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Abstract: The exponential Phan–Tien and Tanner (PTT), Giesekus, Leonov, and modified extended
Pom–Pom (mXPP) differential constitutive models are evaluated in two ways: with regard to steady
shear characteristics and with regard to large amplitude oscillatory shear characteristics of a solution
of poly(ethylene oxide) in dimethyl sulfoxide. Efficiency of the models with nonlinear parameters
optimized with respect to steady shear measurements is evaluated by their ability to describe large
amplitude oscillatory shear (LAOS) characteristics. The reciprocal problem is also analyzed: The
nonlinear parameters are optimized with respect to the LAOS measurements, and the models are
confronted with the steady shear characteristics. In this case, optimization is based on the LAOS
measurements and equal emphasis is placed on both real and imaginary parts of the stress amplitude.
The results show that the chosen models are not adequately able to fit the LAOS characteristics if
the optimization of nonlinear parameters is based on steady shear measurements. It follows that the
optimization of nonlinear parameters is much more responsible if it is carried out with respect to the
LAOS data. In this case, when the optimized parameters are used for a description of steady shear
characteristics, efficiency of the individual models as documented differs.

Keywords: LAOS; Fourier-Transform rheology; exponential Phan–Tien and Tanner (PTT) model;
Giesekus model; Leonov model; modified extended Pom–Pom (mXPP) model; poly(ethylene oxide)

1. Introduction

Differential constitutive models are quite often confronted only with the rheological characteristics
of polymeric materials exposed to relatively moderate deformation. However, in polymer processing,
we encounter deformation in higher orders. In this respect, a shift from analysis of flow behavior
in the purely linear viscoelastic region to the non-linear region was enabled by the onset of more
ingenious measurements represented by large amplitude oscillatory shear (LAOS) data (initiated
already a few decades ago [1–6]). This provides a possibility of more thorough evaluation of the
individual constitutive models due to the remarkable extension of applied deformation.

The input harmonic signals for this technique in comparison with the small amplitude oscillatory
shear (SAOS) approach exhibit higher intensity in both frequency and amplitude of deformation.
It is no longer possible to expect a response in the same functional form as in the case of SAOS
measurements. Therefore, more sophisticated methods are required for data processing. The methods
introduced in [7,8] enable more developed processing of the “classical” Lissajous–Bowditch plots
(relating raw stress signal to strain or strain rate resulting in elastic or viscous Lissajous–Bowditch
plots, respectively). These plots document non-linearities by deviation of their closed shapes from
the ellipsoidal ones. Further, more sophisticated methods and an application of the new techniques
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(Fourier-Transform Rheology [9–11], stress decomposition [12], Ewoldt quantities [13]) are summarized,
e.g., by Hyun et al. [14].

The suitability of modeling the rheological data within a non-linear viscoelastic region (covered by
the LAOS measurements) for individual empirical [7,15] and differential constitutive equations [15–27]
has recently attracted attention. Naturally, these analyses are subject to used polymeric materials and
to applied forces to which material is exposed (characterized by strain and frequency). Recently, for
the case of thixotropic suspensions, Armstrong et al. [28] and Kim et al. [29] tested the efficiency of the
selected elastoviscoplastic models (practically comparable within traditional thixotropic measurements)
against LAOS measurements and showed significant disproportions in their abilities to describe
material structure in more detail.

The aim of this contribution is to evaluate an efficiency of four differential constitutive models
(exponential Phan–Tien and Tanner (PTT) [30], Giesekus [31], Leonov [32], and modified extended
Pom–Pom (mXPP) [33]) for the prediction of steady and transient rheological characteristics within
a non-linear viscoelastic region described by the LAOS data. The material used is a 5 wt % solution
of poly(ethylene oxide) in dimethyl sulfoxide and the applied technique is represented by the
Fourier-Transform rheology. The emphasis is equally placed both on the normalized stress magnitudes
and on the phases of the individual harmonics generated by the original raw time–stress signal.
The optimized values of nonlinear parameters of the studied constitutive models are also used for
a comparison with the steady shear characteristics and vice versa, the parameters optimized for a
description of steady shear characteristics are applied for a comparison with the LAOS measurements.

2. Differential Constitutive Models

The extra stress tensor τ is calculated as a sum of all contributions from each relaxation
elements spectrum

τ =
N

∑
i=0

τi. (1)

The individual extra stress contributions τi are supposed for each mode i to fulfil the
following relation

τ = G(c− I) (2)

where G represents the elastic shear modulus, c is the symmetrical conformation tensor, and I denotes
the unit tensor. The evolution equation of the differential models can be written in the form

dc
dt
−∇v·c− c·∇vT − ξ

2
( .
γ·c + c· .

