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Abstract: Carbon dots (CDs) have been widely studied since their discovery in 2004 as a green 
substitute of the traditional quantum dots due to their excellent photoluminescence (PL) and high 
biocompatibility. Meanwhile, polymers have increasingly become an important component for both 
synthesis and modification of CDs to provide polymeric matrix and enhance their PL property. 
Furthermore, critical analysis of composites of CDs and polymers has not been available. Herein, in 
this review, we summarized the use of polymers in the synthesis and functionalization of CDs, and 
the applications of these CDs in various fields. 
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1. Introduction 

Nanotechnology has become a popular topic since the start of the 21st century in a variety of 
fields including: drug synthesis and delivery [1], environmental protection [2], electronics 
manufacture [3], and astronomy [4], all of which can be attributed to the nano scale particles and their 
unique properties endowed by their nano scale size. Carbon dots (CDs) are based on the prior 
quantum dots (QDs) which had a promising background, as they exhibited excellent optical 
properties. However, due to the heavy metal elements such as Cd [5] involved in the QDs structure, 
attention has been switched to its green substitutes. Meanwhile, CDs were discovered when 
researchers tried to purify single-walled carbon nanotubes through preparative electrophoresis in 
2004 [6]. Since then, numerous research projects have been developed on the synthetic approach of 
CDs including chemical ablation [7,8], electrochemical carbonization [9], laser ablation [10], 
microwave irradiation [11] and hydrothermal/solvothermal treatment [12–14]. Various 
characterization methods including UV/Vis, fluorescence, FTIR, Mass, NMR, atomic-force 
microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) 
and X-ray photoelectron spectroscopy (XPS) have been used for the analysis of CDs. According to 
these studies, it is generally concluded that CDs are a new type of fluorescent carbon based 
nanoparticles (1~10 nm) whose spectroscopic characteristics can be described as follows.  

(1) There are two characteristic peaks in their UV/Vis spectra which correspond to aromatic C=C π-
π* transition (~263 nm) [13,15,16] and C=O n-π* transition (~332 nm) [16–18], respectively.  

(2) CDs are photoluminescent, which indicates CDs (especially the surface energy traps) after 
absorption of photons will generate excitons which will quickly recombine to release the energy 
in the form of light emission. CDs are commonly excitation wavelength dependent shown in 
various fluorescence spectra [18–21]. As for the mechanism of the photoluminescence (PL) of 
CDs, there exist two prevalent explanations from the viewpoints of surface state in CDs and 
quantum size effect, respectively [22].  

(3) From FTIR spectra, the functional groups of CDs include –OH, –COOH, –C=C– [23,24], and also 
–NH2 and –CONH- depending on the preparation methods and raw materials [25,26]. 
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(4) Based on XPS measurement, CDs basically consist of C, O [27] and other elements depending on 
raw materials as well [16,26,28]. 

The most important property of CDs is their PL and this feature is determined by their intrinsic 
nanostructure. Therefore, to enhance the PL properties of CDs, attention should be turned to the 
initial synthesis to control their structure. To this end, polymers have become preferred carbon 
precursors [29,30] for the preparation of CDs due to their known macromolecular structure, which 
would provide templates for synthesizing CDs with clear structure. This is quite significant for those 
who have made efforts to figure out the structure of CDs as well as their PL mechanism. In addition, 
surface passivation and functionalization are among the most effective ways to enhance the PL 
property of CDs by modifying their surficial structure. Polymers such as PEG have been widely used 
in both passivation [31,32] and functionalization process [33–35]. 

There are many review papers on polymers and CDs but very little work has been done in 
assimilating the CDs incorporated to the polymers. In this review paper, we describe the recent 
advances in CDs which are embedded in polymeric gel [36,37], molecularly imprinting polymers 
[38,39], and polymer composite films [40,41], and compare the efforts made so far to improve the PL. 
The polymer composites provide the polymeric matrix for CDs while the special PL properties of 
CDs make polymers more applicable in fields such as bioimaging, biosensing and drug delivery. 
Therefore, polymers have gradually widely permeated in every aspect of CDs. 

2. Polymers as Precursors for CDs Preparation 

2.1. Polymers as Direct Precursors for CDs Synthesis 

Owing to their natural macromolecular structures, polymers are excellent candidates for the 
synthesis of CDs, providing matrix and template. Therefore, polymers or polymeric chemicals have 
gradually drawn increasing interest to be used as carbon source for the synthesis of CDs. In respect 
of the nature of the polymers used for synthesizing CDs, both natural polymers, such as lignin and 
chitosan [42–45], as well as synthetic polymers, such as polyethylene glycol (PEG) [46–48], have been 
reported.  

