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Abstract: This review presents our researches on the preparation and material application of inclusion
complexes that comprises an amylose host and polymeric guests through phosphorylase-catalyzed
enzymatic polymerization. Amylose is a well-known polysaccharide and forms inclusion complexes
with various hydrophobic small molecules. Pure amylose is produced by enzymatic polymerization
by using α-D-glucose 1-phosphate as a monomer and maltooligosaccharide as a primer catalyzed by
phosphorylase. We determined that a propagating chain of amylose during enzymatic polymerization
wraps around hydrophobic polymers present in the reaction system to form inclusion complexes.
We termed this polymerization “vine-twining polymerization” because it is similar to the way vines
of a plant grow around a rod. Hierarchical structured amylosic materials, such as hydrogels and films,
were fabricated by inclusion complexation through vine-twining polymerization by using copolymers
covalently grafted with hydrophobic guest polymers. The enzymatically produced amyloses induced
complexation with the guest polymers in the intermolecular graft copolymers, which acted as
cross-linking points to form supramolecular hydrogels. By including a film-formable main-chain in
the graft copolymer, a supramolecular film was obtained through hydrogelation. Supramolecular
polymeric materials were successfully fabricated through vine-twining polymerization by using
primer-guest conjugates. The products of vine-twining polymerization form polymeric continuums of
inclusion complexes, where the enzymatically produced amylose chains elongate from the conjugates
included in the guest segments of the other conjugates.

Keywords: amylose host; enzymatic polymerization; hierarchical structured material; inclusion
complex; vine-twining polymerization

1. Introduction

Biopolymers such as polysaccharides, proteins, and nucleic acids are common in Nature and
play important in vivo roles [1–3]. The biological functions of polymers such as polysaccharides
are achieved through both their primary chemical structures and controlled higher-order structure.
Amylose is a natural linear polysaccharide with a left-handed helical conformation, which consists of
glucose residues linked through α(1→4)-glycosidic linkages [3]. It is a main component of starch and
functions as an energy storage molecule with the other component of starch, amylopectin. The seclusion
of hydroxy groups in the glucose units to the outer side of the helix creates a hydrophobic cavity
inside the helices. Therefore, amylose can act as a host to form host-guest inclusion complexes
with hydrophobic guest molecules of low molecular weight through hydrophobic interactions
(Figure 1) [4,5]. In addition to the traditional functions of these inclusion complexes, they can be
manipulated to form higher-order materials with extended functionalities and properties suitable for
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specific practical applications. Polymeric guest molecules with high molecular weights are promising
candidates for complexation with amylose, compared to low molecular weight guests, to achieve new
functionalities. However, a limited number of studies have been reported on the complexation of
amylose and polymeric guest molecules (Figure 1). Because weak hydrophobic interactions drive
the incorporation of guest molecules into the amylose cavity, amylose does not have the ability to
encapsulate large polymeric guests into its cavity. For the direct incorporation of polymeric guests,
hydrophilic groups can be introduced at the polymer chain ends, which enhance the degree of
complexation in aqueous media [6,7]. Additional methods to directly form amylose-polymer inclusion
complexes include inclusion polymerization and guest-exchange approaches [8–10].
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Figure 1. Amylose forms inclusion complex with relatively low molecular weight (small) hydrophobic
molecule but largely, does not form it with polymeric molecule.

Recently, it has been accepted that the enzymatic approach is a powerful tool to precisely
synthesize polysaccharides [11–16], and amylose with a well-defined structure can be synthesized
by phosphorylase-catalyzed enzymatic polymerization of α-D-glucose 1-phosphate (G-1-P) and
maltooligosaccharide as a monomer and primer, respectively (Figure 2) [17–20]. The polymerization is
analogous to living polymerization because there are no significant termination or chain-transfer
reactions. Accordingly, the molecular weight of the produced amylose can be controlled by
monomer/primer feed ratios and typically result in narrow distributions [21]. By means of this
enzymatic polymerization for the direct production of amylose, we developed an efficient method
for the formation of inclusion complexes with synthetic polymers. The elongation of the short
α(1→4)-glucan (maltooligosaccharide) to the longer α(1→4)-glucan (amylose) is considered to
provide sufficient dynamic field for more facile complexation of polymeric guests compared to the
direct complexation between the polymeric host (amylose) and guest [22–27]. The polymerization
propagation is similar to the way that the vines of plants grow, twining around a rod (Figure 3).
Accordingly, we proposed that this polymerization method for the production of amylose-polymer
inclusion complexes should be called “vine-twining polymerization”. Furthermore, the vine-twining
approach has been applied to the dynamic preparation of supramolecular networks/higher-order
materials [28]. This review summarizes the preparation and material application of amylose-polymer
inclusion complexes fabricated by the vine-twining polymerization approach achieved in our
research group.
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2. Preparation of Amylose-Polymer Inclusion Complexes by Enzymatic Polymerization Filed
(Vine-Twining Polymerization)

