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Abstract: We demonstrated here a facile and efficient synthesis of polyhedral oligomeric
silsesquioxane-based amphiphilic polymer by thiol-ene click chemistry. The properties of polyhedral
oligomeric silsesquioxane (POSS)–PEG amphiphilic polymers were studied in detail by a combination
of 1H NMR, 13C NMR, 29Si NMR FT-IR, GPC, and TG analysis. The newly-designed thiol-ene protocol
obtains only anti-Markovnikov addition POSS-based amphiphilic polymers when compared with
platinum-catalysed hydrosilylation method. The critical micelle concentration (CMC) of the resulting
polymers are in the range of 0.011 to 0.050 mg/mL, and dynamic light scattering (DLS) results
revealed that the obtained amphiphilic polymers can self-assemble into nanoparticles in aqueous
solutions with a bimodal (two peaks) distribution. Furthermore, the specific polymer showed obvious
thermo-sensitive behaviour at 45.5 ◦C.
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1. Introduction

In recent years, organic/inorganic hybrid nanomaterials have aroused widespread interest. Since
they are combined with the traditional organic polymers’ easy workability, toughness, and thermal
stability and oxidation resistance properties of inorganic compounds, this kind of materials play a key
role in the development of high performance and high functional materials [1–4]. At present, there are
many different types of nanocomposites, such as three-dimensional sol-gel materials [5–9], ceramic
polymer [10–12], organic/inorganic polymer blend [13–15], and polyhedral oligomeric silsesquioxane
(POSS) nanocomposites [16–21]. POSS-based polymer is a kind of nanoscale silicate functional
material with cage-like segments directly bound to the polymer chains. Such newly-developed
nanocomposite materials show synergistic properties of organic/inorganic materials, and present
some new characteristics [22,23].

POSS has a nanoscale silicon core and eight organic functional groups on the surface, with sizes
from 0.7 to 1.5 nm. The three-dimensional nanostructures of POSS can be used to build all types of
hybrid materials with specific performance and controllable nanostructures [24]. Attracted by the
fascinating vistas, POSS has potential applications in high-performance materials and biomedical
fields [25–28], but its low water-solubility is the main impediment for real-world applications. Grafting
hydrophilic groups on POSS is one of the effective methods to achieve water-soluble materials [29,30].
As is known to all, polyethylene glycol (PEO) is a water-soluble polymer with excellent properties, such
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as non-toxicity, lubricity, and biocompatibility. PEO is widely applied in biotechnology, in addition,
it is a type of very important solid polymer electrolyte in lithium ion batteries because of its ability
of dissolve the lithium ion [31]. Kim et al. [32] reported the synthesis and characterization of
amphiphilic telechelics incorporating polyhedral oligosilsesquioxane (POSS–PEG). They obtained
amphiphilic telechelic polymers with different POSS content by changing the PEG molecular weight,
and studied the effect of POSS content on the crystallization behaviour of PEG. The results showed
that different morphology and thermodynamic properties of the amphiphilic telechelic polymers
could be obtained through controlling the ratio of hydrophilic PEG homopolymer and hydrophobic
POSS macromolecular monomer. Subsequently, Kim et al. [33,34] systematically studied the polymer
morphology, microstructure and rheological properties of POSS–PEG, and the impacts of structure
and solvent polarity on bonding behavior in dilute solution using dilute solution viscosity method.
Maitra et al. [35] synthesized a series of ethylene oxide oligomers functional silsesquioxane, reveals
how the POSS silicon surface affect thermal behavior of ethylene oxide oligomers, Tg increases with
the increase of the length of ethylene oxide chain, and inhibiting crystallization.

Although there have been many reports about the synthesis and application of polyethylene oxide
functionalized silsesquioxane [36–43], but the preparation methods generally involve the Pt-catalyzed
hydrosilylation between the terminal Si–H groups on the POSS cube with an unsaturated carbon
double bond. The traditional method possesses some disadvantages: this method requires noble
metal platinum, which is very expensive. It is difficult to get rid of the residues in purification
process, which not only affects the product performance, but also limits its application in the field
of biological medicine. This reaction generally requires strict water-free and oxygen-free conditions.
The hydrosilylation reaction usually results in a mixture of Markovnikov and anti-Markovnikov
addition products [44], which might complicate the structure-activity relationship of the amphiphilic
copolymer. In addition, it is very difficult to obtain the high hydrophilic eight substitution product due
to the limit of reaction efficiency and the influence of steric hindrance. Li et al. [45] successfully
synthesize the eight functional POSS–PEG polymer using the copper-catalyzed alkyne-azide
cycloaddition, which has faster reaction rate and higher yield. Nevertheless, the residues of heavy
metal copper catalyst still have a certain influence on its application in the biomedical field. Therefore,
a series of eight polyethylene oxide functionalized POSS amphiphilic polymers are synthesized through
the metal-free thiol-ene click reaction, theirs self-assembly behaviour in aqueous solution, thermal
stability, and thermo-responsive are systematically studied.

