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Abstract: Surface-initiated atom transfer radical polymerization (SI-ATRP) is one of the most 
versatile techniques to modify the surface properties of materials. Recent developed metal-free SI-
ATRP makes such techniques more widely applicable. Herein photo-induced metal-free SI-ATRP 
of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N-
dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-
inorganic hybrid materials. A SBA-15-based polymeric composite with an adjustable graft ratio was 
obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and 
verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced 
adsorption ability for the model compound toluene in aqueous conditions. This procedure provides 
a low-cost, readily available, and easy modification method to synthesize polymeric composites 
without the contamination of metal. 

Keywords: polymeric composite; surface initiated atom transfer radical polymerization; photo-
induced; living radical polymerization; metal-free atom transfer radical polymerization 

 

1. Introduction 

Organic-inorganic composites based on the functionalization of mesoporous silica materials 
such as MCM-n, HMS-n, and SBA-n have attracted a great deal of research interest in the past decades 
[1–6]. Among them, SBA-15 was one of the most widely used ordered mesoporous materials for such 
functionalization due to its many attractive properties, such as high hydrothermal stability, desired 
morphology, adjustable pore sizes (2–30 nm), and thick walls. At the same time, the existence of many 
reactive groups on the surface, such as the –OH group, made it easy for functionalization through 
silanol chemistry [7,8]. Furthermore, a polymer with versatile organic groups was considered as the 
most efficient way to introduce different functional groups on the surface of such silica materials. 
Through this method, the surface properties of these silica materials could be easily tailored by 
changing the type and amount of polymers, which evidently enriched the functional modification of 
these materials.  

To covalently attach polymer chains on the surface of materials, the technique of so-called 
“grafting from” based on surface-initiated polymerizations is considered one of the powerful tools 
[9,10]. Significant advances in this area have been achieved by the development of living radical 
polymerization techniques, especially nitroxide-mediated polymerization (NMP) [11,12], reversible 
addition-fragmentation chain transfer polymerization (RAFT) [13], and atom transfer radical 
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polymerization (ATRP) [14]. Among them, surface-initiated atom transfer radical polymerization (SI-
ATRP) has received much attention during the past two decades [2,15–18]. So far, polymers with 
controlled structures and functional side groups can be grafted on various surfaces by SI-ATRP, as 
done in antifouling coatings [19], drug delivery [20], stimuli-responsive materials [21], and 
nanoporous membranes [22].  

Originally, ATRP [23–27] was carried out with relatively high concentrations of transition 
metals, typically a Cu-based catalyst, in order to compensate for unavoidable radical termination 
reactions. Recently, several systems were developed that enabled ATRP to proceed at a catalyst 
loading of only 10–100 ppm of Cu [28,29]. This occurs in the presence of various reducing agents that 
continuously regenerate Cu+ activators from Cu2+ deactivators and it compensates for radical 
termination. Although catalyst loadings can be decreased to parts per million (ppm), for a variety of 
applications, such as microelectronics, biomaterials, etc., a key limiting factor in using ATRP is metal 
contamination. Very recently, Hawker et al. [30] reported a photo-induced metal-free ATRP of methyl 
methacrylate using 10-phenylphenothiazine (PTH) as an organic photocatalyst. In this photo-
induced, metal-free ATRP mechanism, a three-component photoredox cycle is conducted. The 
photoexcited PTH* activates an alkyl halide and generates radicals, while the PTH+•Br− specie 
deactivates the radical and regenerates the ground-state PTH. Recently, the metal-free ATRP system 
has been developed very fast. Various catalyst systems with improved control abilities were 
developed in these years [31–33]. With these developments, metal-free SI-ATRP also has been verified 
in recent years. However, these reports were focused on the modification of the surface properties of 
flat surfaces and particles by SI-ATRP [34,35]. Few examples of metal-free SI-ATRP on the surface of 
mesoporous material were reported. 

Herein, for the demonstration of photo-induced metal-free SI-ATRP on mesoporous silica 
materials, we report a procedure to synthesize organic-inorganic hybrid materials based on photo-
induced metal-free SI-ATRP of methacrylate monomers on the surface of SBA-15. Such a process was 
realized by chemically binding the ATRP initiator on the mesostructure walls beforehand, following 
by photo-induced metal-free SI-ATRP to grow polymers directly from and over the SBA-15 internal 
surface. Initially, methyl methacrylate was selected as the model monomer for such modification. 
Then, functional monomers, e.g., dimethylaminoethyl methacrylate and N-isopropylacrylamide, 
were used for a similar modification. This procedure provides a low cost, ready availability, and easy 
modification method to synthesize polymeric composites without the contamination of metal. 

