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Abstract: Knots can occur in biopolymers such as DNA and peptides. In our previous study,
we systematically investigated the effects of intra-chain interactions on knots and found that
long-range repulsions can surprisingly tighten knots. Here, we use this knowledge to trap a
knot into tight conformations in Langevin dynamics simulations. By trapping, we mean that the
free energy landscape with respect to the knot size exhibits a potential well around a small knot
size in the presence of long-range repulsions, and this potential can well lead to long-lived tight
knots when its depth is comparable to or larger than thermal energy. We tune the strength of
intra-chain repulsion such that a knot is weakly trapped. Driven by thermal fluctuations, the knot
can escape from the trap and is then re-trapped. We find that the knot switches between tight
and loose conformations—referred to as “knot breathing”. We use a Yukawa potential to model
screened electrostatic interactions to explore the relevance of knot trapping and breathing in charged
biopolymers. We determine the minimal screened length and the minimal strength of repulsion for
knot trapping. We find that Coulomb-induced knot trapping is possible to occur in single-stranded
DNA and peptides for normal ionic strengths.
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1. Introduction

Knotting occurs in biopolymers, such as DNA [1–5] and proteins [6–10], and other polymers.
Simulations have been performed to investigate knot behaviors under various conditions, such as in
free space [1,11], in spatial confinement [12–15], under pulling forces [16,17], in good/bad solvents [18],
in a crowding environment [19], with different bending stiffness [20,21], and during translocation
through a nanopore [22,23]. Theory and simulations revealed that a metastable tight knot exists
in semiflexible [24,25] and flexible chains [26] due to the self-tightening of knots by entropy [27].
In experiments, knots in DNA or filaments can be tied manually [28,29], formed spontaneously [30]
or formed by compression [31,32]. The spontaneously-formed knot in fluorescently labeled DNA
under tension [29] or in nanochannels [30] can be identified as a bright spot diffusing along DNA and
disappearing only at one end. In gel electrophoresis, DNA molecules with different topologies migrate
with different speeds [1,3–5]. The knots in DNA can also be identified by atomic-force microscopy
(AFM) imaging [33]. Recently, DNA knots were identified by nanopore translocation experiments [34].

Recently, our group investigated the general effects of intra-chain interactions on knots, and
accordingly explored how to control the knotting probability and the knot size by intra-chain
interactions [35]. The physical origins of intra-chain interactions can be electrostatic interactions,
depletion attractions in a crowding environment, van der Waals forces, or others. By using simple
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interaction forms for generality, we found that attractions (repulsions) usually increase (decrease) the
knotting probability. However, long-range and short-long interactions have opposite effects on the
knot size. Short-range repulsion tends to swell a knot, while long-range repulsion tends to tighten a
knot. The reason is that a larger knot contains less pairs of monomers with short distances, but more
pairs of monomers with long distances. Based on this knowledge, we can tighten a knot by long-range
repulsion to any extent we want. Note that attractions cannot substantially tighten a knot, because
strong attractions will lead to a coil–globule transition, and the knot core then spreads over the entire
chain in a globular conformation [18]. In addition to controlling the knot size, the control of the knot
position along a chain has been achieved through the inhomogeneity of bending rigidity along the
chain, e.g., diblock flexible-stiff polymer [36]. The knot can be preferably located in the stiff region, the
flexible region, or the interface of the two regions depending on the monomer–monomer interaction
strength relative to the thermal energy, the sizes of flexible and stiff regions relative to the knot size,
and the bending stiffness of the stiff region [36].

In this paper, we explore the phenomenon of trapping a knot in tight conformation via long-range
repulsion. We purposefully tune the strength of repulsion such that a knot is moderately trapped
in tight conformations and can escape from this trap by thermal fluctuations. From a time series
of the escaping and then re-trapping of the knot, we can determine the lifetimes of the knot in
tight conformations. In the first part of the result section, we will present the results of simulations
using triangle potentials in order to make connection with our previous study as well as speed up
simulations. In the second part of the result section, we will present the results for Yukawa potentials
(screened Coulomb potentials), which represent screened electrostatic interactions. After determining
the minimal screened length and the minimal strength of repulsion for knot trapping, we find that
Coulomb-induced knot trapping can occur for single-stranded DNA and peptides under reasonable
ionic strength conditions.