In the following section, we discuss typical characteristics required by guest polymers to
dynamically form inclusion complexes with amylose in vine-twining polymerization. As mentioned
previously, hydrophobicity is required for inclusion complexation in the cavity of amylose.
As vine-twining polymerization is conducted in an aqueous buffer solvent, the guest polymers must
be able to be dispersed in aqueous media. Therefore, relatively polar groups, such as ethers and esters,
should be present in the main-chain of the guest polymers. The guest polymer must also be slender
without bulky substituents because of the cavity size of the amylose helix is not sufficiently large to
encapsulate most bulky molecules. Based on the above features, hydrophobic synthetic polymers
shown in Figure 3 have been found to act as guest polymers for the formation of inclusion complexes
with amylose in vine-twining polymerization.

The first example of vine-twining polymerization was reported using polytetrahydrofuran
(PTHF) as a hydrophobic guest polyether [29,30]. The structure of PTHF has been identified as
suitable for guest polymers because it is generally hydrophobic, but includes relatively polar ether
groups without any side groups. When the phosphorylase-catalyzed enzymatic polymerization
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of G-1-P from maltooligosaccharide (maltoheptaose, G7) was performed in the presence of PTHF
dispersed in aqueous buffer, the product was gradually precipitated from the reaction media.
The subsequent characterization of the isolated product supported the proposed structure of an
amylose-PTHF inclusion complex. Mixing amylose and PTHF in aqueous buffer did not result in
the formation of an inclusion complex, strongly suggesting the inclusion occurs during or a result of
enzymatic polymerization.

To investigate the effect of the structures of polyethers on the formation of inclusion complexes
in vine-twining polymerization, the phosphorylase-catalyzed enzymatic polymerization of G-1-P
was conducted using polyethers with different alkyl chain lengths including PTHF (4 methylenes),
polyoxetane (POXT, 3 methylenes), and poly(ethylene glycol) (PEG, 2 methylenes) [30]. Consequently,
the hydrophobic POXT formed an inclusion complex with amylose, whereas vine-twining
polymerization with PEG did not induce inclusion complexation. This was likely due to the hydrophilic
nature of PEG, resulting in much less hydrophobic interaction with the amylose cavity. These results
highlight the importance of the hydrophobicity of guest polymers in forming inclusion complexes
with amylose via vine-twining polymerization.

Hydrophobic polyesters, including poly(ε-caprolactone) (PCL), poly(δ-valerolactone) (PVL),
and poly(glycolic acid-co-ε-caprolactone) (P(GA-co-CL)), have also been used as guest polymers in
vine-twining polymerization to form inclusion complexes with amylose, as they contain relatively
polar ester bonds in the main-chain [31–33]. However, when the homopolyester poly(glycolic acid),
was used as a guest polymer it was not able to form an inclusion complex with amylose due to its high
crystallinity and low dispersibility in aqueous media.

An inclusion complex was formed via vine-twining polymerization with a hydrophobic
poly(ester-ether) (PEE, –CH2CH2C(C=O)OCH2CH2CH2CH2O–) composed of alternating ester
and ether linkages [32]. A hydrophobic polycarbonate, poly(tetramethylene carbonate) (PTMC),
with relatively polar carbonate bonds, also formed an inclusion complex with amylose via vine-twining
polymerization [34]. On the other hand, a hydrophilic poly(ester-ether) (–CH2CH2C(=O)OCH2CH2O–)
with a short methylene length, could not form an inclusion complex with amylose under the
same conditions.

In addition to their inability to form inclusion complexes with hydrophilic polymers, it is difficult
to produce inclusion complexes from polymers with strong hydrophobicity owing to aggregation in
aqueous buffer. For example, the strongly hydrophobic polyoxepane (6 methylenes), did not form an
inclusion complex with amylose via vine-twining polymerization.

Based on the aforementioned results regarding the formation of inclusion complexes through
vine-twining polymerization, we have speculated that moderate hydrophobicity of the guest polymers
is required for complexation with amylose. Indeed, amylose exhibits different complexation behaviors
depending on subtle changes in the structures of the hydrophobic guest polymers. For example,
amylose selectively included PTHF in a mixture of PTHF and POXT in vine-twining polymerization
system, owing to the slight difference the hydrophobicity of the potential guest polymers (Figure 4) [35].
Also, in a mixture of PCL and PVL, amylose selectively formed an inclusion complex with PVL during
vine-twining polymerization (Figure 4) [36].