γ
)
+

1
λ

H(c) = 0 (3)

where v is the velocity,
.
γ is the rate of deformation tensor (∇v +∇vT), λ is the relaxation time, and

H(c) is the dissipative term depending on conformation tensor c (see Table 1 for the individual models).
The parameter ξ denotes the non-affine motion parameter (0 ≤ ξ ≤ 2). Its limiting values ξ = 0 and
ξ = 2 represent the contravariant (upper convected derivative) covariant (lower convected derivative)
form, respectively. The Giesekus, Leonov, and modified XPP constitutive models used in this work
suppose ξ = 0 in contrast to the exponential Phan–Tien and Tanner model.
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Table 1. The dissipative term H(c) for the individual differential constitutive models.

Model Dissipative Term H(c)

exponential Phan–Tien and Tanner (PTT) [30] exp[ε (tr c− 3)](c− I)

Giesekus [31] α(c− I)2 + c− I

Leonov [32]
b
2

(
c2 − tr c−tr c−1

3 c− I
)

b = exp[−ζ(tr c− 3)] + sinh[ν(tr c−3)]
ν(tr c−3) − 1

modified extended Pom–Pom (mXPP) [33]
Fc− I

F = exp[β(Λ− 1)]
(

2− 1√
Λ

)
, Λ =

√
tr c

3

3. Material Preparation and Its Rheological Characterization

For experimental measurements, 5 wt % solution of polyethylene oxide (Mv = 1000 kg/mol, Sigma
Aldrich, St. Louis, MO, USA) with dimethyl sulfoxide (DMSO, Penta s.r.o., Prague, Czech Republic)
was used. The samples were stirred in a magnetic stirrer (Heidolph MR Hei-Tec, Schwabach, Germany)
with the help of a Teflon-coated magetic stick. The stirrer was applied for 24 hrs with a mixing rate of
250 rpm at 60 ◦C.

The measurements wre carried out with a rotational rheometer MCR Physica 501
(Anton Paar, Graz, Austria) using the Peltier system equipped with the cone-plate arrangement
(diameter 50 mm/1◦). The outer part (between the edges of cone and plate) of a measured sample
in contact with surrounding air was coated by a thin layer of silicone oil (shear viscosity 15 mPa·s)
to suppress sample evaporation. The small amplitude oscillatory shear characteristics describing
behavior in a linear viscoelastic region were measured at three different temperatures 35, 45, and 55 ◦C.
The master curve was calculated for 35 ◦C and the linear parameters λi and Gi of the Maxwell relaxation
spectrum were determined (Table 2, Figure 1). Figure 2 illustrates oscillatory strain sweep tests at four
different frequencies: 0.2 (used in the following experiments), 0.8, 1.3 (crossover frequency), and 1.6
(storage modulus exceeding loss modulus). Figure 3 depicting normalized loss modulus as a function
of strain documents no presence of strain overshoot phenomenon (in contrast e.g., to xanthan gum
measurements [34]) and hence no extra resistance against deformation at the onset of the nonlinear
viscoelastic response. Based on these findings, the large amplitude oscillatory shear properties were
consecutively measured at 35 ◦C with a frequency of 0.2 Hz and strains of 50%, 100%, 500%, 1000%,
2000%, and 4000%. The acquired time domain signal was trimmed into whole periods to properly
calculate the Fourier transformation. Data processing (data trimming, Fourier transformation, fitting
of the individual constitutive models, etc.) was carried out with the help of the MATLAB software
(The MathWorks, Inc., Torrance, CA, USA).
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4. Results and Discussion

Two independent measurements were carried out using 5 wt % PEO in DMSO. First, a “classical”
measurement of steady shear viscosity over three decades of shear rate was carried out. Second, the
polymer solution was exposed to large amplitude oscillatory deformation under strain γ consecutively
attaining values 50%, 100%, 500%, 1000%, 2000%, and 4000% and under frequency f = 0.2 Hz.
An acquired signal after trimming into whole periods was processed by the Fourier transformation.
No indication of non-zero even harmonics causing the unacceptability of measurements [35–37]
appeared; on the contrary, it was possible to determine sufficiently high numbers of odd harmonics
with negligible noise participation.

Efficiency of the exponential Phan–Tien and Tanner (PTT), Giesekus, Leonov, and modified
extended Pom–Pom (mXPP) models was tested in two ways. The nonlinear parameters of the models
were optimized with respect to a description of steady shear viscosity (SSV); consequently, the behavior
of these models with such determined parameters was compared with the data obtained by the
LAOS procedure. The other way was arranged in the reverse mode. The nonlinear parameters were
determined through the LAOS measurements, and such models were confronted with the measured
data representing steady shear viscosity.
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4.1. Steady Shear Viscosity as Primary Measurement

The courses of the four models, the parameters of which (Table 2, SSV) were optimized with
respect to steady shear viscosity measurements, are depicted in Figure 4. All four curves are more or
less identical and in very good agreement with the experimental data not only in what concerns the
absolute values but also in copying concavity of the experimental data.

Table 2. Relaxation spectrum and the nonlinear parameters of the constitutive models based on
optimization of steady shear viscosity (SSV) and on fitting LAOS data (LAOS).