2. Simulation Methods

Langevin dynamics simulations are performed for ring chains using the LAMMPS program [37].
The circular chain is modeled by a bead-spring model [38] with an extra pairwise soft potential
(Figure 1). The total pairwise interaction between monomers is a hardcore repulsion plus a soft
potential, Epair = Ehard + Esoft. The hardcore pairwise interaction between monomers is described by
a purely repulsive Lennard–Jones potential

Ehard = 4εLJ
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for r ≤ Rcore ≡ 2
1
6 σ (1)

with εLJ = 30 kBT. The cutoff of Lennard–Jones potential is set as Rcore ≡ 2
1
6 σ ≈ 1.1224σ to produce a

purely repulsive potential. The hardcore diameter of the monomer can be approximated as σ. The soft
pairwise interaction is either a triangle potential or Yukawa potential. The triangle potential takes the
form:

Etriangle = ε(Rint − r)/Rint for r ≤ Rint (2)

with an interaction range of Rint and an interaction strength of ε. The Yukawa potential takes the form:

EYukawa = ε exp(−κr)/r (3)

with a Debye length of κ−1 and an interaction strength of ε. For practical reasons, a cutoff is needed
for this potential and we set the cutoff as 10κ−1. The bond interactions between adjacent monomers
are described by a FENE potential:
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where the stiffness of the bond is set to K = 30 kBT/σ, the maximum stretching distance R0 is set as
1.5σ, and the hardcore repulsion between a pair of bonded monomers has a strength of εbond = 1.0 kBT.
Note that the normal pairwise repulsion described by Equation (1) is ignored for a pair of bonded
monomers. For semiflexible chains, the bending energy is applied for every three adjacent monomers
to reproduce a persistence length Lp:

Ebend = (1/2)
(

Lp/σ
)
θ2 (kBT) (5)

where θ is the bending angle. A similar simulation model has been used by Matthews et al. [21] for
knots. Recall that Lp used in the current study corresponds to the intrinsic persistence length caused
on the bending energy, while the apparent persistence length for the entire polymer conformation
often deviates from this intrinsic persistence length due to interactions other than bending energy.

We normalize simulation times by the relaxation time of a single monomer τbead = σ2/Dbead,
where Dbead is the diffusion coefficient of a single monomer. The diffusion coefficient Dbead is calculated
as Dbead = 2kBTα/m with α as the damping time in Langevin dynamics simulation and m is the mass
of a monomer. We set the time step as 0.02τbead. The time step is small enough to prevent two segments
from crossing each other in one time step, and the topology is hence preserved during simulations.
Figure 1 shows a chain conformation containing a trefoil knot, as well as pairwise interaction potentials.
In most simulations, we run for 2 × 109 steps and save conformations every 105 steps for analysis.
In the simulations with slow knot dynamics, we run 1010 steps.

To determine the knot core, we cut monomers one by one from each end of the chain until the
topology is changed. The topology is calculated by the Alexander polynomial, as done in our previous
studies [25,39]. The number of beads in the knot core is defined as the knot size Lknot. We approximate
the contour length in the knot core as Lknotσ, ignoring the fluctuation of bond length between two
adjacent monomers. To determine the knot core for a circular chain, we need to break the circular
chain at a point to form a linear chain. The breaking point at simulation step i is chosen based on the
knot position at simulation step (i − 1). Suppose that the chain at simulation step (i − 1) has a knot
at the position p, the breaking point at simulation step is at p + Nm/2, where Nm is the number of
monomers in the circular chain Such a method of choosing the breaking point is based on the fact that
we save the conformation so frequently that the knot motion is small during every single step.
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pairwise interactions between monomers. 

3. Results 

3.1. Knot Breathing in a Flexible Chain with a Triangle Potential 

Figure 2 shows a typical simulation where a knot switches between tight conformations and 
loose conformations. We use a flexible chain with a triangle potential to speed up this simulation. For 
a flexible chain with a triangle repulsion, the critical interaction range for repulsion-induced knot 
tightening was determined as ܴ୧୬୲∗ ≈ in our previous study [35]. Here, we set ܴ୧୬୲ ߪ6 =  which ,ߪ10
is much larger than ܴ୧୬୲∗ . We set the strength of the triangle potential as ߳ = 0.01	݇஻ܶ such that the 
tight knot is moderately trapped. 