2. Materials and Characterization  

2.1. Materials 

The (3-aminopropyl)triethoxysilane (APTES) was purchased from Shanghai MACKLIN Reagent 
Co., Ltd. (Shanghai, China). and used as received. Methyl methacrylate (MMA) and dimethylaminoethyl 
methacrylate (DMAEMA) (Shanghai Chemical Reagents Co. Ltd., Shanghai, China) were purified 
before use by passing through a column filled with neutral aluminum oxide. N-isopropylacrylamide 
(NIPAM) (Shanghai Chemical Reagents Co. Ltd., Shanghai, China) was purified by recrystallization. 
Triethylamine (TEA, Chinasun Specialty Products Co. Ltd., Changshu, China) was dried with 4 Å 
molecular sieves and distilled before use. Pluronic 123 was purchased from Sigma-Aldrich (Shanghai, 
China) Co., Ltd. and used as received. Tetraethlorthosilicate (TEOS), hydrochloric acid (HCl), 2-
bromoisobutyl bromide (BMBP), were also purchased from Shanghai Chemical Reagents Co., Ltd. 
and used as received. Solvents, dimethylformamide (DMF) and tetrahydrofuran (THF) were 
purchased from Shanghai Chemical Reagents Co., Ltd. and purified by standard methods. 

2.2. Synthesis of SBA-15 

SBA-15 was synthesized according to the procedure reported by Zhao et al. [7] using Pluronic 
123 triblock copolymer as a template. Briefly, 20 g of Pluronic 123 was dissolved under stirring in 600 
mL of 2 M HCl and 150 mL of deionized water at 40 °C. Then 42.5 g of tetraethlorthosilicate (TEOS) 
was [8] added. The resultant solution was stirred for 24 h at 40 °C before transferring into a Teflon 
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bottle sealed in an autoclave, which was then heated to 130 °C for 24 h in an oven. The solid product 
was recovered by filtration and dried at 40 °C for 5 h in the vacuum oven. The template was removed 
from the as-made mesoporous material by calcination at 550 °C for 5 h (heating rate is 1.5 °C/min).  

2.3. Synthesis of SBA-APTES 

Amount of 8.0 g calcined SBA-15 was degassed under vacuum at 40 °C overnight before added 
into a three-necked flask containing 350 mL of dry toluene and 8 mL of (3-
aminopropyl)triethoxysilane (APTES). The mixture was stirred for 5 h under reflux at a nitrogen 
atmosphere. Under this condition, the hydroxyl groups of the SBA-15 surface react with the ethoxy 
groups of the APTES molecules, resulting an amino-functionalized SBA-APTES. Then, the solid was 
recovered by filtration and intensively washed with toluene before dried under vacuum at 40 °C 
overnight. 

2.4. Synthesis of SBA-Br 

Compound 2-bromo-2-methylpopionyl bromide (BMPB) was used to react with the previously 
attached aminopropyl groups leading the ATRP initiator bonded on SBA-15 pores surface. In this 
case, 8.6 g of the functionalized SBA-15 material was added to a three-necked flask containing 300 
mL of dry toluene and 9 mL triethylamine. Then, 8 mL of BMPB was added in a constant pressure 
funnel. The system was stirred for 3 h under reflux and a nitrogen atmosphere. Finally, the solid was 
recovered by filtration, washed with deionized water until the filtrate was clear, and outgassed under 
vacuum at 40 °C overnight. 

2.5. Synthesis of SBA-PMMA 

A typical experimental procedure for the preparation of SBA-PMMA by metal-free photo-
induced SI-ATRP follows: 1mL of methyl methacrylate (MMA, 0.9440 g, 9.43 mmol, 100 equiv.), 18.4 
mg of ethyl 2-bromoisobutyrate (EBiB, 0.09 mmol, 1 equiv.), 5.0 mg of 10-phenylphenothiazine (PTH, 
0.02 mmol, 0.2 equiv.), 1.0 g of SBA-Br, and 1 mL of DMF were added to an ampoule. The ampoule 
was tightly sealed and oxygen was removed by three freeze-pump-thaw cycles. The reaction was 
irradiated under a 3.0 mW/cm2 xenon lamp with the 380 nm optical filter. After a predetermined time, 
the ampoule was removed from the irradiation and the reaction mixture was then diluted with THF 
and centrifuged (10,000 rpm, 10 min) to collect the polymer-grafted SBA-15. The centrifugation and 
redispersion was repeated three times. The number-average molecular weight Mn and dispersity 
(Mw/Mn) were obtained by GPC using linear PMMA standards in THF as the eluent. The graft density 
was calculated gravimetrically. The obtained samples were denoted as SBA-PMMA. 