As for natural polymers as precursors, Chen et al. developed a rapid approach to produce CDs 
by hydrothermal treatment (pyrolysis) of lignin in the presence of H2O2 [42]. Lignin (Figure 1a) being 
an abundant natural cross-link phenolic polymer and an excellent source of carbon and H2O2 being 
one of the strongest oxidizing agents known in acidic condition (1.8 eV, oxidation potential); the latter 
can split into hydroxyl radicals (•OH), which are highly active, under the photo-assisted catalysis 
Fe3+/Fe2+ in water [49]. The resulting •OH can break the strong carbon–carbon linkage of lignin to 
form CDs. TEM and high-resolution TEM (HRTEM) were performed on the resulting CDs and the 
results (shown in Figure 1b,c) indicated the size of CDs ranged from 2 to 10 nm. In addition, from 
HRTEM image, it was also observed that the CDs owned crystalline structure and the lattice spacing 
distance was measured to be 0.21 nm. The resulting CDs have been introduced into the Hela cells 
and the PL spots have been observed in the cell membranes and cytoplasmic area, which indicate 
that CDs can penetrate the Hela cell. The confocal fluorescence microphotograph of the Hela cells 
labeled with CDs are demonstrated in Figure 1d–f. 

Chitosan is a linear polysaccharide that can be easily acquired from the shells of shrimp and 
other sea crustaceans for commercial purposes [50]. Majumdar and coworkers synthesized 
fluorescent CDs by heating a chitosan hydrogel in a microwave [29]. It is claimed as the first report 
of synthesizing CDs by using chitosan gel as precursors. The chitosan gel is stable without 
degradation and at the same time it will increase the shelf life of starting materials to obtain CDs. 
Besides, it was also found that the PL properties of such CDs were affected by different pH 
conditions. For instance, when CDs were prepared at pH 3, the PL showed a sharp peak while at pH 
1 or 5, they exhibited a broad emission peak in the PL spectra. 



Polymers 2017, 9, 67  3 of 19 

 

 
Figure 1. (a) The molecular structure of lignin; (b) TEM and (c) HRTEM images of CDs; (d) a confocal 
fluorescence microphotograph of Hela cells labeled with the CDs (λ ex: 405 nm); (e) a bright field 
microphotograph of the cells; and (f) an overlay image of (d,e). Figure adapted from Ref. [42] with 
permissions from the publishers. 

In addition, other natural polymeric products such as cellulose and sugarcane bagasse pulp have 
also been developed to synthesize highly photoluminescent CDs. Da Silva Souza et al. demonstrated 
CDs could be prepared from cellulose nanocrystals using different pyrolysis temperatures along with 
the discovery of different carbon structures determined by different cellulose nanocrystals 
arrangement [51]. The prepared CDs were composed of both graphitic and amorphous carbon with 
a size distributed between 4 and 8 nm. In addition, the PL covers the blue-to-green region. Shankaran 
et al. also mentioned a green synthesis of CDs using sugarcane pulp as the renewable carbon 
precursor [52]. The obtained CDs exhibited relatively high PL with a QY of 18.7%, and HRTEM and 
AFM indicated the CDs owned the size of around 4.1 nm and surface thickness of 5 nm. Besides, the 
CDs were highly crystalline with face centered cubic crystal structure by XRD and TEM analyses, 
which showed great prospect in the future application in drug-delivery.  

In terms of synthetic polymer precursors, resoles (phenol/formaldehyde resins, Mw < 500) have 
been reported by Liu et al. as carbon source to build up a type of CDs with amorphous structure by 
using surfactant-modified silica nanospheres as carriers [48]. The overall synthetic procedure is 
illustrated in Figure 2a. Here, silica colloid spheres were functionalized with amphiphilic triblock 
copolymer F127 (EO106PO70EO106, Mol. Wt. = 12,600; EO = ethylene oxide, PO = propylene oxide) to 
synthesize satellite-like F127/SiO2 composites, surfactant-modified silica nanospheres. Then resoles 
were further polymerized on the surface of silica nanospheres. The subsequent pyrolysis and etching 
assisted the formation of CDs and removal of carriers, respectively. The main point of the method is 
the silica nanosphere carriers do not only provide anchors for the polymerization of resoles but also 
inhibit the aggregation of CDs during pyrolysis. HRTEM spectroscopy was performed on the 
obtained CDs and the experimental result (Figure 2b) revealed the size of CDs was narrowly 
distributed in the range 1.5–2.5 nm. Besides, the lack of lattice structures and the diffuse ring pattern 
obtained by selected area electron diffraction (SAED; inset in Figure 2b) suggested the CDs are 
amorphous. 

PEGs are another type of synthesized polymers that have been widely used as the precursors 
for the preparation of CDs. For example, Li et al. reported a low-cost electrolysis method to obtain 
high-PL CDs with PEG series compounds as the carbon source [53]. The resulting CDs were great 
electron donors/acceptors and had higher proton absorption ability than any other CDs due to their 
structure. Furthermore, in comparison, PEG200, PEG600 and PEG800 were employed to achieve high PL, 
among which CDs using PEG600 as the carbon precursor exhibited the highest PL intensity with a 
quantum yield (QY) of 38%. Due to their high PL intensity, the CDs were conjugated with tyrosinase 
to serve as a fast, sensitive, and accurate biosensor to detect L-DOPA with a detection limit of 9.0 × 
10−8 mol·L−1.  
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Figure 2. (a) Processing diagram for the synthesis of photoluminescent CDs; and (b) HRTEM image 
of CDs passivated with PEG1500N. The inset is the SAED pattern. Figure adapted from Ref. [48] with 
permissions from the publishers. 