2. Experimental Section

2.1. Materials

Allyl-terminated polyether A (1000 g/mol, EO/PO = 70/30), B (1200 g/mol, EO/PO = 85/15), and
C (2000 g/mol, EO/PO = 40/60) were provided by Jiangsu Maysta Chemical Co. Ltd. (Nanjing, China)
2,2-dimethoxy-2-phenylacetophenone (DMPA) was purchased from Aladdin (Shanghai, China) and
used as received. Mercaptopropyltrimethoxysilane (MPT) and tetramethylammonium hydroxide
((CH3)4NOH) were purchased from J and K Chemical (Shanghai, China) and used without any further
purification. Tetrahydrofuran (THF), diethyl ether, acetone, and concentrated hydrochloric acid were
of analytical grade. In this work, the thiol-ene reaction was carried out under ambient conditions,
the other reactions were carried out under a dry nitrogen atmosphere. The photo-induced reactions was
carried out by a UV lamp (20 mW·cm−2, λ = 365 nm; LP-40A; LUYOR Corporation, Shanghai, China).

2.2. Synthesis of Octamercaptopropyl-POSS (POSS–SH)

POSS–SH is prepared according to our previous work [46]. The resulting viscous solution was
dissolved in CH2Cl2 and then washed three times with H2O. The CH2Cl2 phase was dried with
anhydrous Na2SO4 and concentrated to obtain POSS–SH in 76% yield. IR (KBr; ν, cm−1): 2929 (m),
2555 (w), 2849 (m), 1401 (m), 1122 (vs), 1032 (s), 562 (m), 472 (m). 1H NMR (300 MHz, CDCl3; δ,
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ppm): 0.76 (double, Si–CH2–), 1.71 (s,–CH2–), 2.56 (s, –CH2–S), 1.37 (br, –SH). 13C NMR (300 MHz,
CDCl3; δ, ppm): 13.46 (Si–CH2–), 29.87 (Si–CH2–CH2–), 30.16 (–CH2–SH). 29Si NMR (400 MHz, CDCl3;
δ, ppm): −67.20. GPC-result, Mn: 1005 g/mol, PDI: 1.02.

2.3. Synthesis of Polyether-Octafunctionalized POSS (POSS–PEG)

For the purpose of discussions, the POSS–PEG amphiphilic polymers containing different
allyl-terminated polyethers are defined as P1, P2, and P3, respectively. The synthetic route of POSS–PEG
amphiphilic polymer is shown in Scheme 1. The P1 was synthesized by thiol-ene click chemistry as
follows: 0.5 g octamercaptopropyl-POSS (POSS–SH), 4.4 g allyl-terminated polyether A and 0.08 g
DMPA were dissolved by 8 mL dry THF solvent. The system was stirred gently for 30 min under
UV light irradiation, then placed in a dialysis bag (cutoff Mn: 3.5 kDa) and dialyzed against water
for three days to get rid of residual polyether, replacing dialysate every 4 h and, finally, obtaining the
target product by drying the inside mixture. Yield: 98%, 1H NMR (300 MHz, CDCl3, ppm): δ = 0.71
(m, SiCH2–), 1.08–1.13 (d, –CH3), 1.64 (t, –SiCH2CH2–), 1.81 (m, –SCH2CH2–), 2.51 (t, –CH2SCH2–),
3.27–3.85 (m, –OCH2CH2O–, –OCH2CH(CH3)O–). GPC-result, Mn: 13510 g/mol, PDI: 1.15.

The synthetic methods of P2 (polyether: Mn = 1200 g/mol, EO/PO = 85/15) and P3 (polyether:
Mn = 2000 g/mol, EO/PO = 40/60) are identical to P1.
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Scheme 1. The synthesis of POSS–PEG polymer.