Figure 1. Simulation setup. (a) Snapshot of a knot in a homogenous circular chain. The monomers in
the knot core are in red, while other monomers are in green; (b) Triangle potential for the pairwise
interactions between monomers; (c) Yukawa potential (screened electrostatic interaction) for the
pairwise interactions between monomers.

3. Results

3.1. Knot Breathing in a Flexible Chain with a Triangle Potential

Figure 2 shows a typical simulation where a knot switches between tight conformations and
loose conformations. We use a flexible chain with a triangle potential to speed up this simulation.
For a flexible chain with a triangle repulsion, the critical interaction range for repulsion-induced knot
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tightening was determined as R∗
int ≈ 6σ in our previous study [35]. Here, we set Rint = 10σ, which is

much larger than R∗
int. We set the strength of the triangle potential as ε = 0.01 kBT such that the tight

knot is moderately trapped.
Figure 2a,b show that the knot diffuses along the chain over a distance much larger than the

knot size, and the knot size switches between two distinct states: a tight state with the most probable
knot size L∗

knot ≈ 41, and a loose state. Recall that a flexible chain with pure hardcore repulsion
has a metastable knot size of L∗

knot ≈ 140 [26]. The distribution of knot size is converted to effective
potentials as shown in Figure 3. We highlight that the size of the tight state is insensitive to the entire
chain size, while the size of the loose state increases with the chain size as shown in Figure 3 (right).
As a result, we refer to the tight knots as local knots, and refer to the loose knots as global knots.
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Figure 4 shows various quantities about knots as a function of the strength of the triangle 
potential. As the repulsive triangle potential becomes stronger, the local knot becomes tighter, the 
effective trap becomes deeper, and the knot diffusion becomes slightly slower. The reduction of the 
diffusivity for the smaller knot was also observed in previous studies, because tighter knots 
experience larger intra-chain friction forces [17,40]. 

Figure 2. (a) The start (red line) and end (blue line) positions of a knot along a circular flexible chain
in a simulation with the parameter set {A triangle potential, Nm = 500, Rint = 10σ, ε = 0.01 kBT}.
The positions are occasionally offset by Nm = 500 to make both curves continuous. (b) The number of
beads in the knot core as a function of the simulation time calculated from the top graph. The green and
yellow lines indicate the most probable sizes of local and global knots, respectively. (c,d) are snapshots
in this simulation, with the knot region denoted in red and the unknotted region denoted in green.
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Figure 3. (a) Effective potential as a function of the knot size for various strengths of triangle potentials
obtained from simulations with fixed Nm = 500 and fixed Rint = 10σ. (b) Effective potential as a function
of the knot size for various sizes of ring chains obtained from simulations with fixed ε = 0.02 kBT and
fixed Rint = 10σ.

Figure 4 shows various quantities about knots as a function of the strength of the triangle potential.
As the repulsive triangle potential becomes stronger, the local knot becomes tighter, the effective trap
becomes deeper, and the knot diffusion becomes slightly slower. The reduction of the diffusivity
for the smaller knot was also observed in previous studies, because tighter knots experience larger
intra-chain friction forces [17,40].
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Figure 4. Results from simulations with parameter sets {a circular chain, Nm = 300, 500 or 800, a triangle
potential, Rint = 10σ}. (a) Metastable size of local knots. (b) The depth of potential well around
local knots. (c) The lifetime τlocal

knot of local knots in units of τbead. The gray curve is calculated from
Equation (7). The data for Nm = 800 is incomplete at large ε due to an insufficient number of hopping
events in simulations. (d) The diffusivity Ddiffuse of a knot along the chain. The calculation of diffusivity
is based on all data, including both tight and loose knots. (e) The normalized diffusion distance along
the chain during the lifetime calculated from Equation (9).

