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Abstract: Diblock copolymers consisting of a hydrophilic poly(2-(methacryloyloxy)ethyl
phosphorylcholine) (PMPC) block and either a cationic or anionic block were prepared from
(3-(methacrylamido)propyl)trimethylammonium chloride (MAPTAC) or sodium 2-(acrylamido)-2-
methylpropanesulfonate (AMPS). Polymers were synthesized via reversible addition-fragmentation
chain transfer (RAFT) radical polymerization using a PMPC macro-chain transfer agent. The
degree of polymerization for PMPC, cationic PMAPTAC, and anionic PAMPS blocks was 20,
190, and 196, respectively. Combining two solutions of oppositely charged diblock copolymers,
PMPC-b-PMAPTAC and PMPC-b-PAMPS, led to the spontaneous formation of polyion complex
vesicles (PICsomes). The PICsomes were characterized using 1H NMR, static abd dynamic light
scattering, transmittance electron microscopy (TEM), and atomic force microscopy. Maximum
hydrodynamic radius (Rh) for the PICsome was observed at a neutral charge balance of the cationic
and anionic diblock copolymers. The Rh value and aggregation number (Nagg) of PICsomes in 0.1 M
NaCl was 78.0 nm and 7770, respectively. A spherical hollow vesicle structure was observed in
TEM images. The hydrodynamic size of the PICsomes increased with concentration of the diblock
copolymer solutions before mixing. Thus, the size of the PICsomes can be controlled by selecting an
appropriate preparation method.
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1. Introduction

Polymer vesicles prepared by self-association of block copolymers, which are of great interest
because of their potential application in fields such as materials science and biochemistry. Usually,
polymer vesicles are prepared by self-assembly of amphiphilic block copolymers by the solvent
switch method [1,2] or the organic-solvent free method [3]. For the solvent switch method, an
amphiphilic diblock copolymer is dissolved in an organic solvent that can be mixed with water, such
as dimethylsulfoxide (DMSO), N,N-diethylformamide (DMF), tetrahydrofuran (THF), or 1,4-dioxane,
to prepare a homogeneous polymer solution, followed by the gradual addition water to the organic
solvent solution. The hydrophilic block chains become solvated to form the vesicle shell, which
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stabilizes the polymer vesicle, whereas the hydrophobic blocks associate to form the vesicle membrane.
It is difficult to control vesicle size using this method because the self-assembly process depends heavily
on the rate of solvent mixing. Moreover, further purification using dialysis is required to remove the
organic solvent. This process is time-consuming and economically unfavorable. Furthermore, many
factors, such as the initial polymer concentration, organic solvent characteristics, additives used, and
temperature, affect the morphology of the polymer aggregates [4]. Polymer vesicle preparation without
the use of an organic solvent usually involves rehydration of the block copolymer in water. The diblock
copolymer is dissolved directly in water to form the polymer vesicle, but long and vigorous agitation
is usually necessary to fully hydrate the block copolymer. However, this method results in broad size
distributions [5,6].

Kataoka and Kishimura [7] reported the elegant formation of polyion complex vesicles (PICsomes)
from oppositely charged diblock copolymers of cationic poly(ethylene glycol) (PEG)-block-poly
((5-aminopentyl)-α,β-aspartamide) (PEG-P(Asp-AP)) and anionic PEG-block-poly(α,β-aspartic acid)
(PEG-PAsp). The degree of polymerization (DP) for PEG, P(Asp-AP), and PAsp is 45, 75, and 75,
respectively. Aqueous solutions of PEG-P(Asp-AP) and PEG-PAsp are prepared separately, and are
mixed to prepare the PICsomes. In general, PEG is used as a hydrophilic segment for biocompatible
materials because PEG suppresses non-specific protein adsorption due to its solvophilicity, large
exclusion volume effect, and high mobility. The PICsome composed of PEG-P(Asp-AP) and PEG-PAsp
is a potential candidate as a carrier for drug delivery systems (DDS) because the PICsome surface
is surrounded by biocompatible PEG shells. However, the preparation of PICsomes involves the
time-consuming processes of protection and deprotection during the syntheses of P(Asp-AP) and PAsp.
Stuart and co-workers [8,9] reported water-soluble polyion complex micelles formed from oppositely
charged polymers. Schrage and co-workers [10] reported PICsomes with a corona of segregated
polymer chains formed from oppositely charged block ionomers in THF.