2.4. Characterizations

FT-IR was carried out using a Bruker TENSOR27 (Ettlingen, Germany) with the KBr pellet
technique within the 4000 to 400 cm−1 region. 1H NMR was carried out on a Bruker Avance
(Billerica, MA, USA) 300 and 400 MHz at 25 ◦C. The solvent was deuterated chloroform (CDCl3)
without the interior label. The measurements of GPC were recorded on PL-GPC220 (Agilent, Palo alto,
CA, USA) with THF as the eluent (1.0 mL/min) at 40 ◦C. TG analysis was performed with a STARe
System (Mettler Toledo, Columbus, OH, USA). The heating rate was 20 ◦C/min under N2. TEM was
recorded on a JEOL 2100 high-resolution TEM (JEOL Ltd., Tokyo, Japan) and Philips (CM 200, 80 kV,
Amsterdam, The Netherlands).

2.5. Critical Micelle Concentration (CMC) Measurements

The CMC of the copolymers in ultrapure water was determined by fluorescence spectroscopy
using pyrene as a hydrophobic fluorescent probe [47,48]. Briefly, a pyrene solution (6.2 × 10−6 M
in acetone, 1 mL) was placed in different vials, and the solvent was evaporated. Then, different
concentrations of copolymer (10 mL) were added to those vials, respectively. Thus, the final
concentration of pyrene was 6.2 × 10−7 M and the concentrations of polymer micelles were from
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1.0 × 10−4 to 1.0 g/L. Fluorescence measurements were carried out on a FluoroLog 3-TCSPC
(Horiba Jobin Yvon Inc., Edison, NJ, USA) with a xenon light source (UXL-150S, Ushio, Japan). The slit
widths of emission and excitation were 2 nm. The excitation spectra were recorded from 290 to 360 nm
with the emission 373 nm. The emission spectra values I338 and I335, at 338 and 335 nm, respectively,
were used for subsequent calculations. The CMC was determined by plotting the I338/I335 ratio against
the polymer concentration. The CMC was taken as the intersection of regression lines calculated from
the linear portions of the plot.

2.6. Dynamic Light Scattering (DLS)

The DLS measurements were performed by a Brookhaven BI-200SM instrument (Holtsville, NY,
USA) equipped with a 4 mW He-Ne laser (λ = 532 nm) at an angle of 90◦. The micelle copolymer
solutions, with concentration 1 g/L, were prepared by direct dissolution of copolymers in ultrapure
water. These samples, which were standing for 24 h before measurement, were filtered through 0.45 µm
PTFE microfilters. The results of the test were recorded using the intensity-weighted distribution of
particle sizes.

3. Results and Discussion

3.1. Characterization of Octamercaptopropyl-POSS (POSS–SH)

The absorption bands of Si–O–Si asymmetric stretching vibration are situated at 1109 and
1037 cm−1, showing in Figure S1. The large peak area may indicate that the obtained POSS–SH
is composed primarily of Si–O–Si structure. The bands at 562 and 469 cm−1 are ascribed to the
deformation vibration of POSS skeletal, and the stretching vibration of the bridge between caged
silicon core and organic ligand Si–C is located at 693 cm−1. The bands at 2930, 2819, and 1407 cm−1

are assigned to the stretching and bending vibrations of –CH, while those at 1261 and 802 cm−1

are attributed to C–C stretching vibration. It is even more exciting to clearly see the characteristic
absorption of –SH stretching vibration, which is located at 2555 cm−1.

1H NMR spectrum of POSS–SH (Figure S2) illustrates four strong resonance signals corresponding
to different H atoms in its structure. The chemical shifts of these protons are assigned at 0.76 ppm
(double, SiCH2–), 1.71 ppm (s, –CH2–), 2.56 ppm (s, –CH2S), and 1.37 ppm (br, –SH), which agree
well with a, b, c and d groups on the side chains of the POSS–SH framework. 13C NMR spectrum
(Figure S3) shows that the chemical shift at 13.46 ppm is assigned to the –CH2 group (carbon a) directly
bound to the Si atom, while the others at 29.87 and 30.16 ppm are attributed to carbon b and c of the
mercaptopropyl group, respectively. On the other hand, the 29Si NMR spectrum (Figure S3) reveals
a sharp peak with a chemical shift at 67.20 ppm, ascribing to the Si atom of the POSS–SH. The results
suggest that the cage-like Si–O–Si structure is well formed by the hydrolytic condensation of MTP and
mercaptopropyl groups are symmetrically distributed on the cage-like POSS skeletal.