2.6. Batch Adsorption 

The liquid phase adsorption was ultrasonicated for 30 min and stirred for 2 h in 40 mL glass 
vails filled with 0.02 g of adsorbent and 10 mL of adsorbate solution which contains toluene in water 
with a concentration of 47 ppm. After the desired time was reached, the mixture was filtered by a 
nylon membrane filter (0.22 μm ), then the mixture was analysed by GC. The concentration of 
adsorbate  was calculated as the formulation followed: =   (1) 

where  is the concentration of the initial adsorbate solution;  and  are the GC areas of initial 
adsorbate solution and treated solution, respectively. 

2.7. Characterization 

Fourier transform infrared spectroscopy (FT-IR) spectra were recorded on a TENSOR 27, 
BRUKER Optik GmbH, Ettlingen, Germany. TGA was carried out on PerkinElmer PYRIS 1 TGA 
thermogravimetric analyser (PerkinElmer, Hong Kong, China) at a heating rate of 10 °C·min−1 from 
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room temperature to 700 °C in a nitrogen atmosphere. Surface compositions were determined by X-
ray photoelectron spectroscopy (XPS) on a KRA70S AXIS Ultra DLD spectrometer (Kratos Analytical 
Limited, Manchester, UK) at a pressure of ≈2 × 10−8 Torr using Al Kr radiation as the exciting source; 
the instrument was operated at 15 kV and 10 mA. The surface area was determined via the nitrogen 
adsorption/desorption technique at 77 K using the ASAP 2020 surface area and porosimetry analyzer. 
The standard BET and DFT models were applied to determine the surface area and pore volume. The 
number-average molecular weight (Mn,GPC) and molecular weight distribution (Ð) of the polymers 
were determined by a TOSOH HLC-8320 equipped with a refractive-index detector, using a TSKgel 
guard column SuperMP-N (4.6 mm × 20 mm) and two TSKgel Supermultipore HZ-N (4.6 mm × 150 
mm) with a measurable molecular weight ranging from 5 × 102 to 5 × 105 g/mol. DMF (+LiBr 0.1% 
weight) was used as the eluent at a flow rate of 0.6 mL/min and 40 °C. GPC samples were injected 
using a TOSOH plus auto sampler and calibrated with PS standards purchased from TOSOH (Tokyo, 
Japan). The concentration of toluene in the treated solution was quantitatively analyzed using a 
GC2010 (Shimadzu, Kyoto, Japan) plus gas chromatography with a low-polarity capillary column 
and a flame ionization detector (FID). The oven temperature was initially set at 80 °C, and held this 
temperature for 5 min, then ramped at 5 °C·min−1 to 140 °C, and held at this temperature for 2 min. 
The temperatures of injector and detector were at 280 and 300 °C respectively. 

3. Results 

SI-ATRP using functionalized SBA-15 as the initiator was carried out under visible-light 
irradiation with the presence of PTH. The synthetic route is shown in Scheme 1, and it was 
similar to the literature [3,30]. Thus, in order to carry out SI-ATRP on the surface of SBA-15, 
the initiator moiety was firstly anchored onto the surface of the material. Then, the photo-
induced SI-ATRP was carried out. The FT-IR was used to monitor the structure evolution 
during the processing. The results are shown in Figure 1. Pristine SBA-15 showed a strong 
peak at 3440 cm−1, corresponding to Si–OH stretching vibrations. After the introduction of the 
initiator, peaks corresponding to C–H stretching vibrations at 2980 and 2920 cm−1, –NH–CO– 
vibrations at 1535 cm−1, and C–Br vibrations at 800 cm−1 were observed in the spectrum of 
SBA-Br. Such results implied the successful introduction of the ATRP initiator functional 
moiety onto the surface of SBA-15 by silanol chemistry, followed by the amidation reaction. 
Furthermore, the strong peak at 1720 cm−1 according to –C=O vibrations in PMMA could be 
found in the spectrum of SBA-PMMA, which indicated the attachment of the PMMA chain 
on the surface of SBA-15. 