Preparation of a pair of oppositely charged doubly hydrophilic diblock copolymers,
PEG-block-poly((3-(methacrylamido)propyl)trimethylammonium chloride) (PEG-b-PMAPTAC) and
PEG-block-poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) (PEG-b-PAMPS), was reported via
reversible addition-fragmentation chain transfer (RAFT) radical polymerization using a PEG-based
chain transfer agent (CTA) [11]. A stoichiometrically charged neutral mixture of these oppositely
charged diblock copolymers forms water-soluble PIC micelles in water. In addition, preparation
of poly(2-(methacryloyloxy)ethyl phosphorylcholine)-block-PMAPTAC (PMPC-b-PMAPTAC) and
PMPC-b-PAMPS has been reported via RAFT using PMPC-based CTA with DP = 100 [12]. Diblock
copolymers with different, well-controlled PMAPTAC (DP = 27, 48, and 96) and PAMPS (DP = 27,
45, and 99) block lengths were obtained. The PMPC possesses excellent blood compatibility, that is,
PMPC does not induce hemolysis and activation of platelets when it is in contact with blood, due to
a polyampholyte containing both positive and negative charges in its phosphorylcholine group [13].
Mixing aqueous solutions of PMPC-b-PMAPTAC and PMPC-b-PAMPS leads to the spontaneous
formation of simple core-shell PIC micelles composed of a PIC core and PMPC shells.

The shapes of self-assemblies formed from amphiphilic block copolymers in water are influenced
by the hydrophilic/hydrophobic balance. They change from spherical micelles, thread-like micelles,
and vesicles upon an increase in molecular weight of the hydrophobic block [14,15]. We would like
to confirm PIC aggregates with a small volume fraction of water-soluble part form vesicle structures
similar to conventional amphiphilic block copolymers. In the present study, cationic MAPTAC and
anionic AMPS were polymerized using short-chain-length PMPC-based CTA with DP = 20 via RAFT
radical polymerization to obtain a pair of oppositely charged diblock copolymers. These diblock
copolymers were composed of short-chain-length PMPC blocks and long-chain-length charged blocks
(PAMPS or PMAPTAC). The DP value of the charged blocks was about 10 times larger than that of
the PMPC block. Polyion complex vesicles (PICsomes) were formed by mixing these two oppositely
charged diblock copolymers, which were characterized. The expected PICsome structure is shown
in Figure 1. The hydrated PMPC shells were covered on the inside and outside by a PICsome
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membrane composed of PMAPTAC and PAMPS blocks. This PICsome was thought to have the ability
to incorporate nonionic water-soluble guest molecules into its hollow core.
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(PMPC20-b-PAMPS196, P20A196); (b) conceptual illustration of a polyion complex vesicle (PICsome) 
composed of a stoichiometric charge-neutral mixture of P20M190 and P20A196. 
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from Sigma Aldrich (St Louis, MO, USA) and one tablet was dissolved in 200 mL purified water. 
(3-(Methacrylamido)propyl)trimethylammonium chloride (MAPTAC, 96%), 
2-(acrylamido)-2-methylpropanesulfonic acid (AMPS, 95%), and 4,4′-azobis(4-cyanopentanoic acid) 
(V-501, 98%) were purchased from Wako Pure Chemical (Osaka, Japan) and Texas red-labeled dextran 
(Dex, Mw = 70,000, neutral) from Life Technologies (Tokyo, Japan) and were used as received 
without further purification. Water was purified using ion exchange. Other reagents were used as 
received. 

2.2. Preparation of PMPC 

The PMPC macro-chain transfer agent (PMPC macro-CTA) was prepared according to a 
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were 6.21 × 103 g/mol, 20, and 1.03, respectively. 
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Figure 1. (a) Chemical structures of oppositely charged diblock copolymers, poly(2-(methacryloyloxy)
ethyl phosphorylcholine)-block-poly((3-(methacrylamido)propyl) trimethylammonium chloride)
(PMPC20-b-PMAPTAC190, P20M190) and poly(2-(methacryloyloxy) ethyl phosphorylcholine)-block-poly
(sodium 2-(acrylamido)-2-methylpropanesulfonate) (PMPC20-b-PAMPS196, P20A196); (b) conceptual
illustration of a polyion complex vesicle (PICsome) composed of a stoichiometric charge-neutral
mixture of P20M190 and P20A196.

2. Materials and Methods

2.1. Materials

2-(Methacryloyloxy)ethyl phosphorylcholine (MPC) was synthesized as previously reported
and recrystallized from acetonitrile [16]. 4-Cyanopentanoic acid dithiobenzoate (CPD) was
synthesized according to the method reported by McCormick and co-workers [17]. Methanol
was dried over 4 Å molecular sieves and then distilled. The phosphate buffered saline (PBS)
tablet was purchased from Sigma Aldrich (St Louis, MO, USA) and one tablet was dissolved in
200 mL purified water. (3-(Methacrylamido)propyl)trimethylammonium chloride (MAPTAC, 96%),
2-(acrylamido)-2-methylpropanesulfonic acid (AMPS, 95%), and 4,4′-azobis(4-cyanopentanoic acid)
(V-501, 98%) were purchased from Wako Pure Chemical (Osaka, Japan) and Texas red-labeled dextran
(Dex, Mw = 70,000, neutral) from Life Technologies (Tokyo, Japan) and were used as received without
further purification. Water was purified using ion exchange. Other reagents were used as received.