3.2. Characterization of Amphiphilic Polymers

Amphiphilic POSS–PEG polymers were synthesized by thiol-ene click chemistry with polyhedral
oligomeric silsesquioxane and allylic polyether as starting materials.

In 1H NMR (Figure 1) of P1, all of the proton signal belonging to the polyether fragment and the
POSS–SH fragment can be observed. The disappearance of S–H signal at 1.37 ppm and vinyl proton
signal at 5.11 to 5.88 ppm confirmed the formation of P1. As previously reported, the thiol-ene reaction
(Si–Vi and –SH) may give either of two possible products (Markovnikov and anti-Markovnikov) [49–51].
The anti-Markovnikov addition product is dominant. However, the result of 1H NMR indicates that
there seem to be only anti-Markovnikov addition product in the current system. The number of
epoxy propane (PO) unit in each polyether molecule was calculated by 1H NMR of allyl polyether,
then the number of polyether chains grafted on POSS could be determined by the integral area ratio
of methyl at 1.08–1.13 ppm and methylene at 0.71 ppm. The calculated results indicate that nearly
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eight polyether chains were grafted on each POSS, achieving entirely replace. However, due to the
steric effect of high molecular weight polyether, amphiphilic POSS–PEG polymers synthesized by
the hydrosilation method were difficult to be fully substituted. For example, Mya et al. [52] prepared
POSS–PEG polymers by the hydrosilation, in which each polymer had only six polyether chains
grafted onto silsesquioxane. The 1H NMR of P2 and P3 were similar to the result of P1.
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The IR spectrum of P1 (Figure 2) clearly showed the symmetrical stretching vibration of Si–O–Si
at 1111 cm−1, corresponding to the cage structure of silsesquioxane. The stretching vibration and
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Further verification of the successful synthesis was obtained from GPC analyses. Figure 3 shows
representative GPC profiles of the Allyl-terminated polyether A, B, and C and the subsequent polymers
(P1, P2 and P3). A significant shift in the GPC traces (to a higher molecular weight) of the PEG and
monomodal molecular weight distributions of the polymers indicates a successful click chemistry
producing well-defined polymers. Furthermore, all of the three polymers have narrow molecular
weight distribution, which are 1.15, 1.23, and 1.23, respectively. The molecular weight of P1, P2,
and P3, which increases with the increasing of the molecular weight of polyether, was 13,510, 15,200,
and 20,800 g/mol, respectively. Obviously, the number-average molecular weight of polymers is
greater than those of the sum of POSS molecule and eight polyether segments. However, the difference
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between the number-average molecular weight of the three polymers (1690 and 5600 g/mol) is very
consistent with the result of the octa-substituted polymer.Polymers 2017, 9, 251 6 of 13 

 

 
Figure 3. The GPC profiles of allyl-polyether and octa-substituted POSS polymers. 

3.3. Self-Assembly Behaviour of Polymers 

The micelle formation of the amphiphilic polymers was confirmed by fluorescence technique 
using pyrene as a probe. Figure 4 shows the fluorescence-excitation spectra of pyrene in POSS–PEG 
micelles at different concentrations. A red shift of the absorption peak from 335 to 338 nm was 
observed when the concentration of polymer was increased from 1.0 × 10−4 to 2.0 mg/mL. This red 
shift is attributed to the transfer of pyrene molecules from the hydrophilic environment to the 
hydrophobic micellar core. The results supply information on the location of the pyrene molecule in 
the system, that is, micelles are formed [53]. 

 

Figure 4. Excitation spectra of pyrene in aqueous solution of P1 at various concentrations. 

CMC is one of the key parameters for studying the formation of micelles and evaluating the 
stability of the resulting micelles. The intensity ratio of I338/I335 versus logC of the polymers in 
aqueous solution is shown in Figure 5. From these plots, the CMC of P1 was determined to be 
approximately 1.1 × 10−2 mg/mL through the intersection of two straight lines. The CMC of P2 and P3 
were also obtained by the same method and shown in Figure S4. The CMC values of the three 
polymers increased as the proportion of polyether segment increased, which is consistent with the 
expected order (but it is different from polysiloxane system [54]). For polysiloxane system, because 
of the formation of vesicles and lamellae, the CMC values decreased as the proportion of polyether 
segment increased. Generally, amphiphilic polymers with higher content of the hydrophobic 
segments will cause stronger interactions between hydrophobic chains, leading to a more stable 
structure and, therefore, to a lower CMC value.  