Amylose selectively included a specific range of molecular weights of guest polymers in
vine-twining polymerization. Synthetic polymers are generally mixtures of different molecular weight
analogs, which possess different properties. For example, the molecular weight of PTHF polymers
affect its hydrophobicity and water-solubility, where low molecular weight PTHF exhibits good
water-solubility, whereas those with larger molecular weight are hydrophobic and insoluble in water.
When several vine-twining polymerization systems were studied using PTHFs with different average
molecular weights, the specific range of molecular weights of all PTHFs were suitably recognized by
amylose to form inclusion complexes [24].

Besides the chemical structure and molecular weight, amylose also showed selectivity towards
chirality in guest polymers in vine-twining polymerization. The selective inclusion of chiral molecules
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by amylose was achieved using chiral polyesters, poly(lactide)s (PLAs) as guest polymers with
three stereoisomers, i.e., poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and racemic poly(DL-lactide)
(PDLLA, Figure 5) [37]. When vine-twining polymerization was conducted using PLLA, an inclusion
complex was formed, whereas the PDLA and PDLLA polymers did not achieve inclusion complexation.
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The selective inclusion based on chirality was also observed in vine-twining polymerization using
chiral polyalanine (PAlas) stereoisomers as guest polymers (Figure 5) [38]. An inclusion complex
was formed with poly(D-alanine) (PDAla), whereas inclusion complexes were not obtained with
poly(L-alanine) (PLAla) or poly(DL-alanine) (PDLAla).

The stereoselective inclusion behavior of amylose toward PLLA and PDAla in vine-twining
polymerization can be explained by the helical direction of the host and guest polymers.
The left-handed helical conformation of the guest polymers PLLA and PDAla is the same direction as
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that of the host amylose, resulting in their efficient inclusion. In contrast, the opposite and irregular
helical conformations of PDLA/PLAla and PDLLA/PDLAla, respectively, are not suitable for binding
by the amylose helix.

3. Hierarchical Structured Materials from Amylose-Polymer Inclusion Complexes by
Vine-Twining Polymerization

The vine-twining polymerization approach has been applied to the fabrication of hierarchical
structured materials, such as gels and films, based on amylose-polymer inclusion complexes [28].
To construct such materials, supramolecular networks, which are hierarchically composed of inclusion
complexes as crosslinking points, were designed as vine-twining polymerization products by using graft
copolymers with hydrophobic graft chains. Significantly, the enzymatically produced amylose chains
include the hydrophobic graft chains as guest polymers to produce inclusion complexes, which act as
crosslinking points to hierarchically construct a supramolecular network structure in aqueous media,
forming hydrogels (Figure 6). The hydrophobicity of the graft chains as guest polymers is necessary,
while the graft copolymer should generally be water-soluble to successfully form hydrogels.
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graft copolymers having hydrophilic main chains and hydrophobic guest graft chains and
conversion of supramolecular hydrogel into cryo- and ion gels; G-1-P = α-D-glucose 1-phosphate,
G7 = maltoheptaose, P(AA-Na-g-VL) = poly(acrylic acid sodium salt-graft-δ-valerolactone),
NaCMC-g-PCL = carboxymethyl cellulose sodium salt-graft-poly(ε-caprolactone), PGA-g-PCL =
poly(γ-glutamic acid)-graft-poly(ε-caprolactone).

The hierarchical formation of a hydrogel was achieved by the phosphorylase-catalyzed
polymerization of G-1-P from G7 in the presence of a water-soluble copolymer composed of
hydrophobic PVL graft chains, poly(acrylic acid sodium salt-graft-δ-valerolactone) (P(AA-Na-g-VL)),
by vine-twining polymerization (Figure 6) [39]. The enzymatic reaction mixture was completely
converted into the hydrogel form. The enzymatically produced amylose included the PVL graft chains
to form inclusion complexes as the polymerization progressed, which acted as cross-linking points for
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hydrogelation. Furthermore, the hydrogels were enzymatically disrupted and reproduced through
combination of the β-amylase-catalyzed hydrolysis of amylose and the reformation of amylose by the
phosphorylase-catalyzed polymerization.

A film was constructed through the hierarchical formation of a hydrogel by vine-twining
polymerization using another graft copolymer, carboxymethyl cellulose sodium salt-graft-poly
(ε-caprolactone) (NaCMC-g-PCL) (Figure 6). The reaction mixture was completely converted into the
hydrogel by the vine-twining polymerization [40]. The film was formed by moisturizing the powdered
sample prepared by lyophilization of the hydrogel.

