Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding

Sophia Boden ¹, Kristina G. Wagner ², Matthias Karg ² and Laura Hartmann ^{1,*}

- ¹ Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Laura.Hartmann@hhu.de
- ² Institute of Physical Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Matthias.Karg@hhu.de
- * Correspondence: Laura.Hartmann@hhu.de; Tel.: +49-211-81-10360

1. Synthesis of Thiol Functionalized Precision Glycomacromolecules

Figure S1. ¹H-NMR (600 MHz, D₂O) of glycomacromolecule 1.

Figure S2. MALDI-TOF-MS spectrum of glycomacromolecule 1.

Figure S3. HR-MS (ESI⁺ Q-TOF) of glycomacromolecule 1.

Figure S4. ¹H-NMR (600 MHz, D₂O) of glycomacromolecule 2.

Figure S5. HPLC spectrum (95/5 H₂O/MeCN with 0.1% formic acid (A) and 5/95 H₂O/MeCN with 0.1% formic acid (B); 100% A to 50% A in 30min) determined at 214 nm of glycomacromolecule 2 showing the thioether side product formation.

Figure S6. MALDI-TOF-MS spectrum of glycomacromolecule 2 showing the thioether side product formation.

Figure S7. HR-MS (ESI⁺ Q-TOF) of glycomacromolecule 2.

Figure S8. 1H-NMR (600 MHz, D2O) of glycomacromolecule 3.

Figure S9. MALDI-TOF-MS spectrum of glycomacromolecule 3.

Figure S10. HR-MS (ESI⁺ Q-TOF) of glycomacromolecule 3.

2. Synthesis of N-Ethylmaleimide capped Precision Glycomacromolecules

Figure S11. ¹H-NMR (300 MHz, D₂O) of glycomacromolecule 1a.

Figure S12. MALDI-TOF-MS spectrum of glycomacromolecule 1a.

Figure S13. HR-MS (ESI⁺ Q-TOF) of glycomacromolecule 1a.

Figure S14. ¹H-NMR (300 MHz, D₂O) of glycomacromolecule 3a.

Figure S15. MALDI-TOF-MS spectrum of glycomacromolecule 3a.

Figure S16. HR-MS (ESI⁺ Q-TOF) of glycomacromolecule 3a.

3. Characterization of Citrate Stabilized NPs and Glyco-AuNPs

Figure S17. TEM images of citrate stabilized gold nanoparticles with different magnifications. The TEM derived diameter is 14.1±1.2 nm.

Figure S18. TEM derived histogram of citrate stabilized gold nanoparticles.

Figure S19. UV-Vis absorbance spectra of citrate stabilized AuNPs and glyco-AuNPs 4-6.

Figure S20. (a) Autocorrelation functions and (b) cumulant plot for citrate stabilized NPs and glyco-AuNPs **4-6** in water.

Figure S21. Sodium chloride and LBB stability of citrate stabilized AuNPs and Glyco-AuNPs **4**-6: UV-Vis absorbance spectra of glyco Au-NPs **4** (a), **5** (b), **6** (c) and citrate stabilized AuNPs (d) with increasing sodium chloride concentration after 24 h; (e) normalized absorbance (normalized to absorbance at 400 nm) at 700 nm in dependence of sodium chloride concentration for citrate stabilized AuNPs and Glyco-AuNPs **4**-**6**; (f) UV-Vis spectra of glyco-AuNPs **4**-**6** in water and LBB after 24 h.

4. Binding Studies with the Model Lectin Concanavalin A (Con A)

Figure S22. UV-Vis absorbance spectra of glyco-AuNPs **4-6** at serial dilutions of Con A after addition of α MeMan in final concentration of 60 mM.

Figure S23. UV-Vis absorbance spectra of glyco-AuNPs 4-6 at serial dilutions of BSA.

Figure S24. Kinetic analysis of glyco-AuNP interaction with Con A by DLS measurements at $K_{D,app}$ concentration of Con A for glyco-AuNP **4**, **5** and **6**. The average of three independent measurements is shown and the error bars correspond to the standard deviation in R_H. The error bars of the time are in the range of the symbol size.

Figure S25. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with serial dilutions of α MeMan and the resulting IC₅₀ curve fitted to Hill1 function.

Figure S26. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with three representative concentrations of D-(+)-galactose and the resulting relative response plotted against D-(+)-galactose concentration.

Figure S27. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with serial dilutions of glyco-AuNP **4** and the resulting IC₅₀ curve fitted to Hill1 function.

Figure S28. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with serial dilutions of glyco-AuNP **5** and the resulting IC₅₀ curve fitted to Hill1 function.

Figure S29. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with serial dilutions of *N*-ethylmaleimide capped glycomacromolecule **1a** and the resulting IC₅₀ curve fitted to Hill1 function.

Figure S30. Exemplary SPR sensorgram for solutions of 100 nM Con A incubated with serial dilutions of *N*-ethylmaleimide capped glycomacromolecule **3a** and the resulting IC₅₀ curve fitted to Hill1 function.