2.2. Preparation of PMPC

The PMPC macro-chain transfer agent (PMPC macro-CTA) was prepared according to a method
modified from previously reports [18]. MPC (6.03 g, 20.4 mmol) was dissolved in a mixture of
methanol and water (38.8 mL, 7/5, v/v), followed by addition of CPD (423 mg, 1.38 mmol) and V-501
(48.0 mg, 0.171 mmol) to the solution. The solution was degassed by purging with argon gas for 0.5 h.
Polymerization was performed at 70 ◦C for 6 h. The reaction mixture was dialyzed against pure water
for two days. PMPC was obtained by freeze-drying (6.05 g, 93.8%). The number-average molecular
weight (Mn(NMR)), degree of polymerization (DP) estimated from 1H NMR, and molecular weight
distribution (Mw/Mn) estimated from gel-permeation chromatography (GPC) were 6.21 × 103 g/mol,
20, and 1.03, respectively.
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2.3. Preparation of PMPC20-b-PMAPTAC190 (P20M190)

PMPC macro-CTA (345 mg, 56.5 µmol, Mn(NMR) = 6.21 × 103 g/mol, Mw/Mn = 1.03), MAPTAC
(2.50 g, 11.3 mmol), and V-501 (7.90 mg, 28.2 µmol) were dissolved in water (22.6 mL). The solution
was deoxygenated by purging with argon gas for 0.5 h. Polymerization was conducted at 70 ◦C for 6 h.
The diblock copolymer was purified by dialysis against pure water for two days. The cationic diblock
copolymer (P20M190) was recovered using freeze-drying (2.46 g, 85.9%, Mn(NMR) = 4.95 × 104 g/mol,
Mw/Mn = 1.05).

2.4. Preparation of PMPC20-b-PAMPS196 (P20A196)

A predetermined amount of AMPS (2.00 g, 9.67 mmol) was neutralized with 1 M NaOH in 9.65 mL
of water. Then, PMPC macro-CTA (300 mg, 48.3 µmol, Mn(NMR) = 6.21 × 103 g/mol, Mw/ Mn = 1.03)
and V-501 (10.7 mg, 38.2 µmol) was added to the solution, which was deoxygenated by purging with
argon gas for 30 min. Polymerization was performed at 70 ◦C for 3 h. The diblock copolymer was
purified by dialysis against pure water for two days. The anionic diblock copolymer (P20A196) was
obtained by freeze-drying (2.25 g, 88.8%, Mn(NMR) = 4.85 × 104 g/mol, Mw/Mn = 1.07).

2.5. Preparation of Polyion Complex Vesicles (PICsomes)

The P20M190 and P20A196 were dissolved separately in NaCl aqueous solutions, and the solutions
were left standing overnight at room temperature to achieve complete dissolution. A P20M190 solution
was added dropwise to a P20A196 solution over a period of 5 min at room temperature with stirring
to prepare the PIC vesicles (PICsomes), and the mixture was left standing for at least 1 h prior
to measurement. The mixing ratio of the block copolymers was represented by the mole fraction
of positively charged unit (f + = [MAPTAC]/([AMPS] + [MAPTAC])) and hence complete charge
neutralization was achieved at f + = 0.5.

2.6. Encapsulation of Texas Red-Labeled Dextran (Dex)

Dex (0.040 mg, 5.71 × 10−10 mol) was dissolved in PBS buffer (4 mL), and P20M190 (0.5 g/L) and
P20A196 (0.5 g/L) were dissolved in PBS buffer solutions containing Dex separately. The solutions
were allowed to stand overnight at room temperature. The P20M190 solution was added to the P20A196

solution over a period of 5 min with stirring. The f + value was kept constant at 0.5. The solution (4 mL)
was dialyzed using a polycarbonate membrane with 100-nm pore size (Harvard Apparatus, Holliston,
MA, USA) against fresh PBS buffer (400 mL) for 18 h, changing the PBS buffer 3 times to remove the
free Dex that was not incorporated into the hollow core of the PICsome. After dialysis, fluorescence
emission of the PBS buffer in the dialyzer was measured. As a reference, fluorescence of the PBS buffer
solution of Dex without PICsomes was also measured using a similar procedure. The weight of the
Dex incorporated into the PICsomes was calculated using a calibration curve. The loading efficiency
(LE) and loading capacity (LC) of Dex were calculated according to the following equations:

LE (%) =
Weight of encapsulated Dex

Weight of total Dex
× 100, (1)

LC (%) =
Weight of encapsulated Dex

Weight of polymer
× 100. (2)