Figure 3. The GPC profiles of allyl-polyether and octa-substituted POSS polymers.

3.3. Self-Assembly Behaviour of Polymers

The micelle formation of the amphiphilic polymers was confirmed by fluorescence technique
using pyrene as a probe. Figure 4 shows the fluorescence-excitation spectra of pyrene in POSS–PEG
micelles at different concentrations. A red shift of the absorption peak from 335 to 338 nm was observed
when the concentration of polymer was increased from 1.0 × 10−4 to 2.0 mg/mL. This red shift is
attributed to the transfer of pyrene molecules from the hydrophilic environment to the hydrophobic
micellar core. The results supply information on the location of the pyrene molecule in the system,
that is, micelles are formed [53].
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CMC is one of the key parameters for studying the formation of micelles and evaluating the
stability of the resulting micelles. The intensity ratio of I338/I335 versus logC of the polymers in aqueous
solution is shown in Figure 5. From these plots, the CMC of P1 was determined to be approximately
1.1 × 10−2 mg/mL through the intersection of two straight lines. The CMC of P2 and P3 were also
obtained by the same method and shown in Figure S4. The CMC values of the three polymers increased
as the proportion of polyether segment increased, which is consistent with the expected order (but
it is different from polysiloxane system [54]). For polysiloxane system, because of the formation of
vesicles and lamellae, the CMC values decreased as the proportion of polyether segment increased.
Generally, amphiphilic polymers with higher content of the hydrophobic segments will cause stronger
interactions between hydrophobic chains, leading to a more stable structure and, therefore, to a lower
CMC value.
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The DLS results showed that a bimodal (two peaks) distribution was observed at all concentrations.
The small peak represents the unassociated unimolecular micelle with Rh = ~7 nm and the dominant
peaks attributed to the scattering from the large particles attributable to the aggregation of POSS–PEG.
The unassociated unimolecular micelle and aggregate micelle are in a state of dynamic balance.
The aggregation peak is observed, even at a concentration of 0.5 mg/mL, suggesting that the CMC
of POSS–PEG is lower than 0.5 mg/mL, which is in agreement with the fluorescence measurements
(CMC = 0.011 mg/mL). Figure 6 shows that both of the micelle sizes in aqueous solution do not
depend on the polymer concentration, indicating that the measurements were carried out in the dilute
concentration regime and that the micelle formation followed a closed association mechanism [55].
This is also consistent with the previous literature [56]. The particle size obtained from TEM
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micrographs are smaller than those obtained by DLS (Figure 7). TEM micrographs show the micelle
with the corona shrinkage after the evaporation of water, while DLS gives the size of the swollen
nanoparticles in aqueous solutions. From the TEM images, there are two kinds of size of micelles in
the three polymers; the small micelles are several nanometers and the large micelles are dozens of
nanometers. At the same time, there is a slight difference of the morphological micelles between the
three polymers. These results are consistent with the measurements of DLS.
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3.4. Thermal Response Aggregation Behavior

POSS–PEG polymer has the temperature sensitivity because of the hydrogen bonding interaction
with the water molecules, and the hydrogen bond is destroyed gradually with the increase of
temperature. In particular, the polyether backbone containing structural units of propylene glycol
becomes hydrophobic with the increment of temperature. Micelles formed by the POSS–PEG polymer
are comprised of hydrophobic POSS as the core and a hydrophilic polyether chain as the outer shell,
which optimizes the surface contacting with water and prevent the micelles to aggregate further. If this
hydrophilic outer shell becomes less hydrophilic with the increase of temperature, the micelles will
aggregate, then resulting in turbidity of solution. Thus, the polymer has a lower critical solution
temperature (LCST). The thermo-sensitive behaviors of POSS–PEG nanoparticles were investigated
by measuring the cloud point (CP). In order to ensure the formation of polymer nanoparticles, the
concentrations of polymer aqueous solution were of 5 mg/mL.