Jiang et al. performed synthesis work by a thermopyrolysis of five types of 1,4-addition polymers 
(P1–P5) which were selectively constructed from monomers including piperazine, dithiothreitol (DTT), 
N,N′-bis(2-hydroxyethyl) ethylenediamine (BHEEDA), N,N′-methylenebisacrylamide (MBA) and tetra 
(ethylene glycol) diacrylate (TEGDA) [54]. The specific monomers with certain molar ratios to 
synthesize each 1,4-addition polymers are shown in Figure 3a. In Figure 3a, we can observe all 
monomers A are α,β-unsaturated carbonyl compounds which are attacked by nucleophiles 
(monomers B and C) at the β carbon to occur 1,4-addition. Eventually, these 1,4-addition polymers 
theoretically provided templates to define the structures and properties of CDs, which was of great 
benefits to figure out the PL mechanism of CDs. Then thermopyrolysis of P1–P5 was carried out at 
250 °C for 2 h to obtain five types of CDs (CD-P1, CD-P2, CD-P3, CD-P4 and CD-P5) (Figure 3b). 
These five types of CDs were prepared as aqueous solution with the same concentration and were 
excited at 400 nm. The result was shown in Figure 3c. Considering final QY, CDs made from P1 owns 
the highest QY (26%) and the PL results showed that the PL of nitrogen containing CDs were higher 
than that of those not containing nitrogen.  

As a hard question to answer, PL mechanism is still under debate. Therefore, to clarify the PL 
mechanism of CDs, a novel bijective approach has been employed by Zhu et al. to fabricate CDs (17%, 
QY) from size-tunable single chain polymeric nanoparticles obtained by mixing diphenyl ether, 
PMA-EDY (EDY indicates 4-((2-(2-Trimethylsilyl)ethynyl)-phenyl)but-3-yn-1-ol) and ethyle acetate 
[47]. Figure 4 shows the detailed synthesis process of the CDs. Owing to the living free radical 
polymerization technique and Bergman cyclization, narrowly dispersed CDs were acquired and PL 
was explained by the consequence of electron-hole pair recombination in localized sp2 carbon 
clusters, which was generally considered as the luminescent center. Besides, CDs were divided into 
two classes viz with graphitized carbon core and with disordered carbon core, based on the presence 
of predominantly sp2 carbon in the core of CDs.  
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Figure 3. (a) Monomers and the molar ratios used in the synthesis of P1–P5; (b) aqueous solutions of 
CDs CD-P1 to CD-P5 (0.1% w/v) excited at 365 nm; and (c) PL spectra of CD-P1 to CD-P5 (λ ex 400 
nm). Figure adapted from Ref. [54] with permissions from the publishers. 

 
Figure 4. Illustration of the preparation of photoluminescent CDs: (a) indicates the synthesis of P(MA-
r-EDY); (b) means deprotection of trimethylsilyl groups; (c) shows the formation of polymeric 
nanoparticles; (d) indicates the carbonization of the polymeric nanoparticles; (e) means the formation 
of CDs with passivated surface state; and (f) demonstrates functionalization of CDs surface. Figure 
adapted from Ref. [47] with permissions from the publishers. 

2.2. Polymers as Indirect Precursors for CDs Synthesis 

Besides, as most reports indicate, the formation of CDs needs to undergo polymerization and 
carbonization [55–58], which means most CDs own polymeric structures among which poly aromatic 
structure has often been mentioned [56,59–61] relying on UV/Vis absorption spectra as well as XPS 
data. Here, we summarize some compounds that have been mentioned to experience polymerization 
process to produce CDs. Since different functional groups own different energy traps, which results 
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in the various PL behaviors of CDs [22], it is quite important to select proper monomers to participate 
in the formation of CDs.  

Zhang and coworkers used acrylic acid and 1,2-ethylenediamine (EDA) (1:1, molar ratio) as 
carbon source and passivation agent, respectively, to synthesize CDs (CNDs) [57] (Figure 5d). Since 
the CDs are enriched with amine surface groups, it allows further functionalization with glycidyl 
methacrylate (GMA) to produce polymerizable CDs (PCNDs) which is followed by the 
polymerization reaction to achieve fluorescent polymers. The authors claim it as the first ever report 
for the combination of CDs with other representative acrylamide and methacrylate type monomers 
to synthesize fluorescent polymers. The HRTEM image (Figure 5a) reveals the size of the CNDs is 
narrowly distributed within 2.0–3.2 nm in diameter which is close to that measured of CDs 
synthesized with polymers as direct precursors [44], revealing the uniformity of the size of CDs. 
Besides, the UV/Vis absorption and PL emission spectra (Figure 5b) are consistent with that 
characterized of most CDs [43]. However, the PL emission spectra under excitation with different 
wavelengths (Figure 5c) show a wide spectral width of PL of more than 350 nm which greatly 
broadens their application in bioimaging.  