From the stepwise evolution of knot size, we can calculate the dwelling time Tdwell of a knot
trapped in the potential well around local or global knots. Figure 5 shows the histogram of Tdwell.
The distribution of dwelling time Tdwell appears to follow an exponential decay,

P(Tdwell) ∼ exp
(
−Tdwell/τlocal

knot

)
(6)

with a characteristic lifetime τlocal
knot . An exponential distribution of dwelling time was also observed in

a recent study of knots [40]. Figure 4c shows τlocal
knot increases with ε due to the increase of the trapping

potential well. The lifetimes of local knots are insensitive to Nm. Based on a simple transition state
theory, the lifetime can be approximated by the following equation:

τlocal
knot ≈ τ0 exp

(
Ftrap

)
(7)

where τ0 may be considered as the time scale for a knot to diffuse a certain distance in the absence of
free energy barrier. We further make the following approximation:

τ0 ≈
(

Lbarrier
knot σ − L∗

knotσ
)2

/Ddiffuse (8)

where Lbarrier
knot ≈100 is the knot size at the barrier as shown in Figure 3. The above equation assumes

the speed of Lknot changing equals the diffusivity of a knot along the chain. The lifetime estimated by
this approximation is in fair agreement with simulation results (the gray curve in Figure 4c).
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, from which we determine τlocal
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Figure 4e shows the average distance of a local knot along the chain during the lifetime normalized
by L∗

knot:
Ndiffuse ≡

√
Ddiffuseτ/(L∗

knotσ) (9)

The normalized diffusion distance Ndiffuse monotonically increases with ε. It is worth noting
that the lifetimes of knots are typically on the order of 106τbead, which are much longer than the
relaxation time (∼104τbead) of a unknotted chain with the same Nm. Such long lifetimes should provide
convenient opportunities for experimental observation of knot breathing, i.e., switching between local
and global knots.

3.2. Knot Breathing in a Semiflexible Chain with a Yukawa Potential

Now we study knot breathing in a semiflexible chain with a Yukawa potential. Figure 6a,b shows
an example of the diffusion of a trefoil knot along a circular chain. We use a weak bending stiffness
Lp = 2.5σ, because a larger Lp requires a chain with more monomers to eliminate the finite-length
effects and accordingly requires more computational efforts. We use a Yukawa repulsion with κ−1 = 5σ

and ε = 0.4 kBT to moderately squeeze the knot size to L∗
knot ≈ 21. Simulation snapshots of tight and

loose knot conformations are presented in Figure 7. From the distribution of the knot size, we calculate
the effective potential as a function of the knot size as shown in Figure 6c. The traps around local and
global knots becomes deeper as the Yukawa potential becomes stronger.

Polymers 2017, 9, 57  6 of 10 

 

 
Figure 5. (a) Histogram of dwelling time of local knots in simulations. The simulation parameter set is {ܰ௠ =500, triangle potential, ܴ୧୬୲ = ߳ ,ߪ10 = 0.01	݇஻ܶ}. The solid line is the fit to an exponential function ܿݏݐ݊ݑ݋ = 197 expሾܶୢ ୵ୣ୪୪/(5.0 × 10ହ߬ୠୣୟୢ)ሿ, from which we determine ߬୩୬୭୲୪୭ୡୟ୪ ≈ 5.0 × 10ହ߬ୠୣୟୢ. (b) The 
result for ߳ = 0.012	݇஻ܶ and ߬୩୬୭୲୪୭ୡୟ୪ ≈ 7.5 × 10ହ߬௕௘௔ௗ. 

Figure 4e shows the average distance of a local knot along the chain during the lifetime normalized by ܮ୩୬୭୲∗ : 

ୢܰ୧୤୤୳ୱୣ ≡ ඥୢܦ୧୤୤୳ୱୣ߬/(ܮ୩୬୭୲∗  (9) (ߪ

The normalized diffusion distance ୢܰ୧୤୤୳ୱୣ  monotonically increases with ߳ . It is worth noting that the 
lifetimes of knots are typically on the order of 10଺߬ୠୣୟୢ, which are much longer than the relaxation time (∼10ସ߬ୠୣୟୢ) of a unknotted chain with the same ܰ௠. Such long lifetimes should provide convenient opportunities 
for experimental observation of knot breathing, i.e., switching between local and global knots. 

