materials Figure S9a,b). For A-beads and B-beads, no order is found (see 
Figure S9c–f). 

 

Figure 5. The percentage (%) of (a) A-; (b) B-; and (c) C-beads on the skins of aggregates (both inner- 
and outer-skins are included). The dashed line depicts the micelle-vesicle boundary based on the state 
diagram in Figure 2. 

The membrane properties were monitored by tracking the mean square displacement (MSD) of 
test chains for vesicles formed at φ = 0.1, as shown in Supplementary Materials Figure S10. For all 
values of λ, approximately Brownian diffusion [37] can be observed over short time scales. This 
shows that membranes behave as viscous liquids and that the nature of the diffusion dynamics within 
the vesicle membranes is unaffected by the value of λ. At longer time scales, the exponent of the 
power law describing the MSD as function of time increases. This may be due to the test chains 
leaving their clusters of origin. 

4.5.2. Interaction with Solvent and Aggregates 

In this work, interactions energies between B-B beads, B-S beads, and S-S beads are similar (see 
Table 1). Hence, B- and S- beads mix well. With decreasing λ, the A-S pairwise interaction also drops. 
Hence, it is expected that as λ  decreases: (1) B-beads are more solvated, and (2) S-beads may 
penetrate into the A-bead inner leaflet of the bilayer membrane, i.e., the membrane may become 
permeable. 

The degree of B-bead solvation can be examined by the length of the solvated B-bead segments 
extending from the outer skin. The solvation of B-beads of the inner skin is excluded in this analysis 
because they might be affected by a confinement effect. The average solvation length and its 
distribution under various conditions are shown in Figure 6 (for details please see Supplementary 
Materials Table S1). The reduction of λ indeed sees an increase in B-bead solvation length due to a 
drop in energy cost for mixing. Most solvated B-bead segments are at least 4 DPD units long (see 
Figure 6). As φ  decreases, the average hydration length of the B-bead segments of an aggregate 
increases. This is due to smaller aggregates having a higher surface to volume ratio. Thus, a larger 
fraction of B-beads is exposed and, hence, can be solvated by S-beads.  
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Figure 6. Histogram showing the length of solvated B-bead segments at various conditions from the 
outer skin only: (a) = 0.1 and (b) = 0.02. 

Vesicles are frequently cited as potential cargo carriers, so their ability to encapsulate target 
chemicals at intended domains is important. In this work, S-beads are encapsulated at the cavity of 
the vesicles. The amount of S-beads encapsulated normalized by the number of terpolymer chains 
making up the vesicle is presented in supplementary materials Figure S11. An increase in λ sees a 
reduction in the number of encapsulated S-beads per chain in the vesicle. The amount of encapsulated 
S-beads per chain plateaus at high values of λ. 

Assuming that the vesicles are spherical for φ 	= 	0.1, the vesicles formed at λ	 = 0.98 are 13% 
smaller than those formed at λ	 =	0.24. The vesicles formed at higher λ also have smaller inner cores 
(see Figure 4c,d and Supplementary Materials Figure S5b). Since the vesicles formed at λ	 = 0.98 
have a core about six times smaller than those formed at λ	 =	0.24, they encapsulate six times fewer 
S-beads. Few S-beads are found in the membrane for some vesicles although they are most noticeable 
at λ	 = 0.24. This is also confirmed with the composition profiles in Figure 4d where for λ	 = 0.24, 
the profiles for S- and A-beads overlap. Small solvent molecules swelling the polymer film can act as 
plasticizers and improve the deformability of thin films [38]. Hence, a thicker hydration layer and 
more stretchable membrane leads to thinner vesicle membranes and a vesicle with a high 
encapsulation capability at low λ. 

The presence of S-beads in the inner A-bead leaflet of the membrane with low λ suggests that 
vesicles with low pairwise interactions improve S-bead encapsulation efficiency at the expense of the 
effectiveness in selectively containing S-beads to their designated compartments. The diffusion of S-
beads through the vesicle membrane is examined by monitoring the exchange of S-beads in the cavity 
with those outside of the vesicle. Figure 7a shows for λ = 0.24, the fraction of S-beads originally in 
the cavity  (solid triangles, Figure 7a) decreases with time. At the same time, S-beads outside of 
the vesicle diffuse through the membrane into the cavity, i.e., the fraction of newly-entered S-beads 

 (open circles Figure 7a) increases. It takes roughly 250.8 ns in real-time to completely replace the 
original S-beads with new S-beads that were initially outside of the vesicles. 