 
Scheme 1. Synthetic procedure of SBA-PMMA. 
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Figure 1. FT-IR spectra of SBA-15, SBA-APTES, SBA-Br, and SBA-PMMA. 

To further confirm the surface structure, the materials obtained at different stages were 
characterized by XPS. The wide scan spectra of SBA-15, SBA-APTES, SBA-Br, and SBA-
PMMA are summarized in Figure 2. It shows that the signal according to nitrogen was 
observed after SBA-15 was treated with 3-aminopropyltriethoxysilane (APTES). Such a result 
indicated that the APTES successfully anchored onto the surface of SBA-15. The signals 
according to the nitrogen and bromine atoms were found in the XPS survey after SBA-APTES 
was treated with 2-bromoisobutyryl bromide (BMPB), which implied the successful reaction 
between the surface amine groups with BMPB. Combined with the results of the FT-IR, it 
clearly showed the successful introduction of ATRP initiating groups onto the surface of SBA-
15. Furthermore, after the SI-ATRP of methyl methacrylate (MMA), the signals of nitrogen 
and bromine still remained in the spectrum, while the intensity weakened, which implied the 
successful surface-initiated polymerization. 
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Figure 2. XPS spectra of SBA-15, SBA-APTES, SBA-Br, and SBA-PMMA. 

After these initial surveys, the polymerizations of different monomers, e.g., MMA, 
DMAEMA, and NIPAM, were carried out using SBA-Br as the initiator, ethyl 2-
bromoisobutyrate (EBiB) as the co-initiator and PHT as the photocatalyst under the irradiation 
of a xenon lamp with a 380 nm optical filter at 30 °C. The light intensity was 3.0 mW/cm2. The 
polymerization results are summarized in Table 1. The molecular weight of the PMMA 
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obtained in the solution was measured by GPC using THF as the eluent and calibrated by 
PMMA standards. The molecular weights of the DMAEMA and NIPAM were measured by 
GPC using DMF as the eluent and calibrated by PMMA standards. It showed that non-
polymerization took place without the light irradiation or PTH after 72 h at 30 °C (Entries 1 
and 2 in Table 1). The polymerization could be carried out smoothly after adding PTH as the 
photocatalyst under light irradiation (Entries 3–9 in Table 1). A monomer conversion as high 
as 57.6% was obtained after 72 h of polymerization (Entry 7 in Table 1). The grafting ratio of 
the polymer reached as high as 27.6%, which was similar to the results in the literature [36]. 
Not only could the monomer MMA be grafted onto the surface of SBA-15, but also the 
monomers PDMAEMA and PNIPAM could be grafted onto the surface of SBA-15 (Entries 8 
and 9 in Table 1), which implies the various applications for the current method for grafting 
polymers from the surface of SBA-15. The polymerization showed controlled characteristics, 
e.g., controllable molecular weights along with a narrow molecular weight distribution of the 
obtained polymers.  

Table 1. Results of photo-induced metal-free SI-ATRP of MMA using SBA-Br as an initiator a. 

Entry Label Time (h) 
Conv.

(%) 
Mn,GPC d,e

(g/mol) Ð d,e 
Grafting 
ratio f (%) 

1 SBA-PMMA-C1 b 72.0 -- -- -- -- 
2 SBA-PMMA-C2 c 72.0 -- -- -- -- 
3 SBA-PMMA-1 15.0 10.8 12,800 1.24 12.5 
4 SBA-PMMA-2 24.0 9.4 11,100 1.29 21.6 
5 SBA-PMMA-3 36.0 20.0 13,300 1.28 24.6 
6 SBA-PMMA-4 48.0 20.7 12,800 1.24 25.0 
7 SBA-PMMA-5 72.0 57.6 16,700 1.27 27.6 
8 SBA-DMAEMA e 20.0 83.4 21,100 1.83 23.8 
9 SBA-NIPAM e 18.0 85.0 13,400 2.25 14.4 

a [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 0.1 g. Polymerized at 30 °C; b Without UV 
irradiation. [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 0.1 g; c With UV irradiation. 
[monomer]0/[EBiB]0/[PTH]0 = 100/1/0; SBA-Br = 0.1 g; d,e Molecular weight of free polymers obtained 
from the solution determined by GPC using narrow poly(methyl methacrylate) standards, THF as the 
eluent. The molecular weight of PDMAEMA and PNIPAM were determined by GPC using narrow 
poly(methyl methacrylate) standards, DMF as the eluent; f The grafting ratio was referred to the 
weight percentage of polymer to SBA-15 which was measured by TGA. 

