polymers

Catalyst influence on undesired side-reactions in the polycondensation of fully bio-based polyester itaconates

Abstract

Ina Schoon , Marcel Kluge, Steven Eschig, and Tobias Robert* Fraunhofer Institute for Wood Research - Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany. E-mail: tobias.robert@wki.fraunhofer.de * Correspondence: tobias.robert@wki.fraunhofer.de; Tel.: +49-531-2155-357

Academic Editor: name Received: date; Accepted: date; Published: date

\section*{Supporting Information}

Size Exclusion Chromatography (SEC) Measurements Determination of the molar mass distribution was performed by SEC measurements with tetrahydrofuran as eluent and with polystyrene-calibration in the range of $162 \mathrm{~g} / \mathrm{mol}$ to 70,000 $\mathrm{g} / \mathrm{mol}$. Three columns SDV 1000A at $40^{\circ} \mathrm{C}$, a variable UV-detector (here: 254 nm), a refractive index detector and the software (WinGPC Unity) were provided by Polymer Standard Service (Mainz, Germany). Samples of the polycondensation reaction of Itaconic acid with 1,3-propanediol in the presence of methanesulfonic acid (MSA) and zinc acetate $\left(\mathrm{Zn}(\mathrm{OAc})_{2}\right)$ were taken after 6.5, 7 , and 7.5 hours. The molecular weight distribution for the polycondensation reaction with MSA is shown in figure S 1 , for $\mathrm{Zn}(\mathrm{OAc})_{2}$ in figure S 2 . In addition, figure S 3 shows the molecular weight distribution of both reaction at 7.5 h .

Figure S1. SEC traces of the polycondensation reaction of itaconic acid with 1,3-propanediol in the presence of MSA as catalyst.

Figure S2. SEC traces of the polycondensation reaction of itaconic acid with 1,3-propanediol in the presence of $\mathrm{Zn}(\mathrm{OAc}) 2$ as catalyst.

Figure S3. Comparison of the SEC traces of the polycondensation reaction of itaconic acid with 1,3-propanediol after 7.5 h in the presence of MSA and $\mathrm{Zn}(\mathrm{OAc})_{2}$.