3.2. Knot Breathing in a Semiflexible Chain with a Yukawa Potential 

Now we study knot breathing in a semiflexible chain with a Yukawa potential. Figure 6a,b shows 
an example of the diffusion of a trefoil knot along a circular chain. We use a weak bending stiffness ܮ௣ =  ௣ requires a chain with more monomers to eliminate the finite-lengthܮ because a larger ,ߪ2.5
effects and accordingly requires more computational efforts. We use a Yukawa repulsion with ିߢଵ ∗୩୬୭୲ܮ = 0.4 ݇஻ܶ to moderately squeeze the knot size to	and ߳ ߪ5= ≈ 21. Simulation snapshots of tight 
and loose knot conformations are presented in Figure 7. From the distribution of the knot size, we 
calculate the effective potential as a function of the knot size as shown in Figure 6c. The traps around 
local and global knots becomes deeper as the Yukawa potential becomes stronger. 
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Figure 6. (a) The start (red line) and end (blue line) positions of a knot along a circular chain in a
simulation {Yukawa potential, Nm = 300, Lp = 2.5σ, κ−1 = 5σ, ε = 0.4 kBT}. The positions are occasionally
offset by Nm = 300 to make both curves continuous. (b) The number of beads in the knot core calculated
from the plot in (a). (c) Effective potentials as a function of the knot size for three strengths of Yukawa
potentials. We fix Nm = 300, Lp = 2.5σ and κ−1 = 5σ.
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Figure 8. The minimal strengths of Yukawa repulsions for trapping a trefoil knot. 

We also simulate knot breathing for other knot types (4ଵ, 5ଵ, 5ଶ knots) as shown in Figure 9. The 
three screening lengths in these three simulations are close to the minimal screening lengths for knot 
trapping. The minimal screening length does not appear to increase with the complexity of knot, 
which was also found in our previous study [35]. 

Figure 7. Simulation snapshots of the local knot (left) and the global knot (right) from the simulation
{Yukawa potential, Nm = 300, Lp = 2.5σ, κ−1 = 5σ, ε = 0.4 kBT}. The red beads correspond to knot cores,
while the green beads correspond to unknotted region.

To substantially trap a knot, a minimum strength ε∗trap is required. Figure 8 shows the minimal
strengths for Yukawa repulsions. We consider a knot to be substantially trapped if the life time of the
local knots is more than 10 times the relaxation time of a local knot in simulations. The leftmost point
of each curve in Figure 8 roughly indicates the minimal screening length κ−1∗ to trap a knot. Note that
repulsion-induced knot trapping is a phenomenon requiring a criteria stricter than repulsion-induced
knot shrinking in our previous study [35]. For repulsion-induced knot shrinking, we treat the
soft potential as a weak perturbation and judge the trend of ∂L∗

knot/∂ε around ε = 0. Recall that
∂L∗

knot/∂ε < 0 corresponds to the repulsion-induced knot shrinking, while ∂L∗
knot/∂ε > 0 corresponds

to the repulsion-induced knot swelling. Sometimes, ∂L∗
knot/∂ε will switch from a negative value

to a positive value as we increase ε from zero to a finite positive value. Under that situation, we
cannot trap a knot by repulsion. For repulsion-induced knot trapping, we use a finite repulsion
to substantially trap a knot. Both repulsion-induced knot shrinking and repulsion-induced knot
trapping require a sufficiently long-range interaction. In the case of flexible chains, the minimal
screening length for repulsion-induced knot shrinking is κ−1

shrink ≈ 1.6σ, while the minimal screening
length for repulsion-induced knot trapping shrinking is κ−1

trap ≈ 3.3σ. It means that, in the case of
1.6σ < κ−1

shrink < 3.3σ, the knot will shrink and then swell as we increase the strength of repulsion from
ε = 0, and we cannot substantially trap a knot.
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Figure 8. The minimal strengths of Yukawa repulsions for trapping a trefoil knot.

We also simulate knot breathing for other knot types (41, 51, 52 knots) as shown in Figure 9.
The three screening lengths in these three simulations are close to the minimal screening lengths for
knot trapping. The minimal screening length does not appear to increase with the complexity of knot,
which was also found in our previous study [35].



Polymers 2017, 9, 57 8 of 11

Polymers 2017, 9, 57  8 of 10 

 

 
Figure 9. Knot breathing for other knot types in simulations of circular flexible chains with 300 
monomers and Yukawa potentials. (a) 4ଵ knot; (b) 5ଵ knot; (c) 5ଶ knot.  