The photo-induced metal-free SI-ATRPs on the surface of SBA-15 of different monomers were 
also monitored by TGA. The TGA curves of SBA-15, SBA-APTES, SBA-Br, and SBA-PMMA at 
different conversions, SBA-DMEAME, and SBA-NIPAM were showed in Figure 3. The polymer 
chains started to decompose at 250 °C in a nitrogen atmosphere due to the elimination of the ester 
group in the polymer chains. It showed that the amount of weight loss increased with the 
polymerization time. Such results implied that the amount of polymer grafted on SBA-15 increased 
with the polymerization time. The grafting percentages of the polymer on the surface of SBA-15 could 
be calculated from the TGA data, and are shown in Table 1. The grafting ratio varied in the range of 
12.5%~27.6% by changing the polymerization time, which offered a convenient way to adjust the 
amount of polymers on the surface of SBA-15. The grafting ratio of the current system was slightly 
lower than the results reported in the literature, which may have been caused by the porous structure 
of SBA-15 [37]. 
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Figure 3. TGA curves of SBA-15; SBA-APTES; SBA-Br; SBA-PMMA; SBA-DMAEMA; and 
SBA-NIPAM. TGA was performed under the protection of N2 at a heating rate of 10 °C·min−1. 

One of important properties of mesoporous materials is their porous structure. Thus, in order to 
investigate the effect of surface grafting on the porous structure, the N2 adsorption-desorption 
isotherms of polymer-grafted SBA-15 materials together with the pure-silica SBA-15 sample were 
characterized. The results are shown in Figure 4. The BET surface area (SBET) and total pore volume 
(Vtotal) are given in Table 2. The pure-silica SBA-15 sample displayed a type IV isotherm with H1 
hysteresis and a sharp increase in volume adsorbed at P/P0 ≈ 0.78 with a pore volume of 1.09 cm3/g, 
a characteristic of highly ordered mesoporous materials. For samples SBA-APTES, SBA-Br, and SBA-
PMMA-1, they all exhibited a type IV isotherm with a H1 hysteresis loop with a lower specific area 
and a slightly smaller pore volume in comparison with SBA-15, e.g., 0.73, 0.45, and 0.17 cm3/g, 
respectively. However, with increasing the amount of PMMA from the grafting ratio of 12.5% in SBA-
PMMA-1 to 27.6% in SBA-PMMA-5 on the surface of SBA-15, the shape of curve was changed with 
a pore volume of only 0.04 cm3/g. The surface area also decreased dramatically after the introduction 
of the PMMA polymer chain, e.g., from 594.4 m2/g of prism SBA-15 to 86.8 and 11.4 m2/g of SBA-
PMMA-1 and SBA-PMMA-5. The above physisorption data indicated that, in the presence of a 
relatively low grafted density, the textural properties of SBA-15 were substantially maintained. The 
pore volume was decreased with the increasing amount of introduced PMMA, which was due to the 
polymer occupying the pore volume. 
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Figure 4. N2 adsorption-desorption isotherms of SBA-15; SBA-APTES; SBA-Br; SBA-PMMA-1; and 
SBA-PMMA-5. 
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Table 2. Results of BET surface area and total pore volume of SBA-15, SBA-APTES, SBA-Br, and SBA-
PMMA. 

Entry 
BET Surface 

Area 
(m2/g) 

Pore Volume
(cm3/g) 

Pore Size
(nm) 

Grafting 
Ratio 
(%) 

SBA-15 594.4 1.09 7.33 - 
SBA-APTES 378.3 0.73 7.68 - 

SBA-Br 239.3 0.45 7.54 - 
SBA-PMMA-1 86.8 0.17 7.86 12.5 
SBA-PMMA-5 11.4 0.04 14.0 27.6 

The occupation of the polymer in the pores of SBA-15 after polymerization was verified by the 
TEM images before and after the polymerization. The TEM images of the pure-silica SBA-15, SBA-
APTES, SBA-Br, and SBA-PMMA-5 are compared in Figure 5. The ordered, arranged pore arrays of 
the pure-silica SBA-15 could be clearly seen (Figure 5a). Such ordered pore arrays were gradually 
disrupted after the introduction of APTES and Br onto the surface of SBA-15. The situation was 
obvious after the introduction of PMMA onto the surface. However, most of the ordered structure 
could be kept by controlling the amount of introduced polymer, which was easy to realize by using 
the SI-ATRP technique. These results agreed well with the results observed in the BET 
characterization, which showed the low BET surface area of SBA-PMMA with a high grafted density. 