The mechanical properties of the hydrogels obtained by vine-twining polymerization using
PAA-Na-g-PVL and NaCMC-g-PCL were insufficient for further applications. To improve the
mechanical properties of the hydrogels, poly(γ-glutamic acid) (PGA) was used as the main-chain of a
graft copolymer (Figure 6) [41], because its shows better water retention and moisturizing properties.
Indeed, vine-twining polymerization using poly(γ-glutamic acid)-graft-poly(ε-caprolactone)
(PGA-g-PCL) resulted in a hydrogel with self-standing properties, indicating much better
mechanical properties compared to the aforementioned hydrogels. The prepared hydrogel exhibited
macroscopic interfacial healing behavior upon the phosphorylase-catalyzed enzymatic polymerization.
The hydrogel formed initially from the vine-twining polymerization was cut into two pieces, and G-1-P
and phosphorylase-containing sodium acetate buffer was dropped on the surface of the hydrogels.
After the surfaces were placed in contact with one another, the materials were left standing for
enzymatic polymerization. Consequently, the two hydrogel pieces were fused at the contacted area.
Such behavior of the hydrogels on a macroscopic level was induced by the complexation of the
enzymatically produced amyloses with the PCL graft chains at the interface. In addition, a porous
cryogel and an ion gel were obtained by lyophilization and soaking of the hydrogel in an ionic liquid
of 1-butyl-3-methylimidazolium chloride (BMIMCl) (Figure 6).

Supramolecular polymers composed of amylose-PTHF and amylose-PLLA inclusion complexes
were dynamically formed by vine-twining polymerization using primer–guest conjugates, i.e.,
maltoheptaose-block-polytetrahydrofuran (G7-block-PTHF) and maltoheptaose-block-poly(L-lactide)
(G7-block-PLLA, Figure 7a) [42,43]. In these systems, an enzymatically propagating amylose chain
included a PTHF or PLLA segment of another conjugate, whereby consecutive inclusion led to the
formation of linear supramolecular polymers.

Vine-twining polymerization using a branched maltoheptaose-(poly(L-lactide))2 (G7-PLLA2)
conjugate resulted in a hyperbranched supramolecular polymer (Figure 7b) [44]. The hyperbranched
product formed an ion gel with BMIMCl, which was further converted into a hydrogel upon exchange
of the dispersion media by soaking in water. Lyophilization of the resulting hydrogel produced a
porous cryogel.

The relative chain orientation of amylose and PLLA in the supramolecular polymers was
investigated using two G7-block-PLLA conjugates, which were composed of a G7 moiety interconnected
to the carboxylate or hydroxy terminus of PLLA [45]. Enzymatic polymerization in the presence
of the two PLLA conjugates formed amylose-PLLA supramolecular polymers by vine-twining
polymerization. This suggested that, regardless of the chain orientation of PLLA, the amylose cavity
recognized the PLLA segment for complexation. Conversely, the phosphorylase-catalyzed enzymatic
polymerization in the presence of the two G7-block-PDLA conjugates under similar conditions only
resulted in the formation of amylose-PDLA diblock copolymers, which did not form an inclusion
complex structure. These results indicated that chirality in PLAs affected the inclusion behavior of the
amylose cavity, irrespective of the PLA chain orientation. The left-handed helices of both the amylose
and PLLA induce inclusion complexation, whereas complexation was not significantly affected by
the orientation of the methyl substituents in PLA, which oppositely change according to the relative
chain orientation.
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complexes was achieved. Therefore, the vine-twining polymerization method can be applied to the 
production of additional amylosic inclusion complexes with regularly controlled nanostructure, and 
will contribute to further developments of host-guest chemistry in the future. 
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Figure 7. Formation of (a) linear and (b) hyperbranched supramolecular polymers by vine-twining
polymerization using primer–guest conjugates; G-1-P = α-D-glucose 1-phosphate, G7-block-PTHF
= maltoheptaose-block-polytetrahydrofuran, G7-block-PLLA = maltoheptaose-block-poly(L-lactide),
G7-PLLA2 = branched maltoheptaose-(poly(L-lactide))2.

4. Conclusions

In this review, we presented our studies on the precision preparation of amylose-polymer inclusion
complexes through the phosphorylase-catalyzed enzymatic polymerization of G-1-P in the presence
of synthetic hydrophobic polymers by vine-twining polymerization. The results of the vine-twining
polymerization study suggested that amylose exhibited different inclusion behaviors depending on the
specific interactions with the guest polymers according to subtle changes in their structures. Moreover,
hierarchical structured materials could be dynamically fabricated by vine-twining polymerization
using designed graft copolymers composed of hydrophilic main chains and hydrophobic guest graft
chains. Vine-twining polymerization using guest-primer conjugates afforded the dynamic formation
of the supramolecular polymers composed of a continuum of inclusion complexes. Because of the
production of a structurally defined amylose host by phosphorylase catalysis, the precision preparation
of controlled amylosic host-guest polymeric complexes was achieved. Therefore, the vine-twining
polymerization method can be applied to the production of additional amylosic inclusion complexes
with regularly controlled nanostructure, and will contribute to further developments of host-guest
chemistry in the future.
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