 
Figure 5. (a) HRTEM image of CNDs (scale bar: 10 nm) with a narrow size distribution of 2.0–3.2 nm 
in diameter; (b) UV/Vis spectrum (λab = 300 nm)  and PL emission spectrum (λex = 360 nm) of an 
aqueous solution of the CNDs (1 mg·mL−1) with an emission peak at 420 nm; (c) PL emission spectra 
of the CNDs aqueous solution under excitation with different wavelengths (inset is the normalized 
PL emission spectra); and (d) synthesis procedure of: CNDs (1); PCNDs (2); and fluorescent polymers 
(3). Figure adapted from Ref. [57] with permissions from the publishers. 

Zhu et al. obtained high photoluminescent CDs with a hydrothermal method with citric acid 
(CA) and EDA as the precursors and passivation agent, respectively [61]. The resulting CDs exhibited 
the highest QY (80%) up to now and were even comparable to fluorescent dyes. The high QY was 
analyzed by using a femtosecond broadband (350–800 nm) transient absorption (TA) spectroscopy 
excited at 400 nm. From the TA spectra, the decay is rather little in all wavelengths indicating the 
high stable excited-state of CDs which contributes to the high QY. CA and amine compounds due to 
their populated functional groups and flexible binding pattern have become classic constructive 
carbon precursors and passivation agent for the synthesis of CDs (Table 1). However, the mechanism 
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(Figure 6a) and structure of such prepared CDs are more complicated than other CDs because of 
unclear bond patterns. In addition, the obtained CDs, though own high PL QY, own relatively narrow 
spectral width (250 nm) of PL when the size of CDs is aligned to be 2–6 nm shown in TEM (upper, 
Figure 6c) while the HRTEM image (lower, Figure 6c) reveals most CDs nanoparticles are amorphous 
without any lattices. 

 
Figure 6. (a) Reaction mechanism of CDs synthesized by CA and EDA; (b) excitation-dependent PL 
spectra of CDs; and (c) TEM (upper) and HRTEM (lower) images of CDs. Figure adapted from Ref. 
[61] with permissions from the publishers. 

Table 1. CDs obtained from CA coupled with amine compounds and their PL properties. 

Reaction 
Condition 

Carbon 
Source Passivation Agent 

UV/Vis 
(nm) 

PL Max 
Em (nm) 

QY 
(%) Application Ref. 

200 °C CA EDA 
238 
350 

445 69.3 Bioimaging [56] 

200 °C CA EDA 344 445 80 
Printing 

Fe3+ detection 
[61] 

120 °C CA EDA 340 440 21.8 N/A [62] 

150 °C CA LPEI 
249 
355 

445 37.4 N/A [58] 

250 °C CA Tris 
238 
330 

410 52 
Biosenser 

Fe3+ detection 
[63] 

700 W CA Urea 
334 
408 

420 12 
ClO− and 
ONOO− 

detection 
[64] 

200 °C CA ammonia 335 550 36 Solar cell [65] 

700 W CA tryptophan 280 450 20.6 
Bioimaging 
Nanocarrier 

[66] 

240 °C CA melamine 
270 
320 

390 42 Fe3+ detection [67] 

180 °C CA 1,10-phenanthroline 
271 
310 

440 10 
Fe3+ and Fe2+ 

detection 
[68] 

500 W CA tetraoctylammonium 
280 
330 

375 11 Bioimaging [69] 

180 °C CA PEI 
247 
357 

475 24.3 
Biosenser 

Bioimaging 
[70] 
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Besides, Wang et al. synthesized photoluminescent CDs by hydrothermal reaction of CA and 
three different linear polyethylenic amine (PEA) molecules i.e., EDA, diethylenetriamine (DETA), 
and triethylenetetramine (TEPA) with molar ratio of 2:1 (Figure 7) to investigate the structure effect 
on the enhanced PL of CDs [56]. The QY was calculated as 69.3%, 68% and 33.4%, and the PL lifetime 
(τ) was measured as 14, 13 and 10 ns for CD-EDA(2/1), CDs-DETA(2/1) and CDs-TEPA(2/1), respectively. 
The experimental results imply that either the structures or the molar ratio of PEA will influence the 
PL properties of these CDs, and the hybridization between the surface state and carbon backbone 
affected the chemical or physical properties of these CDs, for instance, the increasing of amine groups 
in the PEA molecules can also govern the molecular state of the CDs formation. Besides, the content 
of conjugated π-domains with C=N in the carbon backbone is in relation to their PL QY (up to 69%). 
In addition, the PL stabilities tests of CD-EDA(2/1), CDs-DETA(2/1) and CDs-TEPA(2/1) show the longer-
chain PEA molecules is beneficial to keep long stability of CDs while shorter-chain PEA molecules, 
though own high QY, exhibit strong photobleaching behaviors similar to organic fluorophores.  