 

 
Figure 5. TEM images of (a) pure-silica SBA-15; (b) SBA-APTES; (c) SBA-Br; and (d) SBA-PMMA-5. 

The effect of such modification on the ordered structure of SBA-15 was further monitored by 
XRD characterization. Figure 6 shows the powder XRD patterns of pure-silica SBA-15, SBA-APTES, 
SBA-Br, and PMMA-grafted SBA-15 samples. It shows that the pure-silica SBA-15 exhibited three 
well-resolved XRD peaks in the region of 2θ = 0.5°–2.0°, which can be indexed to the (100), (110), and 
(200) diffractions. The peak positions for the samples remained constant after the amine-
functionalization process, suggesting high stability of the materials. However, after treating with 
BMPB and grafting with PMMA, a decrease in the diffraction peak intensity was observed, indicating 
the decrease of crystallinity in the materials. These peaks even disappeared after introducing a large 
amount of PMMA on the surface of SBA-15. Combining the results obtained from BET, TEM and 
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XRD, the textural properties of SBA-15 could be changed from an ordered structure to a disordered 
structure after introducing different amounts of polymer. It was important to control the amount of 
polymer introduced onto the surface of SBA-15 for maintaining the ordered structure of SBA-15.  

1 2 3 4 5 6 7
0

100000

200000

300000

400000

500000

600000

700000

SBA-PMMA-5

SBA-PMMA-1

SBA-Br

SBA-APTES

2θ/Degrees

In
te

ns
ity

SBA-15

 
Figure 6. The small and large angles of powder XRD patterns of SBA-15, SBA-APTES, SBA-Br, SBA-
PMMA-1 and SBA-PMMA-5. 

SBA-15 has been widely applied in adsorption materials due to its huge surface area and 
mesoporous structure. Herein, the adsorption properties of SBA-15 before and after modification 
were investigated. Toluene was used as the model adsorbate and aqueous containing 47 ppm of 
toluene was used as model solution for the adsorption investigation. The results are summarized in 
Figure 7. It shows that 26.9 ppm of toluene remained in the solution after the adsorption by pristine 
SBA-15. The adsorption ability could be improved after using PMMA-modified SBA-15, e.g., there 
was 15.4 ppm of toluene remaining in the solution after using PMMA-modified SBA-15 as the 
adsorbent. Thus, the adsorption properties of SBA-15 could be enhanced by attaching a polymer onto 
the surface. 
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Figure 7. Adsorption abilities of SBA-15 before and after the polymer modification. Conditions: 10 
mL of toluene in water solution with concentration of 47 ppm was added with 20 mg adsorbent. The 
mixture was stirred 24 h at ambient temperature. 

4. Conclusions 

The metal-free photo-induced SI-ATRP of methacrylate on the surface of mesoporous SBA-15 
was demonstrated. The polymerization conditions were optimized, and using this metal-free photo-
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induced SI-ATRP, a SBA-15-based polymeric composite with an adjustable graft density and grafted 
polymer chain length was obtained. It showed that the porous structure could be modified over a 
large range after the introduction of the polymer chain. Enhanced adsorption ability for toluene was 
obtained after modifying SBA-15 with PMMA. The use of photo-initiation is ideal as it avoids the 
introduction of metals as catalysts which can remain behind as impurities. This procedure provides 
a low-cost, readily available, and easy modification method to synthesize polymeric composites 
without the contamination of metals with enhanced adsorption ability.  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/2/58/s1. Figure S1: 
Polymerization kinetics of MMA using SBA-Br as the initiator and EBiB as the co-initiator under the conditions 
of [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 0.1 g. Polymerized at 30 °C; Figure S2: Evolution of 
molecular weight and molecular weight distribution of PMMA with conversion using SBA-Br as the initiator 
and EBiB as the co-initiator under the conditions of [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 0.1 g. 
Polymerized at 30 °C; Figure S3: GPC traces of PMMA obtained in the polymerization using SBA-Br as the 
initiator and EBiB as the co-initiator under the conditions of [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 
0.1 g. Polymerized at 30 °C; Figure S4: 1H-NMR spectrum of SBA-PMMA-5 obtained by using SBA-Br as the 
initiator and EBiB as the co-initiator under the conditions of [monomer]0/[EBiB]0/[PTH]0 = 100/1/0.2; SBA-Br = 
0.1 g. Polymerized at 30 °C. 
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