The polymers P1 and P2 did not show a significant temperature response behaviour, they were
colourless and transparent, while the P3 changed from a colourless solution to turbid white (Figure 8).
This is mainly because of the different composition of the polyether. In P1 and P2, the EO/PO of
the polyether chain were 70/30 and 85/15, in which the PO content dominated thermo-sensitive
behaviours [57,58]. While in the polymer P3, the EO/PO was 40/60, thus P3 had obvious temperature
sensitivity. The transmittance curve of the polymer P3 was shown in Figure 9. When the temperature
was above CP, the transparent P3 aqueous solution suddenly became turbid, caused by the aggregation
of P3 nanoparticles. P3 aqueous solution was sensitive to temperature, and the range of the
transition temperature was less than 2 ◦C. It is worth noting that the thermo-sensitive behaviour
of P3 nanoparticles was completely reversible. The transmittance of the P3 nanoparticles was about
100% at room temperature, and it was about 0 when heated to 60 ◦C, and when cooled to room
temperature, it was nearly 100% again.
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3.5. Thermal Stability Analysis

The thermodynamic behaviour of allyl-polyether and octa-substituted POSS in the nitrogen
atmosphere was studied by TGA, and the results were shown in Figures S5 and S6, respectively. It could
be found that the allyl-polyether was one step degradation, the initial decomposition temperature
was from 270 to 310 ◦C, and the decomposition temperature increased with the increase of the
molecular weight of polyether. These results were consistent with that reported results about oligomeric
allyl-polyether (molecular weight ranges from 146 to 322 g/mol) [37]. The results showed that the
high molecular weight allyl-polyether had good thermodynamic stability.

The thermal decomposition temperature of the polymers were not much different from that of the
corresponding polyether, which indicated the thioether bond formed by click reaction had no effect
on the thermal stability of the polyether. The thermal analysis results of the small molecular weight
polyether substituted POSS polymer showed that the thermal decomposition process was divided
into two steps [37]. The first step was the polyether chain segment at 164–268 ◦C, and the second step
was the POSS cage to SiO2 in the range of 359–394 ◦C. However, the current POSS–PEG polymers
were different. Their curves of TGA had only one major degradation event similar to high molecular
weight polyether, which might attribute to approximate decomposition temperature of high molecular
weight polyether and the first decomposition temperature of POSS–SH (Figure 10). Although the
second decomposition temperature of POSS–SH (decomposition temperature of POSS cage) presented
about 400 ◦C (Figure S6), its decomposition process was not displayed in the TGA curves because the
contents of POSS in polymers were very low. When the temperature was up to 600 ◦C, the residual
amounts of three allyl-polyethers were close to almost zero, while those of polymer P1, P2, and P3

were 5.5%, 4.0%, and 3.2%, respectively. The results showed that the contents of POSS in polymers
were P1 > P2 > P3, which was consistent with the theoretical calculation results.
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4. Conclusions

Three octa-substituted POSS amphiphilic polymers (P1, P2, and P3) were successfully prepared
via a newly-designed thiol-ene click chemistry protocol. The results of 1H NMR, 13C NMR,
29Si NMR FT-IR, and gel permeation chromatography indicated the well-defined structures of the
polymers. The experimental results showed that the amphiphilic polymers could form stable and
bimodal nanoparticles directly by self-assembly in aqueous solution, and the formation of micelle
followed closed association mechanism, in which the particle size was independent of the polymer
concentration. Furthermore, the polymer P3 showed obvious temperature responsive behaviour. When
the temperature rose to 45.5 ◦C, the solution quickly transformed into a turbid white solution and the
range of the transition temperature was less than 2 ◦C. Thermal analysis showed that the polymer had
excellent thermal stability and the presence of the thioether bond did not affect its thermal stability.
Due to the excellent properties of POSS, facile synthesis, amphipathy, direct self-assembly to form
polymer nanoparticles, and thermo-sensitive behaviour, this kind of polymer would shine in many
fields, especially in biomedical engineering.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/7/251/s1,
Figure S1: The infrared spectrum of POSS–SH, Figure S2: 1H NMR spectra of POSS–SH, Figure S3: 13C NMR
spectra (a) and 29Si NMR spectra (b) of POSS–SH, Figure S4: Variation of the intensity ratio (I338/I335) as a function
of P2 and P3 concentrations, the dotted line shows the CMC value, Figure S5: TGA curves of PEG-A, PEG-B,
and PEG-C (in N2), Figure S6: TGA curve of POSS–SH (in N2).
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