Linear Parameters Nonlinear Parameters

Maxwell Model Exponential PTT Model Giesekus
Model Leonov Model Modified XPP

Model

i λi [s] Gi [Pa] εi [-] ξi [-] αi [-] ζi [-] νi [-] βi [-]

SSV/LAOS SSV/LAOS SSV/LAOS SSV/LAOS SSV/LAOS SSV/LAOS

1 0.0055 502.1 4.3/3 0/0 0.8/0.9 0.1/0.8 6/0.55 8.1/8
2 0.0452 179.4 2.7/2 0/0 0.8/0.9 0.1/0.6 4.5/0.55 7.8/10
3 0.2045 75.59 1.3/0.28 0/0.09 0.7/1.0 0.1/0.4 3/0.55 7.2/2
4 0.9245 31.65 0.9/0.27 0/0.09 0.7/1.0 0.1/0.2 1/0.55 8.1/5
5 4.181 3.838 0.4/0.25 0/0 0.6/0.7 0.3/0.2 0.7/0.55 1.2/5
6 11.59 1.341 0.3/0.2 0/0 0.2/0.4 0.5/0.2 0.55/0.55 1.2/2
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respect to the measured steady shear viscosity data.

The constitutive models with such pre-determined nonlinear parameters were further used for
evaluation of the normalized stress amplitudes I3/I1 and I5/I1 experimentally obtained through the
LAOS measurements for different strains. Behavior of all models seems to be comparable (see Figure 5).
If the measurements for strain γ0 = 4000% only are taken into account (Figure 6) with the initial
21 normalized stress amplitudes (i.e., initial 10 odd normalized stress amplitudes) then the exponential
PTT and modified XPP models have better correspondence to the experimental data.
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A substantially worse situation appears if the models are applied in dependence on time. In this
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Figure 7), and neither model is able to depict this phenomenon as illustrated in Figure 8 and in more
detail in Figure 9.
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4.2. LAOS Approach as Primary Measurement

The same material was used in Pivokonsky et al., where it is documented that there is a necessity
of using higher harmonics (in the case of the PEO solution, the first 15 harmonics, i.e. the first 8 odd
harmonics) for a correct determination of the nonlinear model parameters with simultaneous attention
to the phase of the individual harmonics. The nonlinear model parameters were determined for strain
γ0 = 4000% and frequency f = 0.2 Hz. Due to relative simplicity, the other LAOS characteristics at
lower strains were neglected during the fitting procedure (determination of nonlinear parameters).
The parameters are summarized in Table 2 in the columns denoted as LAOS. A difference in the
prediction of normalized stress amplitudes I3/I1 and I5/I1 (providing no information on phases) for
the individual models is depicted in Figure 10. If the nonlinear parameters of the models are optimized
with respect to both magnitudes and phases to fit properly the LAOS data, the prediction of the
normalized stress magnitudes for γ0 = 4000% is shown in Figure 11.
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As expected, in this case, the predictions of the models are in much better coincidence with the
normalized stress data in dependence on time (Figure 12). Even if the situation is illustrated in more
detail (Figure 13), the deviations of the individual models are comparable with inaccuracy of the
LAOS measurements.
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The individual models are more diversified if the LAOS-based parameters are applied to a
description of steady shear viscosity (Figure 14). The models either over-predict or under-predict the
experimental data, and the only exception is represented by the modified XPP model, which not only
follows the data but also copies concavity of the measurement in log–log coordinates.
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Figure 14. A description of steady shear viscosity by the exponential PTT, Giesekus, Leonov,
and modified XPP models using the nonlinear parameters optimized with respect to the LAOS
measurements (Figure 11).

4.3. A Comparison of Two Presented Ways

As documented above, an optimization of the nonlinear parameters of the models gives more
realistic predictions if the LAOS data are preferentially taken into account. A consequent evaluation
of steady shear viscosity does not have to be very precise but its functional course is more or less
preserved. This contrasts to the situation when the parameters are based on steady shear viscosity
measurements. In this case, a time-dependent course of normalized stress can be completely ignored
as illustrated in Figure 9.

For both ways of parameters optimization, the values of the “anisotropic” parameter α in the
Giesekus model attained values exceeding 0.5. However, as discussed in Bird et al. [38] and Schleiniger
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and Weinacht [39], the values of the parameter α exceeding 0.5 (α ∈ (0.5,1]) result in unphysical
predictions as also documented in [27].

5. Conclusions

Predictive capabilities of four differential constitutive models (exponential PTT, Giesekus, Leonov,
and modified XPP) were evaluated using 5 wt % solution of PEO in DMSO for which measured
normalized stress exhibits a “protrusion” in otherwise smooth time course. It was shown that the
optimization of the model’s nonlinear parameters should be based on the LAOS measurements rather
than on the steady shear characteristics. The latter case results in predictions not corresponding
to real responses when the studied material is deformed. If the LAOS-based model parameters
are used, the modified XPP model provides a very good prediction of the steady shear viscosity.
The exponential PTT model and the Giesekus model rather under-predicts and over-predicts the
experimental data, respectively.
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