 
Figure 7. Proposed formation pathway of N-doped CDs. Figure adapted from Ref. [56] with 
permissions from the publishers. 

3. Polymers for Surface Modification of CDs  

Bare surface of CDs is rather defenseless due to the existence of many defect sites, such as 
dangling bonds, non-radiative states and radicals [71], which usually cause the low PL efficiency 
(QY) and impair of the optoelectronic properties of CDs. Surface passivation is the most effective 
technique to enhance the PL intensity and common polymer passivation agents include polyethylene 
glycol (PEG) [72,73], polyethyleneimine (PEI) [73,74], poly(ethylenimide)-co-poly(ethylene glycol)-co-
poly(ethyl-enimide) (PPEI) [72] and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) [73,75]. The 
mechanism of surface passivation can be explained by cutting off other non-emitting ways to amplify 
the emission intensity caused by irradiation. After passivation with polymers or other organic 
molecules, the QY of CDs can increase dramatically [76].  

Besides, functionalization usually occurs along with the passivation process and they are the 
same process when polymer passivation agents are doped. Functionalization is the process of adding 
new features and properties to a material by changing the surface chemistry of the material and is a 
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useful technique to develop more tailoring work for CDs. After passivation, it can also modify the 
surface of CDs by bringing in or generating various functional groups such as carboxyl, carbonyl, 
and hydroxyl groups in the defect sites of their surface. The process is usually assisted by doping 
polymers or organic compounds. In terms of the category of doping, there are currently N-doping 
[28,77,78], S-doping [79,80], P-doping [81,82], and Si-doping [83,84], among which N-doping has 
proved to be the most effective and popular doping method.  

Sun et al. in 2006 initiated diamine-terminated oligomeric poly (ethylene glycol) 
H2NCH2(CH2CH2O)nCH2CH2CH2NH2 (average n ~ 35, PEG1500N) as surface passivation agent [72]. 
When CDs were excited at 400 nm, the observed QY ranged from 4% to over 10% which varied due 
to the extent of surface passivation. The QY of CDs was comparable with those of traditionally 
prepared silicon nanocrystals after surface passivation. Mechanistically, the PL of CDs was attributed 
to the surface energy traps, which were caused by plenty of functional groups such as -NH2 on the 
surface of CDs that emitted light upon stabilization because of the surface passivation.  

Wang et al. prepared CDs sample with an oligomeric PEG diamine (PEG1500N) as passivation 
agent [85], which was based on other previous reports [86] and later simply fractionalized CDs on an 
aqueous gel column. After separation, the most fluorescent fraction even achieved QY close to 60%, 
comparable to those of the best commercial CdSe/ZnS QDs in solution and brighter at the individual 
dot level. Furthermore, Goncalves and his coworkers synthesized CDs by laser ablation [34]. Then 
the CDs were capped with PEG200 and mercaptosuccinic acid. The CDs obtained from laser ablation 
were not fluorescent and the functionalization process with PEG200 endowed the CDs with PL. 

In 2014, Liu et al. reported conjugating CA with a multifunctional ribonuclease A (RNase A) to 
prepare ribonuclease A-conjugated C-dot nanoclusters (RNase A@C-dots) for synchronous cancer 
imaging and therapy [31]. In the experiment, except the CDs obtained by conjugating CA and RNase 
A, in control experiment, CA without RNase was treated in the same condition and followed by the 
addition of PEG2000N (mass ration, CDs/PEG2000N = 1:20) to obtain C-dots-PEG2000N. It turned out that 
the PL of C-dots-PEG2000N (4.33%) is five times of that of the bare CDs (0.87%), which exhibited the 
eminent enhancement of PL properties of CDs by surface passivation of PEG series.  

Except PEG series compounds, other polyamine compounds have also been used as passivation 
agent in the synthesis of CDs [61,63,69]. Liu et al. prepared nitrogen-doped CDs (N-CDs) by using 
CA and linear-structured polyethyleneimine (LPEI) polymer as initial materials [58]. The LPEI serves 
not only as a nitrogen source but also as a surface-passivation agent for surface modification. The QY 
of the resulting CDs is 37.4%. The proposed structural mechanism is intermolecular and/or 
intramolecular dehydration which occurs among the –COOH, –OH groups and –H in the CA and 
further polymerization, aromatization and carbonization processes follow to form aromatic sp2 
carbon clusters [61,87]. At the same time, the LPEI with rich amine groups can also react with CA 
(e.g., formation of amide N–C=O), thus incorporating N atom into the final nitrogen-doped CDs 
(Figure 8a–d). The TEM and HRTEM images (Figure 8e) of the obtained N-CDs revealed the average 
diameter of CDs is about 1.67 nm with high crystallinity with a lattice spacing distance of 0.334 nm, 
which is comparable with that of (002) plane of graphitic carbon. In addition, the PL spectra of N-
CDs (Figure 8f) suggest the N-CDs have a wide spectral width (over 250 nm) of PL over which N-
CDs exhibit strong PL. 
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Figure 8. Proposed formation pathway, composition, and structures of as-obtained N-CDs: (a) 
polymerization of final N-CDs; (b,c) incorporation of N atom to final N-CDs (1, 3, and 4 indicate N 
atom existing in the aromatic framework and 2 shows LPEI linked to N-CDs by formation of amide 
groups); (d) surface passivation of N-CDs by –COOH, –OH, amine groups and LPEI chains; (e) TEM 
image of N-CDs (inset, HRTEM image and size distribution of 1–3 nm in diameter with 1.67 nm on 
average); and (f) PL spectra under excitation wavelength shorter than 500 nm. Figure adapted from 
Ref. [58] with permissions from the publishers. 