4. Discussion about Length Scales and the Relevance to DNA and Peptides 

Using the monomer size of the length unit, there are three characteristic length scales in our 
simulation system: the knot size ܮ୩୬୭୲, the persistence length ܮ௣ and the range of soft interaction ܴ୧୬୲. The interplay among these three length scales are quite complicated. Our previous study [35] 
indicated that the combination of the persistence length and the knot size leads to a pair correlation 
between monomers, which has a characteristic length corresponding to the critical interaction range ܴ୧୬୲. While we pointed out the central role of the pair correlation, we have not yet arrived at a simple 
physical picture to describe the interplay between ܮ୩୬୭୲, ܮ௣, and ܴ୧୬୲. Even in the absence of soft 
interaction, the interplay between ܮ୩୬୭୲ and ܮ௣ can lead to an intriguing phenomenon. Matthews et 
al. found that the free energy cost of knot formation on a chain under tension is minimized at a non-
zero critical value of persistence length ܮ௣∗ , while ܮ௣∗  depends on the knot size, which is controlled 
by a pulling force [21]. 

It is interesting to examine whether the Coulomb-induced knot trapping can be applied to 
biopolymers, such as DNA and peptides. In order to induce the knot trapping, the interaction range 
of electrostatic interaction needs to be larger than a critical value, which means the ionic strength 
needs to be smaller than a critical value. We estimate the ionic strengths required to induce the 
Coulomb-induced knot trapping in DNA and peptides. For double-stranded (ds) DNA, we 
approximate ߪ ≈ 2.5 nm and ܮ௣ ≈ 50 nm. We obtain the minimal screening length is ିߢଵ ≈ 20 nm. 
Applying ିߢଵ ≈ 0.304	nm/ඥܫ(in	mol/ܮ), we estimate that the ionic strength ܫ  should satisfy ܫ <0.23 mM for Coulomb-induced knot trapping. For single-stranded (ss) DNA, we approximate ߪ ≈ 1 
nm and ܮ௣ ≈ 3	nm [41]. We have the minimal screening length ିߢଵ ≈ 4 nm, corresponding to the 
ionic strength of 5.8 mM. When considering peptides as flexible chains with ߪ ≈ 0.36  nm, we 
estimate the minimal screening length ିߢଵ ≈ 1.17 nm, corresponding to the ionic strength of 68 mM. 
These estimations suggest that Coulomb-induced knot trapping can occur for ss-DNA and peptides 
with a few millimolar ionic strengths, and is not likely for ds-DNA unless the ionic strength is sub-
mM. Physiological conditions have an ionic strength of about 150 mM, which is probably too high to 
induce the Coulomb-induced knot trapping. 

Next, we estimate the prefactor ߳ in Yukawa potential for ss-DNA and peptides. The prefactor ߳ can be considered as the Coulomb interaction energy between two charges with separation ߪ in a 
medium of dielectric constant ≈ 80. For ss-DNA, the charge in each nucleic acid is −1݁ and the 
separation is ߪ ≈ 1	 nm, and we then obtain ߳ ≈ 0.69 ݇஻T. In the case of peptides with amino acid 
separation of ߪ ≈ 0.36 nm, if the amino acid has 1݁ or – 1݁, then we obtain ߳ ≈ 1.92 ݇஻T. The 
critical ߳ in Figure 8 is usually less than 1 ݇஻ܶ, and the strengths of Coulomb interactions in ss-DNA 
and peptides thus may be sufficient for knot trapping. In the case of double-stranded DNA, the 
charge density is −1݁ per 0.17 nm length, and a bead of size 2.5 nm carries a charge of about −14.7e. 
Accordingly, we obtain ≈ 59.8  ݇஻ܶ . Once the Debye screening length is large enough for the 
Coulomb-induced knot trapping in double-stranded DNA, the interaction strength is not a problem. 

It is worth mentioning that, in single-stranded DNA, the hydrophobic attraction between bases in 
two different nucleic acids should strongly affect the knot conformation and dynamics, and may 

Figure 9. Knot breathing for other knot types in simulations of circular flexible chains with
300 monomers and Yukawa potentials. (a) 41 knot; (b) 51 knot; (c) 52 knot.