2.7. Measurements

The GPC measurements for the cationic polymer were obtained using a Jasco (Tokyo, Japan)
RI-2031 Plus refractive index detector equipped with a Jasco PU-8020 pump and a Shodex (Tokyo,
Japan) OHpak SB-804 HQ column (exclusion limit ~107) working at 40 ◦C under a flow rate of
0.60 mL/min. A 0.30 M aq. Na2SO4 solution containing 0.50 M acetic acid was used as the eluent.
The values of Mn(GPC) and Mw/Mn were calibrated using standard poly(2-vyniypyridine) samples.
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The GPC measurements for the anionic polymer were obtained using a Tosoh RI-8020 refractive
index detector (Tosoh, Tokyo, Japan) equipped with a Shodex 7.0-µm bead size GF-7M HQ column
(exclusion limit ~107) working at 40 ◦C under a flow rate of 0.60 mL/min. A phosphate buffer
(50 mM, pH 9.0) containing 10 vol % acetonitrile was used as the eluent. The values of Mn(GPC)
and Mw/Mn were determined using standard sodium poly(styrenesulfonate) samples. 1H NMR
spectra were obtained with a Bruker (Yokohma, Japan) DRX-500 spectrometer operating at 500.13 MHz
with a deuterium lock. Light-scattering measurements were performed using an Otsuka Electronics
Photal (Osaka, Japan) DLS-7000HL equipped with a multi-τ, digital time correlator (ALV-5000E).
A helium-neon (He-Ne) laser (10.0 mW at 632.8 nm) was used as a light source. Sample solutions for
light scattering measurements were filtered with a 0.45-µm membrane filter. From static light scattering
(SLS) measurements, the weight-average molecular weight (Mw), z-average radius of gyration (Rg),
and second virial coefficient (A2) values were calculated by the relation:

KCp

Rθ
=

1
Mw

(
1 +

1
3

Rg
2q2

)
+ 2A2Cp, (3)

where Rθ is the difference between the Rayleigh ratio of the solution and that of the solvent,
K = 4π2n2(dn/dCp)2/NAλ

4 with dn/dCp being the refractive index increment against Cp, NA being
Avogadro’s number, and q the magnitude of the scattering vector. The q value was calculated from
q = (4πn/λ)sin(θ/2), where n is the refractive index of the solvent, λ is the light source wavelength
(=632.8 nm), and θ is the scattering angle. By measuring Rθ for a set of Cp and θ, values of Mw, Rg, and
A2 were estimated from Zimm plots. The known Rayleigh ratio of toluene was used for calibration
of the instrument. Values of dn/dCp at 633 nm were determined using an Otsuka Electronics Photal
(Osaka, Japan) DRM-3000 differential refractometer. In our dynamic light scattering (DLS) experiments,
inverse Laplace transform (ILT) analysis was performed using the REPES algorithm [19–21] to obtain
the relaxation time distribution, τA(τ). The relaxation rate (Γ = τ−1) is a function of θ [22]. The diffusion
coefficient in the limit of zero angle (D) was calculated from D = (Γ/q2)q→0. The hydrodynamic
radius (Rh) was provided by the Stokes–Einstein equation, Rh = kBT/(6πηD), where kB is Boltzmann
constant, T is absolute temperature, and η is solvent viscosity. The ζ-potential measurements were
obtained using a Malvern (Worcestershire, UK) Zetasizer Nano-ZS ZEN3600 equipped with a He–Ne
laser light source (4 mW at 632.8 nm). The ζ-potential was calculated from the electrophoretic
mobility (µ) using the Smoluchowski relation, ζ = ηµ/ε (κa >> 1), where η is viscosity, ε is the
dielectric constant of the medium, and κ and a are the Debye–Hückel parameter and particle radius,
respectively [23]. Transmission electron microscopy (TEM) observations were performed using a Jeol
JEM-2100 instrument at an accelerating voltage of 200 kV. Samples for TEM were prepared by placing
one drop of the aqueous solution on a copper grid coated with thin films of Formvar. Excess water
was blotted using filter paper. The samples were stained by sodium phosphotungstate and dried
under vacuum for one day. Atomic force microscope (AFM) observations were performed with a
JPK Nano Wizard 3 (JPK Instruments, Berlin, Germany) microscope. The sample of PICsome was
applied onto a freshly cleaved mica surface. Excess water was blotted using filter paper and the
sample dried for 10 min at 25 ◦C. Measurements were obtained in tapping mode using the Olympus
(Tokyo, Japan) OMCLAC 160 TN-W2 silicon AFM probes (nominal spring constant, k = 42 N/m,
resonance frequency ca. 300 kHz, tip radius < 10 nm). Height and size information were extracted
using JPK data processing software (Version 5.1.8, JPK Instruments, Berlin, Germany). Fluorescence
emission spectra were recorded on a Hitachi (Tokyo, Japan) F-2500 fluorescence spectrophotometer.
Fluorescence spectra of Dex were measured with excitation at 550 nm. Excitation and emission slit
widths were maintained at 10 nm.

