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Abstract: Design of polymer nanocomposites has been an intense research topic in recent decades
because hybrid nanomaterials are widely used in many fields. Throughout their development,
there has often been a challenging issue how one can uniformly distribute nanoparticles (NPs)
in a polymer matrix, avoiding their agglomeration. In this short review, we first introduce the
theory of colloidal aggregation/gelation purely based on intense shear forces. Then, we illustrate a
methodology for preparing polymer nanocomposites where the NPs (as fillers) are uniformly and
randomly distributed inside a matrix of polymer NPs, based on intense shear-driven aggregation
of binary colloids, without using any additives. Its feasibility has been demonstrated using two
stable binary colloids composed of (1) poly-methyl methacrylate fillers and polystyrene NPs,
and (2) graphene oxide sheets (fillers) and poly-vinylidene fluoride NPs. The mechanism leading
to capturing and distribution of the fillers inside the polymer NP matrix has been illustrated,
and the advantages of the proposed methodology compared with the other common methods
are also discussed.
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1. Introduction

Nanocomposite materials have been widely applied to almost all fields of technology [1],
particularly in biomedicine [2], dental and bone implants [3], therapeutics delivery, diagnostics,
and treatment [4,5], membrane performance enhancement [6–8], coating industry [9–11], solid-state
lighting, and photovoltaic devices [12,13]. Among them, imbedding nanoparticles (NPs) into
polymer matrices to form polymer matrix nanocomposites can improve thermal, mechanical, electric,
or optical properties of the polymers [1,14]. In those applications, it is especially important to
uniformly and randomly distribute the NPs, as fillers, inside the polymer matrix, while avoiding
aggregation among the NPs [15]. Different strategies have been developed in the literature, and
among them, the following three are dominating in practical applications: solution mixing [16–21],
melt compounding [16,19,22–25], and in situ polymerization [19,26–29]. Solution mixing is considered
to be an effective technique for preparation of polymer nanocomposites, and it disperses fillers into a
polymer matrix by simple mechanical stirring or high shear mixing [18,30]. This process often requires
a large amount of organic solvent, except for water-based solutions [20,21], and the removal of the
residual solvent often becomes crucial. In addition, fillers often re-aggregate during the process of slow
solvent evaporation, and it is thus necessary to modify the NP surface to improve the compatibility
between NPs and polymer matrix. In the case of melt blending, fillers are mixed with a polymer
matrix at the molten state by using mixing equipment such as an extruder, internal mixer, and two-roll
mill [22,31]. This process often requires high shear forces to fully mix the molten polymers and fillers,
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and no solvent is used during the process, making it an eco-friendly method for large scale production
of polymer nanocomposites. However, at the molten state the high viscosity of the polymer may
lead to poor dispersion of fillers [32,33]. In situ polymerization is another effective way to prepare
uniformly distributed fillers inside a polymer matrix. In this process, the fillers are first uniformly
dispersed in monomer solution in the presence of an initiator [26,29,34–37]. Initiated by radiation or
thermal energy, in situ polymerization takes place, conferring strong interfacial interactions between
the polymer chains and the fillers [29]. Compared with solution mixing and melt blending methods,
in situ polymerization can obtain improved compatibility between fillers and polymer, thus better
dispersion properties. Kim et al. [19] fabricated graphene-based polyurethane nanocomposites via
melt blending, solution mixing, and in situ polymerization, the comparison of the results shows that
melt blending would lead to the fillers to re-aggregate, while the other two processes could result in
better dispersion of fillers throughout the polymer matrix.

Another important strategy for generation of nanocomposites is to use a colloidal route—Colloidal
aggregation. In this way, the applied polymer is initially also in the form of NPs; thus, we have NPs,
A and B, forming a binary colloidal system. Binary colloids have received great attention in recent
years due to their potential applications in many industrial processes. Aggregation of binary colloids
with different types, sizes, or properties has been found to be crucial in the fields such as waste water
treatment [38,39], mineral flotation processes [40–43], cells and DNA analysis [44,45], and composite
materials fabrication [46–51]. If A and B possess opposite charges, their electrostatic attraction can
cause A-B aggregation, typically referred to as hetero-aggregation [52–54]. When the size of A and B is
similar, the clusters formed from their aggregation are of irregular shape and low fractal dimension.
Since the aggregation induced by electrostatic attraction is extremely fast, it is difficult to obtain uniform
distribution of A and B within the clusters when the particle concentration is high. When B is much
smaller than A, B can attach onto the surface of A, forming stable “core-shell” hetero-clusters [55,56].
When A and B possess charges of the same sign, their mixture is often colloidally stable, forming a new,
binary colloid. In this case, one can effectively realize the A-B hetero-aggregation [47,48,50,51,53,57–61],
by introducing electrolytes to screen the electrical double layer, adding bonding molecules or high
molecular weight polymers to cause depletion aggregation, or varying pH to neutralize pH-sensitive
charges. However, in most of these cases, it is rather difficult to control the hetero-aggregation processes
to realize uniform and random distribution of the fillers inside the polymer matrix, while avoiding
aggregation among the fillers.