Gopinath and his colleagues prepared CDs using chitosan as starting carbon source and 
passivate the CDs by PEI and PEG (Figure 9), separately [88]. The QY of CD-PEI and CD-PEG was 
measured using quinine sulfate as a standard and found to be 13.15% and 7.01%, respectively, which 
was adequately bright for bioimaging as well as higher than their earlier report values [33]. In 
addition, the mean PL decay lifetime of CD-PEI and CD-PEG was 6.193 and 4.825 ns, respectively. 
Even though the carbon source remained the same, PL properties of CD-PEI were amazingly good 
compared to CD-PEG in terms of higher QY and longer PL decay lifetimes. Besides, fluorescence 
microscopic and spectroscopic analysis predict CD-PEI as a superior bioimaging agent compared to 
CD-PEG, owing to its efficient fluorescent characteristics and tunable emission from blue to red under 
cell culture conditions. Therefore, the surface of CDs, selection of right polymer groups for surface 
passivation can enhance its bioimaging efficiency.  

 
Figure 9. Schematic diagram depicting one-pot hydrothermal synthesis of CD-PEI and CD-PEG. 
Figure adapted from Ref. [88] with permissions from the publishers. 
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Yin et al. integrated thermoresponsive hyperbranched PEI with multistimuli-responsive CDs 
[89] (Figure 10), which results in photoluminescent CD-PEI. After the amidation reaction of isobutyric 
anhydride and the PEI moiety, isobutyric amide (IBAm) groups were attached to CD-PEI to fabricate 
CD-PEI-IBAms. The CD-PEI-IBAms were also photoluminescent and their PL was barely affected by 
pH, salts, and the organic guests encapsulated while the cloud point temperature (Tcp) of aqueous 
solution of CD-PEI-IBAms could be modulated by pH, salts and the organic guests encapsulated. 
Above all, CD-PEI-IBAms integrate the properties or functions such as multistimuli-response, 
nanocarrier for organic guest, and PL, which endows them as promising “smart” materials in the 
future application of biomedicine and biotechnology. 

 
Figure 10. Preparation of Multi Stimuli-Responsive CDs. Figure adapted from Ref. [89] with 
permissions from the publishers. 

4. Polymer in Polymer–CDs Composite 

4.1. CDs-Polymeric Gel Conjugation 

When a three-dimensional polymeric network is loosely crosslinked, a hydrogel is formed [90]. 
They usually get swollen in water but do not dissolve in water. There have been many studies in the 
incorporation of nanomaterials in gel [91–93]. 

Gopinath and co-workers have made an intensive study on the incorporation of carbon dots in 
polymeric hydrogels loaded with an anticancer drug, 5-Fluorouracil (5-FU@CD-HY) [37]. In this 
work, they studied the multifunctional aspects of 5-FU@CD-HY using A549 (lung cancer) cell line as 
an in vitro model system and have found that 5-FU@CD-HY owned high PL, large surface area, 
strong mechanical strength and pH dependent behavior. All characteristics made 5-FU@CD-HY as a 
nanotheranostic system to monitor the cellular uptake and cytotoxic effects of anticancer drugs. 

In another study, ion sensing applications of carbon dot–hydrogel hybrid nanomaterials using 
low molecular weight gelators (LMWGs) designed to provide a hydrophobic environment suitable 
for fluorescent ion sensing within an aqueous medium has been discussed [94]. It has been reported 
that the carbon dots showed an enhanced gelation properties and the hydrogel resulted an increased 
PL which was later employed as a useful sensor to detect heavy metals like Pb2+. Further work for 
colorimetric-optical sensing of heavy metals like Cr6+, Cu2+, Fe3+, Pb2+, Mn2+ by the use of carbon dots 
incorporated hydrogel has been reported by Gogoi et al. [95]. They have introduced chitosan based 
carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform. It has been observed 
that the minimum detection limit was 1 pM for Cr6+, 0.5 nM for Fe3+, Pb2+, and Mn2+, and 0.5 μM for 
Cu2+. Beside metal ions, Baruah et al. have shown that Fluorescent carbon dots (CDs) prepared from 
chitosan gel can be used in the detection of anions like F− [96].  
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Wang et al. have developed a biocompatible PEG-chitosan@CDs hybrid nanogels by integrating 
nonlinear poly(ethylene glycol) (PEG), chitosan, and graphitic carbon dots (CDs) [36]. They have 
employed the developed hybrid nanogel in two-photon fluorescence (TPF) bioimaging, pH and near-
infrared (NIR) light dual-responsive drug release, and synergistic therapy.  