3. Results and Discussion

To obtain oppositely charged diblock copolymers (P20M190 and P20A196), block copolymerization
was conducted using PMPC macro-CTA with DP = 20 via RAFT radical polymerization.
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The conversions of MAPTAC and AMPS were estimated from 1H NMR measurements after
polymerization reached 93.0% and 95.0%, respectively. The molecular characteristics of PMPC, P20M190,
and P20A196 are summarized in Table 1. The theoretical number-average molecular weight (Mn(theo))
was calculated using:

Mn(theo) =
[M]0

[CTA]0
xmMm + MCTA, (4)

where [M]0 is initial monomer concentration, [CTA]0 is initial CTA concentration, xm is the conversion
of monomer, Mm is the molecular weight of the monomer, and MCTA is the molecular weight of the
CTA. The Mn(NMR) and Mn(GPC) for PMPC were close to the theoretical Mn(theo) value, and the
molecular weight distribution (Mw/Mn) was narrow (=1.03), indicating the controlled mechanism of
the polymerization. Values obtained from 1H NMR to determine the true molecular weight of P20M190

and P20A196 yielded Mn(NMR) = 4.95 × 104 and 4.85 × 104 g/mol, which was in fair agreement
with Mn(theo) = 4.82 × 104 and 4.68 × 104 g/mol, respectively. The Mn(GPC) value for P20M190 and
P20A196 deviated markedly from Mn(theo). Note that the Mn(GPC) values estimated by GPC were
only apparent values because of the inherent error involved in the use of molecular weight standards
[poly(2-vinylpyridine) and sodium poly(styrenesulfonate)] for calibrating the GPC data.

Table 1. Number-average molecular weight (Mn), number-average degree of polymerization (DP), and
molecular weight distribution (Mw/Mn) for the samples.

Sample Mn(theo) a × 104

(g/mol)
Mn(NMR) × 104

(g/mol)
DP(NMR) Mn(GPC) × 104

(g/mol)
Mw/Mn

PMPC 0.613 0.621 20 0.735 b 1.03 b

P20M190 4.82 4.95 190 2.40 c 1.05 c

P20A196 4.68 4.85 196 2.77 b 1.07 b

a Calculated using Equation (4). b Estimated from gel-permeation chromatography (GPC) using phosphate buffer
(50 mM, pH 9.0) containing 10 vol % acetonitrile as eluent. c Estimated from GPC using aq. 0.30 M Na2SO4
containing 0.50 M acetic acid as eluent.

Figure 2a,b show the 1H NMR spectra for P20M190 and P20A196, respectively. The resonance
bands observed in the 0.8–1.2 ppm region and at 1.8 ppm were attributed to the α-methyl protons
and main chain methylene protons, respectively (Figure 2a). The DP and Mn(NMR) values of the
PMAPTAC block in P20M190 were determined from the integral intensity ratio of the resonance bands
due to pendant methyl protons in the PMAPTAC block at 3.1 ppm and PMPC pendant methylene
protons at 3.7 ppm. The resonance bands observed at 1.2–2.2 ppm for P20A196 were attributed to the
sum of the main chain and pendent methyl groups in the PAMPS block (Figure 2b). Values for DP
and Mn(NMR) of the PAMPS block in P20A196 were calculated from the integral intensity ratio of the
pendent methylene protons in the PAMPS block at 3.3 ppm and PMPC pendant methylene protons at
3.7 ppm. Figure 2c shows the 1H NMR spectrum for the polyion complex vesicle (PICsome) composed
of P20M190 and P20A196 with f + = 0.5 in D2O containing 0.1 M NaCl. The intensity of resonance peaks
associated with the PMAPTAC and PAMPS blocks was weak compared with those associated with the
PMPC block. These observations suggest that the motion of the PMAPTAC and PAMPS blocks was
highly restricted due to formation of the PIC core. The mobility of PMPC chains may be higher than
that of the PMAPTAC and PAMPS chains because the PMPC chains form shells surrounding the PIC.

Aggregates formed by electrostatic interactions sometimes depend on the mixing pathway [24–26].
We studied PICsome size dependence on the mixing pathway. A standard method is that a P20M190

solution was added dropwise to a P20A196 solution over a period of 5 min at room temperature with
stirring. The P20A196 solution was added to the P20M190 solution, and the P20M190 solution was
added to the P20A196 solution immediately. These two additional methods had no effect on the size of
PICsome with f + = 0.5.
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Figure 2. 1H NMR spectra for (a) P20M190; (b) P20A196; and (c) PICsome composed of P20M190

and P20A196 with f + = 0.5 in a D2O solution containing 0.1 M NaCl. Resonance peak assignments
are indicated.

