Supporting information

Figure S1 – Comparison between activation energies calculated from TGA data using Kissinger's method and activation energies used to fit PCFC results

Figure S2 – Correlation between the contributions to activation energy and frequency factor

Figure S3 – Experimental versus calculated mass loss rate curves for PE at 1 K/s

Figure S4 – Experimental versus calculated mass loss rate curves for PP at 1 K/s

Figure S5 – Experimental versus calculated mass loss rate curves for PET at 1 K/s

Figure S6 – Experimental versus calculated mass loss rate curves for PBT at 1 K/s

Figure S7 – Experimental versus calculated mass loss rate curves for PBS at 1 K/s

Figure S8 – Experimental versus calculated mass loss rate curves for PCL at 1 K/s

Figure S9 – Experimental versus calculated mass loss rate curves for PG at 1 K/s

Figure S10 – Experimental versus calculated mass loss rate curves for PS at 1 K/s

Figure S11 – Experimental versus calculated mass loss rate curves for PMMA at 1 K/s

Table S1 – Activation energies from literature for studied polymers

Polymère	Flynn-Wall-Ozawa method				Kissinger method	Reference
	E _a (kJ/mol)				Ea	
	α=0.2	α=0.4	α=0.6	α=0.8	(kJ/mol)	
HDPE	236	248	252	250		3
PP	170	182	192	194		3
PP	176	195	202	207		8
PP					69	9
PLA	161	177	182	184		2
PLA					171	5
PLA					105	6
PCL	144	179	187	191		1
PCL					196	1
PBS	118	139	155	164		1
PBS					176	1
PHB	133	136	136	135		4
PHB					131	4
PHB					99	7

^{1 -} Benarbia Abderrahim, Elidrissi Abderrahman, Aqil Mohamed, Tabaght Fatima, Tahani Abdesselam, Ouassini Krim, Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study, World Journal of Environmental Engineering, 2015, Vol. 3, No. 4, 95-110

- 2 Hantao Zou, Changhai Yi, Luoxin Wang, Hongtao Liu, Weilin Xu, Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy, J Therm Anal Calorim (2009) 97:929–935
- 3 A. Aboulkas, K. El harfi, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms, Energy Conversion and Management 51 (2010) 1363–1369
- 4 Matko Erceg, Tonka Kova cic´, Ivka Klaric, Dynamic thermogravimetric degradation of poly(3-hydroxybutyrate)/aliphaticearomatic copolyester blends, Polymer Degradation and Stability 90 (2005)
- 5 F. Carrasco, L.A. Pérez-Maqueda, P.E. Sánchez-Jiménez, A. Perejón, Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission, Polymer Testing 32 (2013) 937–945
- 6 Isinay E. Yuzay, Rafael Auras, Herlinda Soto-Valdez, Susan Selke, Effects of synthetic and natural zeolites on morphology and thermal, Polymer Degradation and Stability 95 (2010) 1769-1777
- 7 Dimitris S. Achiliasa, Elpiniki Panayotidoua, Ioannis Zuburtikudis, Thermal degradation kinetics and isoconversional analysis of biodegradable poly(3-hydroxybutyrate)/organomodified montmorillonite nanocomposites, Thermochimica Acta 514 (2011) 58–66
- 8 De-Yi Wang, Amit Das, Andreas Leuteritz, Regine Boldt, Liane Häußler, Udo Wagenknecht, Gert Heinrich, Thermal degradation behaviors of a novel nanocomposite based, Polymer Degradation and Stability 96 (2011) 285-290
- 9 Xuejun Lai, Jiedong Qiu, Hongqiang Li, Rimin Zhou, Huali Xie, Xingrong Zeng, Thermal degradation and combustion behavior of novel intumescentflame retardant polypropylene with N-alkoxy hindered amine, Journal of Analytical and Applied Pyrolysis 120 (2016) 361–370