Chowdhury and co-workers [97] have reported a method of preparation of stable, soft but tough 
chitosan–carbon dots nanocomposite hydrogel films which they claim that the carbon dots 
synthesized from tea by green approach improved the strength, thermostability and wettability of 
chitosan hydrogel films. They have not used the hydrogel for any purpose like bioimaging, 
separation of heavy ions but claim their findings on the basis of result from UV/Vis spectroscopy, X-
ray diffraction (XRD), FTIR, SEM, fluorescent microscopy, thermogravimetric analysis (TGA) and 
contact angle analysis. 

Zhou et al. have shown that light-emitting polymer nanocomposites with excellent optical 
performance can be easily fabricated by the incorporation of amphibious CDs into the polymer matrix 
of peach gum polysaccharide (PGP) [45]. They have observed that the addition of CDs favored strong 
PL properties to polymer film. 

4.2. CDs-Molecularly Imprinting Polymers (MIP) Complex 

Molecular imprinting is one promising application to mimic nature and its principle is to prepare 
substrate-selective recognition sites in a matrix with a molecular template in a casting procedure [98–
100]. The interesting scope of molecularly imprinting polymers has been elucidated in a review paper 
[101]. Several works are ongoing in the field where CDs are embedded in MIP to broaden the scope 
of the MIP. CDs embedded in molecularly imprinted polymer have been used in the recognition of 
sterigmatocystin, a fungal secondary metabolite produced by many different Aspergillus species, in 
grains [102]. In this study, CDs were directly encapsulated in a silica MIP in a one-pot reaction and it 
was found that PL properties of the CDs were not restricted by the silica-based MIP layer. They have 
suggested the no restriction phenomenon was due to optically transparent and chemically inert 
nature of silica but they have not discussed about the size fluctuations due to the fabrication which 
directly affects the PL. Furthermore, they have shown one method of detection of sterigmatocystin 
on the basis of PL quenching method because sterigmatocystin quenches the PL of CDs embedded in 
MIP.  

A thermo-sensitive receptor CDs/SiO2/MIP was fabricated based on CDs and epitope approach, 
which they claim as the first reported approach [103]. In this research work, they have observed that 
the CDs/SiO2/MIP with double templates exhibited higher imprinting effect. The direct application 
of CDs/SiO2/MIP was subjected in the detection of target protein in the urine. Zhou and his co-
workers have discussed an eco-friendly molecularly imprinted fluorescence composite material 
based on carbon dots fabricated via sol–gel polymerization for selective fluorescence detection of 4-
nitrophenol (4-NP) of Yangtze River water samples [38]. According to their research work, the 
relative fluorescence intensity (F0/F) of MIP/CDs showed a good linearity with 4-NP concentrations 
in the linear range of 0.2–50 μmol·L−1 with a detection limit (3σ/k) of 0.06 μmol·L−1 having the 
correlation coefficient, imprinting factor as 0.9978 and 2.76 respectively. 

Zuo et al. have reported nicotinic acid (NA) fluorescent optosensing based on molecular imprint 
technique [39]. In their research work, NA as template molecules were mixed with silane groups 
coated with CDs. The SiNPs were fabricated by sol-gel method by taking ethanol as a cross-linker 
and the recognition specificity of SiNPs along with the effect of NA on PL intensity was studied. The 
linear regression analysis helped them to determine the relationship between NA concentration and 
PL response which ultimately led the SiNPs to act as fluorescent probe for the detection of NA in 
several biological samples. 

4.3. CDs Conjugated in Polymer Composite Films 

The development of efficient, low-cost, and environmentally-friendly light emitters have 
gradually drawn intense attention due to their wide application in the lighting industry and 
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photonics. In recent years, due to the high quantum efficiency, CDs were increasingly conjugated in 
polymer composite films to make white light emitters [45,104,105]. 

Since 2011, Wang and his coworkers initiated the first white light-emitting device originating 
from single CDs components [106]. Chen et al. have reported a white-light-emitting polymer 
composite films were synthesized by conjugating CDs and lanthanide complexes such as Eu(DBM)3 
and Tb(DBM)3 (DBM: dibenzoylmethide) into a poly(methyl methacrylate) (PMMA) matrix [41]. The 
synthesized CDs emitted blue PL while the lanthanide complexes exhibited red and green PL. By 
adjusting the molar ratio of CDs and lanthanide complexes in the PMMA matrix, the high transparent 
polymer composite films could emit pure white PL. 