Figure 3a shows Rh distributions for P20M190, P20A196, and the PICsome with f + = 0.5 in 0.1 M
NaCl at Cp = 0.5 g/L and a scattering angle (θ) = 90◦. Unimodal Rh distributions were observed.
The Rh values for P20M190, P20A196, and PICsome were 4.3, 4.4, and 78.0 nm, respectively. The Rh
values from 4.3 to 4.4 nm are reasonable for unimers of these block copolymers. If the polymer main
chain forms completely planar zigzag structure, the distance between one carbon to the next carbon is
about 0.25 nm [27]. Hence, we can calculate the end-to-end distance of fully expanded polymer chains.
The end-to-end distance of fully extended P20M190 and P20A196 chains were calculated as 52.5 and
54.0 nm, respectively. The Rh of 78.0 nm found for the PICsome was larger than those expected from
the fully extended length of the P20M190 and P20A196 chains. These observations indicate that the
shape of the PICsome is not a simple core-shell spherical micelle. Large compound aggregates or
vesicles should be formed by mixing P20M190 and P20A196. Relaxation rates (Γ) measured at different θ
plotted against the square of the scattering vector (q2) are shown in Figure 3b. A line passing through
the origin suggests that all of the relaxation modes were virtually diffusive [28].
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To confirm the stability of the PICsome size, Rh values were measured at various standing times.
The Rh values were nearly constant and independent of time until 150 h, suggesting that the structure
of the PICsome does not change with time (data not shown). Scattering intensities of the PICsomes
were also independent of time.

To further characterize the PICsomes, SLS measurements were performed for θ from 30 to 130◦

with a 20◦ increment. The refractive index increment (dn/dCp) for P20M190, P20A196, and PICsome
in 0.1 M NaCl were determined individually. Values for Mw(SLS), Rg, and A2 were estimated from
Zimm plots. Aggregation number (Nagg) for PICsomes (i.e., number of PMPC shell chains per one
PICsome) was calculated by dividing Mw(SLS) with that of unimers. The structure of the PICsome
was also characterized by combining DLS and SLS to determine the Rg/Rh ratio. The density (d) of
P20M190, P20A196, and PICsome can be calculated by:

d =
Mw(SLS)
NA ×V

, (5)

where V is a polymer or PICsome volume calculated from 4/3πRh
3. A summary of the properties

of P20M190, P20A196, and the PICsome, including Mw(SLS), Nagg, Rg, Rh, Rg/Rh, A2, dn/dCp, and
d, is provided in Table 2. Values for Mw(SLS) for P20M190 and P20A196 were close to those for the
corresponding Mn(theo) and Mn(NMR) values shown in Table 1. The Mw(SLS) value for the PICsome
was 4.50 × 108 g/mol, estimated from SLS. The value of Nagg for the PICsome was estimated to
be 7770. The Rg/Rh ratio is a structure-sensitive parameter that provides information about the density
distribution of the particles and thereby about particle morphology [29,30]. The Rg/Rh ratio equals
0.775 for a homogeneous hard sphere, 1.0 for a thin hard spherical shell (e.g., vesicle), and increases
significantly for a less dense structure and for a polydisperse solution because large molecules of a
broad distribution will contribute more to Rg than to Rh, provided that internal modes of motion
are absent [31]. The large Rg/Rh ratios (>4) for P20M190 and P20A196 suggest that the polymer chains
were expanded due to electrostatic repulsions in the pendant ions. The Rg/Rh ratio for a polymeric
vesicle may be less than or greater than 1.0, depending on the thickness and density of the wall [32].
The Rg/Rh ratio of the PICsome was 1.12, which is close to unity, indicates that the PICsome was a
vesicle [33]. The A2 value for the PICsome was less than those for P20M190 and P20A196, suggesting
that solubility of the PICsome in 0.1 M NaCl was less than those of the unimers. The d values for
P20M190, P20A196, and PICsome were calculated to be 0.286, 0.273, and 0.376 g/cm3, respectively. The d
value for the PICsome was slightly larger than those for P20M190 and P20A196, suggesting that the
polymer chains in the PICsome were more densely packed than those of the unimers. The polymer
chains of P20M190 and P20A196 expanded due to electrostatic repulsion in the pendant ionic groups in
0.1 M NaCl. Therefore, P20M190 and P20A196 have large Rg/Rh ratios. In contrast, the polymer chains
in the PICsome were compact and dense in their vesicular membranes.

Table 2. Dynamic and static light scattering data for P20M190, P20A196, and polyion complex
vesicles (PICsomes).

Sample Mw(SLS) a × 104

(g/mol) Nagg
b Rg

c

(nm)
Rh

d

(nm)
Rg/Rh

A2
e (cm3mol/g2)
× 10−4

dn/dCp
f

(mL/g)
d g

(g/cm3)