4. Discussion about Length Scales and the Relevance to DNA and Peptides

Using the monomer size of the length unit, there are three characteristic length scales in our
simulation system: the knot size Lknot, the persistence length Lp and the range of soft interaction
Rint. The interplay among these three length scales are quite complicated. Our previous study [35]
indicated that the combination of the persistence length and the knot size leads to a pair correlation
between monomers, which has a characteristic length corresponding to the critical interaction range
Rint. While we pointed out the central role of the pair correlation, we have not yet arrived at a simple
physical picture to describe the interplay between Lknot, Lp, and Rint. Even in the absence of soft
interaction, the interplay between Lknot and Lp can lead to an intriguing phenomenon. Matthews et al.
found that the free energy cost of knot formation on a chain under tension is minimized at a non-zero
critical value of persistence length L∗

p, while L∗
p depends on the knot size, which is controlled by a

pulling force [21].
It is interesting to examine whether the Coulomb-induced knot trapping can be applied to

biopolymers, such as DNA and peptides. In order to induce the knot trapping, the interaction
range of electrostatic interaction needs to be larger than a critical value, which means the ionic
strength needs to be smaller than a critical value. We estimate the ionic strengths required to induce
the Coulomb-induced knot trapping in DNA and peptides. For double-stranded (ds) DNA, we
approximate σ ≈ 2.5 nm and Lp ≈ 50 nm. We obtain the minimal screening length is κ−1 ≈ 20
nm. Applying κ−1 ≈ 0.304 nm/

√
I(in mol/L), we estimate that the ionic strength I should satisfy

I < 0.23 mM for Coulomb-induced knot trapping. For single-stranded (ss) DNA, we approximate
σ ≈ 1 nm and Lp ≈ 3 nm [41]. We have the minimal screening length κ−1 ≈ 4 nm, corresponding
to the ionic strength of 5.8 mM. When considering peptides as flexible chains with σ ≈ 0.36 nm, we
estimate the minimal screening length κ−1 ≈ 1.17 nm, corresponding to the ionic strength of 68 mM.
These estimations suggest that Coulomb-induced knot trapping can occur for ss-DNA and peptides
with a few millimolar ionic strengths, and is not likely for ds-DNA unless the ionic strength is sub-mM.
Physiological conditions have an ionic strength of about 150 mM, which is probably too high to induce
the Coulomb-induced knot trapping.

Next, we estimate the prefactor ε in Yukawa potential for ss-DNA and peptides. The prefactor
ε can be considered as the Coulomb interaction energy between two charges with separation σ in
a medium of dielectric constant ≈ 80. For ss-DNA, the charge in each nucleic acid is −1e and the
separation is σ ≈ 1 nm, and we then obtain ε ≈ 0.69 kBT. In the case of peptides with amino acid
separation of σ ≈ 0.36 nm, if the amino acid has 1e or –1e, then we obtain ε ≈ 1.92 kBT. The critical ε in
Figure 8 is usually less than 1 kBT, and the strengths of Coulomb interactions in ss-DNA and peptides
thus may be sufficient for knot trapping. In the case of double-stranded DNA, the charge density
is −1e per 0.17 nm length, and a bead of size 2.5 nm carries a charge of about −14.7e. Accordingly,
we obtain ≈ 59.8 kBT. Once the Debye screening length is large enough for the Coulomb-induced knot
trapping in double-stranded DNA, the interaction strength is not a problem.
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It is worth mentioning that, in single-stranded DNA, the hydrophobic attraction between
bases in two different nucleic acids should strongly affect the knot conformation and dynamics,
and may overwhelm the Coulomb-induced knot trapping or hinder the knot reaching its
equilibrium conformation.

5. Conclusions

In this work, we use long-range pairwise repulsions between monomers to trap knots in tight
conformations. We tune the strength of repulsion so that a knot is moderately trapped in tight
conformations, and we can then observe knot breathing, the escaping and re-trapping of the knot.
We determine the minimal strengths of Yukawa potentials (screened electrostatic interaction) as well
as the minimal screening lengths for knot trapping. We find that knot trapping can be induced
by electrostatic interactions in single-stranded DNA and peptides under normal ionic strength.
For double-stranded DNA, the Coulomb-induced knot trapping may occur under very low ionic
strength with I < 0.23 mM.
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