Increasing λ slows down the diffusion of S-beads across the membrane (see Figure 7b for λ	 = 
0.59) where changes in  and  are small over time. Large pairwise repulsive interaction is 
necessary to stop such diffusion (see Figure 7c where ≈ 1 and ≈ 0). Similar observations were 
made for vesicles formed with = 0.08. The results show that the permeability and the selectivity 
of the vesicles can be controlled by changing λ . While low λ  allows for more S-beads to be 
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encapsulated, these S-beads can diffuse out of the vesicles. Increasing λ reduces the rate of such 
diffusion and, hence, the choice of λ would depend on the time the vesicles are required to hold 
specific chemicals and can be used to control release rates.  

 

Figure 7. The fraction of original and new S-beads in the cores of vesicles formed at = 0.1 and λ = 
(a) 0.24; (b) 0.59 and (c) 0.98. Triangles and circles correspond to the S-beads that were and were not 
at the cores at a reference point in time (t = 0) respectively. 

5. Conclusions 

In this work, the equilibrium structures of an ABC star terpolymer are examined with DPD 
simulations. A12B6C2 star terpolymers in solutions made of S beads are the model systems. The effects 
of concentration and strength of interactions are investigated. When the concentration of polymer φ  
is very low, disorder and branched structures are found. As φ  increases, micelles and vesicles 
appear. The transition from micelles to vesicles occurs at the same φ  regardless of interaction 
energy, suggesting that a critical mass exists above which vesicles will form regardless of λ. Vesicles 
are generally of approximately spherical shape, whereas micelles are more irregular. The most 
anisotropic micelles are formed near the transition boundary. The free energy of aggregates is 
dominated by their surface energy with the A-S interactions being the largest contributor. For 
interactions among beads, A-S interactions are most important to determine equilibrium aggregate 
structures. The interaction energies among beads also govern the surface morphology and the size of 
the aggregates. It was found that an increase in repulsive interactions gives rise to aggregates that 
have more orderly-arranged C-domains. 

In terms of encapsulation of S-beads, vesicles made of terpolymers having lower interaction 
energies with solvents are more efficient in terms of solvent encapsulation capability. This is because 
their membranes are swollen by the solvent. As a result, these membranes can be stretched more 
easily. The thinner membrane for these vesicles means they have more encapsulation volume per 
terpolymer. With more S-beads encapsulated, these vesicles are also slightly larger and have thicker 
hydration layers. The high efficiency for S-bead encapsulation of these vesicles comes with a price. 
The fact that solvent can swell the membrane of these vesicles relatively easily means encapsulated 
molecules can permeate through the membrane. Hence, the repulsion energy among beads should 
be tuned carefully to design vesicles of desired encapsulation efficiency and release rate. 

Supplementary Materials: The following are available online at www.mdpi.com/link: A pdf file containing the 
following: Figure S1. How potential energy per chain changes with φ  and λ; Figure S2. The skin chemical 
compositions of vesicles formed at φ = 0.1 (b) λ	 = 0.98; (c)	λ	 = 0.24; Definitions of θ and ψ are shown in 
(a); Figure S3. Normalized Eigen values of moment of inertia for aggregates with φ 	≥		0.2 as shown in Figure 
2; Figure S4. Contributions of A-S, B-S, and C-S interactions to total energy and skin free energy of the aggregates 
The hydrated layers are excluded in these calculations; Figure S5. (a) The size of aggregates  and (b) 
comparing the radius of the aggregate with the radius of the cavity where S-beads are encapsulated; Figure S6. 
Radii of gyration  of terpolymers and individual segments at various λ and φ ; Figure S7. Composition 
profiles of aggregates excluding shells; Figure S8. Composition profiles of vesicles formed (including skins and 
hydrated layers) at φ = 0.1 and 0.08; Figure S9. Radial distributions of (a) and (b) C-C beads; (c) and (d) A-A 
beads; and (e) and (f) B-B beads on the outer skins of vesicles and micelles; Figure S10. (a) The dynamics of test 
chains in vesicles formed at φ = 0.1 is presented by plotting the mean square displacement (MSD) of test chains 
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in DPD unit against time t; Figure S11. The number of encapsulated S-beads normalized by the number of 
terpolymer chains in a vesicle; Table S1. Average length of solvated B-bead segments at various conditions.  
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