P20M190 5.73 1 22.2 4.3 5.14 8.13 0.166 0.286
P20A196 5.86 1 21.1 4.4 4.83 12.4 0.141 0.273

PICsome h 45,000 7770 87.0 78.0 1.12 2.34 0.161 0.376
a Apparent weight-average molecular weight estimated from static light scattering (SLS). b Aggregation number
of PICsomes calculated by dividing Mw(SLS) with that of unimers. c Radius of gyration estimated from SLS.
d Hydrodynamic radius estimated from dynamic light scattering (DLS). e Second virial coefficient estimated from
SLS. f Refractive index increment. g Density of polymers and PICsomes calculated from Equation (5). h PICsome
composed of P20M190 and P20A196 with f + = 0.5.
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The structure of the PICsome was confirmed by TEM observations, which showed incomplete
spherical hollow vesicle structures (Figure 4). The vesicle structures may shrink during the drying
process done prior to TEM observation. The PICsome diameter determined from the TEM images was
171 nm, which is close to the value obtained from the light scattering data. The AFM height image
of the PICsome confirmed that the PICsome formed spherical structures that were slightly flattened
due to the adsorption and drying process (Figure 5). The height of the PICsome observed in the AFM
image was ca. 100 nm.
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Figure 5. (a) Atomic force microscope (AFM) height image and (b) corresponding height cross-section
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Figure 6a shows the Rh and light scattering intensity values for PICsomes in 0.1 M NaCl as a
function of f +. Total polymer concentration was kept constant at 0.5 g/L. An increase in Rh indicates
an increase in the size of the PICsome. The maximum Rh value was observed at f + = 0.5. In general,
scattering intensity depends on molecular weight of the particles. Therefore, an increase in scattering
intensity indicates an increase in Nagg for the PICsome, which suggests that stoichiometric charge
neutralization in the mixture of the two oppositely charged P20M190 and P20A196 leads to formation
of PICsomes with maximum size and aggregation number. Plots of Rh (and scattering intensity) vs.
f + were asymmetric (i.e., the Rh and scattering intensities for PIC aggregates with f + = 0.6 and 0.8 were
larger than those with f + = 0.4) [34]. To confirm the structure of PIC aggregates with f + = 0.4, 0.6,
and 0.8, TEM images were obtained (Figure 7). Results showed that PIC aggregates with f + = 0.4
were micelle-like spherical particles without a hollow core. In contrast, PIC aggregates with f + = 0.6
and 0.8 clearly possessed hollow core vesicle structures. The PIC aggregates composed of P20M190

and P20A196 with excess PMAPTAC blocks tended to form vesicles, presumably because the pendant
quaternary amino groups surrounded by three methyl groups in the PMAPTAC blocks were more
hydrophobic compared to the pendant sulfonate groups in the PAMPS blocks. When f + is larger
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than 0.5, excess PMAPTAC blocks existed in the aggregate, dehydration of PIC aggregates was
promoted, and solubility was less than that at f + < 0.5. For aggregates formed from conventional
amphiphilic diblock copolymers in water, the greater the hydrophobicity of the aggregate, the more
likely diblock copolymers are to form vesicles rather than spherical core-shell micelles [35]. Therefore,
PIC aggregates with f + ≥ 0.5 tend to form vesicles.Polymers 2016, 9, 49 10 of 14 
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To confirm PICsome neutralization at f + = 0.5, the ζ-potential was measured as a function of f +

(Figure 6b). At f + = 0, the aqueous solution of P20A196 has a negative ζ-potential value of −29 mV
because the PAMPS block has pendant anionic sulfonate groups. At f + = 1, the aqueous solution
of P20M190 has a positive ζ-potential value of +27 mV because the PMAPTAC block has pendant
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cationic quaternary amino groups. The ζ-potential was zero at f + = 0.5 because the charges of the
PAMPS and PMAPTAC blocks were neutralized. The PICsome was composed of a PIC core and
PMPC shells. The pendant phosphorylcholine groups in the PMPC shells contain anionic phosphate
and cationic quaternary amine. However, the ζ-potential of PMPC homopolymer was zero (data not
shown) because of neutralization of the anion and cation pair within a single polymer chain. Therefore,
the ζ-potential of PICsome was zero at f + = 0.5.

To confirm that PICsomes with f + = 0.5 are at equilibrium or in a kinetically frozen state, excess
P20A196 was added to the aqueous PICsome solution with f + = 0.5 to change the f + value. A kinetically
frozen state means that the polymer chains cannot break free from the aggregate. The size of a
PICsome with f + = 0.5 in the kinetically frozen state should not be affected by the addition of excess
P20A196. The size of a PICsome in the equilibrium state may decrease upon addition of excess P20A196.
Figure 8 shows Rh distributions for PICsomes with f + = 0.5 and PIC aggregates with f + = 0.4 and
0.2 formed by the addition of P20A196 to the PICsome with f + = 0.5. The Rh value of the PICsome
with f + = 0.5 was 78.0 nm at Cp = 0.5 g/L. When a P20A196 solution at Cp = 0.5 g/L was added
to the PICsome solution, which changed the f + to 0.4 and 0.2, the Rh values of the PIC aggregates
decreased to 49 and 7.9 nm, respectively. This observation suggested that PICsomes formed by mixing
oppositely charged diblock copolymers existed in an equilibrium state in water. Thus, small pairs of
the oppositely charged diblock copolymers may dissociate from and associate with the PICsome [36].
NaCl concentrations in the aqueous solution are very important for stability of PICsomes because
they were formed by electrostatic interactions. We measured the Rh values of PICsomes in various
NaCl concentrations. When NaCl concentration was 0.5 M, the Rh value was 77.8 nm, which is close to
the value (Rh = 78.0 nm) in 0.1 M NaCl aqueous solutions. Therefore, at least below 0.5 M of NaCl
concentration, PICsomes were stable.
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(b) at f + = 0.4 and (c) f + = 0.2 formed by addition of P20A196 solution to PICsomes with f + = 0.5 in 0.1 M
aqueous NaCl solutions at Cp = 0.5 g/L.