Bhunia and her coworkers reported the fabrication of transparent films which exhibited tunable 
light emission through one-pot synthesis of polymer matrixes with embedded CDs (C-dot) 
assembled simultaneously with the polymer matrix [40]. Interestingly, the films exhibit different 
distinct PL color based on different carbon precursors. Besides, by mixing carbon precursors, the CDs 
film exhibited different PL color including white color (Figure 11).  

 
Figure 11. Phtoluminescent C-dot/PDMS films. Scheme describing the preparation of the mixed films. 
Distinct-colored C-dots embedded in the films were prepared by using different precursors. C-dot 1–
3 indicates the carbon precursor is 6-O-(O-O′-Di-lauroyl-tartaryl)-D-glucose, 6-O-(O-O′-Di-lauroyl-
tartaryl)-L-ascorbic acid, and Vitamin B1 + oleic acid, respectively. Figure adapted from Ref. [40] with 
permissions from the publishers. 

Zeng and Yan have prepared luminescent cellulose film by combination of cellulose and CDs in 
aqueous solution [30]. In doing so, they fabricated a biocompatible transparent material by green 
process with potential applications in optical devices, biomedicine and environmentally benign 
packaging. They studied the mechanical performance of the regenerated cellulose and composite 
cellulose/CDs films by stress-strain (σ–ε) curves. They reported that tensile strength and elongation 
at breaking of the pure cellulose film were 46.9 MPa and 4.1%, respectively. Furthermore, the elastic 
modulus and tensile strength were found to be 344 and 58.5 MPa, respectively. From these data, they 
confirmed that the composite was softer than that of the regenerated cellulose film. 

Besides, the luminescent C-dots have been covalently attached in aqueous media to cellulose 
nanofibrils via N-(3Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide 
(EDC/NHS) coupling by Junka et al. [107]. In this study, they found that C-dots do not aggregate 
during drying while embedded in the carboxymethylated-cellulose nanofibrils (CM-CNF) matrix and 
there was increment in thermal stability due to the attachments of C-dots. Transparent, smooth, and 
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fluorescent nanopaper was produced from CNF-C-dots. However, they have not demonstrated the 
potential of C-dots modified by CM-CNF in anticounterfeit and biosensing applications.  

Except high PL efficiency, the high electrical conductivity is also attractive for CDs to work as a 
sensitive sensor. In 2016, Pal et al. synthesized a conducting nanocomposite consisting of CDs and 
polypyrrole (PPy) (a p-type semiconductor) and it is the first report on the sensing work based on 
conductivity of CDs (Figure 12a) [108]. The conductivity of the CDs film (Figure 12b) was explained 
by the presence of sp2 C=C bonds and the introduction of CDs into the polymer composite contribute 
to higher conductivity of the composite nanomaterial than PPy (Figure 12c), which was due to the 
enhancement of enrichment of electron acceptors of CDs. As is illustrated in Figure 12d, the response 
of the composite film was very strong toward picric acid which is widely used to produce explosives 
and considered as a pollutant to contaminate groundwater and soil. Therefore, the synthesized CDs 
films can work as a great biosensor to selectively and sensitively detect the presence of picric acid in 
aqueous phase as well as soil. 

 
Figure 12. (a) Schematic representation of the synthesis of CDs-PPy composite and the primary set up 
for the conductivity experiment of the picric acid. Plot of I–V characteristics of: (b) CDs film; and (c) 
CD-PPy film and PPy film. (d) The ratios of current flowing through the composite film after adding 
2.0 μL 1.0 mM aqueous solution of different analytes to that of the film only. Here PA = picric acid, 
2,4-DNP = 2,4-dinitrophenol, 4-NP = 4-nitrophenol, NB = nitrobenzene, PH = phenol, QN = 1,4-
benzoquinone, 4-MBA = 4-methoxybenzoic acid. The measurements were made at +5 V. Figure 
adapted from Ref. [108] with permissions from the publishers. 

5. Conclusions 

In this review, we tried to highlight and critically analyze the ongoing trends in CDs linked to 
polymers, focusing on the key role played by polymers in the formation of CDs and the fabrication 
of CDs–polymer composite with their actual applications. As a good template of CDs, polymers 
themselves own repeated monomer units which is beneficial for the analysis of the CDs structure. 
Besides, most CDs formation needs to experience polymerization while different monomers with 
different molar ration will vary the PL properties. Therefore, the selection of proper monomers is 
important. In addition, CDs passivation technique has been applied to improve the PL of CDs, which 
involves polymers such as PEG series compounds and PEI which render the PL of CDs. In terms of 
application, different kinds of composites ranging from molecularly imprinted polymers to drug free 
hybrid nanogels have promising characteristics in fields from bioimaging to drug delivery. The 
hydrogels and polymer composites revealed excellent features such as convenient synthesis, low cost, 
large surface area (relative to volume), enhanced PL, selectivity, stability, pH dependent drug release, 
etc. 
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