The relation between PICsome size and Cp in 0.1 M NaCl is shown in Figure 9. The sample
solutions were prepared by two different methods. The first method involved preparing separate
aqueous P20M190 and P20A196 solutions with a target Cp from 0.001 to 1 g/L before mixing a pair of
two oppositely charged diblock copolymers. Then, the two aqueous P20M190 and P20A196 solutions
with the same Cp were mixed to form a PICsome solution (Figure 9a). The second method involved
mixing pairs of oppositely charged diblock copolymer solutions at Cp = 1, 0.5, and 0.01 g/L to form
PICsomes. Subsequently, the aqueous PICsome solutions were diluted with 0.1 M NaCl to adjust
Cp to the target value (Figure 9b). These PICsome solutions prepared via these two Cp adjustment
methods were measured using DLS to determine Rh. The Rh values for PICsomes depended on the
value of Cp of the P20M190 and P20A196 aqueous solutions before mixing to form the PICsome. When
each P20M190 and P20A196 solution was prepared at Cp = 1 g/L, the Rh value for the PICsome was ca.
100 nm. In contrast, when each aqueous P20M190 and P20A196 solution was prepared at Cp = 0.01 g/L,
the Rh value for the PICsome was ca. 38 nm. The size of the PICsomes could be controlled by adjusting
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the Cp values of oppositely charged diblock copolymer solutions before mixing. When 0.1 M NaCl
PICsome solutions were diluted with 0.1 M NaCl, the Rh values for the PICsome remained nearly
constant, independent of Cp. These findings suggest that the structure of the PICsome, once prepared,
is stable against dilution. In general, sonication and extrusion techniques are used to control the size of
vesicles [37]. However, the easily adjustable size of the stable PICsome system described here indicates
that the size of vesicles and polymersomes can be easily controlled by adjusting the Cp before mixing a
pair of oppositely charged diblock copolymers.Polymers 2016, 9, 49 12 of 14 
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Figure 9. (a) Hydrodynamic radius (Rh) for PICsomes with f + = 0.5 as a function of polymer
concentration of P20M190 and P20A196 before mixing both block copolymers in 0.1 M NaCl; (b) Rh for
PICsomes with f + = 0.5 as a function of polymer concentration after mixing P20M190 and P20A196. The aq.
PICsome solutions at 1 (#), 0.5 (3), and 0.01 g/L (4) were diluted with 0.1 M NaCl continuously.

To confirm the ability to incorporate hydrophilic guest molecules into the interior aqueous phase
of PICsomes, fluorescence experiments were performed using Texas red-labeled Dex as a fluorescence
probe. The hydrophilic Dex molecule contains no charged groups. The P20M190 and P20A196 were
dissolved in Dex-containing PBS buffer solutions, and then these solutions were mixed to form
PICsomes. The Dex molecules that could not be incorporated into the PICsomes were removed by
dialysis against fresh PBS buffer for 18 h. Fluorescence spectra were obtained for the solution inside
the dialyzer after dialysis (Figure 10). Fluorescence emission with a maximum wavelength at 610 nm
for Dex was observed, which indicates that the Dex molecules were incorporated into the hollow core
of PICsome. In contrast, a blank solution in the absence of PICsomes produced no fluorescence from
Dex because the small Dex molecules were removed when using a dialysis membrane with a pore size
of 100 nm. These results demonstrate that PICsomes can incorporate Dex guest molecules into the
hollow core. The weight of the Dex incorporated into the PICsomes was calculated using a calibration
curve, and was 0.00315 mg. The LE and LC values determined using the encapsulated Dex weight
were 78.8% and 1.58%, respectively.
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4. Conclusions

A pair of oppositely charged diblock copolymers with well-controlled structures, P20M190 and
P20A196, were prepared via RAFT using PMPC macro-CTA. Polyion complex vesicles (PICsomes)
were formed by stoichiometric charge neutralization of a mixture of aqueous P20M190 and P20A196

solutions. The surface of the PICsomes was covered with biocompatible PMPC shell chains. These
PICsomes could incorporate water-soluble guest molecules without charge groups inside the interior
aqueous phase, which indicates that these PICsomes may be useful as a molecular carrier of several
bioactive compounds.
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