Toward this aim, a new technique has been developed recently, which is based on intense
shear-driven aggregation of binary colloids to uniformly and randomly distribute fillers into a polymer
matrix and to avoid aggregation among the fillers [48,50]. Let us consider that the B NPs are the
dominant polymeric component, being the elements eventually forming the matrix, and A NPs are
the fillers to be distributed. The first key feature is that the binary colloids must be very stable at rest,
thus warranting initial homogeneous mixing of A and B NPs at nanoscales. The second key feature is
that the nanocomposite materials are generated through (purely) intense shear-driven aggregation of
the binary colloids, without using any electrolytes. The feasibility of the above procedure has been
demonstrated by experiments. In this work, we review the relevant intense shear-driven aggregation
and its application to binary colloids to generate the polymer matrix nanocomposites.

2. Intense Shear-Driven Aggregation

The intensive shear-driven aggregation has been systematically investigated in recent years for
unary (single component) colloids [62–71]. For a colloidal system that is rather stable under stagnant
conditions, if we drive the system to pass through a microchannel system, where a sufficiently intense
shear force is generated, the particles may overcome the repulsive interaction energy barrier, UT,max,
leading to aggregation, which was first demonstrated in diluted dispersions [72,73]. When the particle
volume fraction (φ) reaches a certain value, the clusters formed under the intense shear would connect
to form a space-spanning network, resulting in a solid-like gel.
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2.1. Main Phenomena Observed Experimentally

A schematic setup for conducting intense shear-driven aggregation, using a commercial device,
HC-5000 homogenizer (Microfluidics, Westwood, MA, USA), equipped with a z-shaped microchannel
(z-MC), is shown in Figure 1 a. When a liquid-like colloid is forced to pass through the z-MC at an
extremely high shear rate (e.g.,

.
γ = 1 × 106 s−1), a solid-like (gel) transition occurs if φ is large enough

(typically > 15%), as demonstrated in Figure 1b. Note that the cylindrical shape of the gel inside the
bottles results from the tube connected to the outlet of the z-MC. There are important features for this
shear-driven process. First, no additives are needed during the process, thus avoiding contamination
of the final products. Second, the process can operate continuously, which is crucial for large scale
industrial production.
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Figure 1. A z-shaped microchannel (z-MC) setup (a) for conducting intense shear-driven
aggregation/gelation of colloidal dispersion, and (b) intense shear-driven transition from liquid-like
colloids to solid-like gels at the shear rate,

.
γ = 1 × 106 s–1, at different particle volume fractions (φ)

and different operation temperatures. Reproduced with permission from [65,74]. Copyright (2010)
American Chemical Society and (2014) Elsevier.

The intense shear-driven aggregation kinetics and the time evolution of the cluster morphology
have been studied using a polystyrene colloid, which has been forced to pass through the above
mentioned z-MC many times, in the low range of φ, where, instead of gelation, only shear-driven
aggregation occurs [71]. It was found that in this case a colloidal system after passing through the z-MC
is composed of two distinct classes of clusters: Class 1, which is mainly composed of primary particles
with small amount of small clusters made of two and three primary particles, referred to as doublets
and triplets, respectively; and Class 2, which are big clusters with an average size at least two orders of
magnitude larger than the primary particles, thus constituted of 103–104 primary particles [62,65,66].
The size and morphology of Class 2 clusters are controlled by breakage and restructuring induced by
the intense shear, i.e., the size decreases as the shear rate increases. The size distribution is typically
rather uniform.

Figure 2 shows the shear-driven aggregation of the polystyrene colloid in the z-MC, particularly,
the evolution of the primary particle conversion (x) to big (Class 2) clusters as a function of time.
Note that the time here is a cumulative (residence) time from forcing the same colloid to repeatedly
pass through the z-MC many times. It is seen that the x evolution is typically composed of three stages:
induction, sharp increase and slow increase to reach a plateau. In the induction stage, the x value
is negligible. In the stage where x increases sharply with the pass number (i.e., the shearing time),
the average size of Class 2 clusters increases also sharply, often characterized by an overshooting.
In the last stage where the x value increases slowly and eventually reaches a plateau, the average size
of Class 2 clusters decreases to also reach a plateau. The fractal dimension of Class 2 clusters increases
with the shearing time from the initial value of 2.40± 0.05 to reach 2.80± 0.05. Thus, the final clusters
generated by the intense shear are typically rather compact.
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It should be mentioned that the plateau value of x reached at large shearing times at each
particle volume fraction cannot be explained at the present stage, which happened also for the intense
shear-driven aggregation of the other colloidal systems [50]. In principle, as a second-order kinetics,
the intense shear-driven aggregation of the primary particles to big clusters should continue until
reaching 100% conversion. To understand this behavior, new experiments have been designed and the
investigation is continuing in our lab.
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2.2. Theoretical Background of the Intense Shear-Driven Aggregation

A theory has been developed to better understand the shear-driven event [63,67,69]. We start with
the simplest case, the doublet formation. For interactive particles embedded in a linear velocity field,
the stationary particle concentration field c(x) can be written following the Smoluchowski equation

∇
{

D
kBT

[−∇UT(x) + 3πηav(x)]− D∇
}

c(x) = 0 (1)

where D is the mutual diffusion coefficient of the particles (D = 2D0G(x), where D0 is the diffusion
coefficient of an isolated particle, and G(x) is the hydrodynamic correction for viscous retardation), kB

is Boltzmann’s constant, T is the absolute temperature, UT(x) is the colloidal interaction energy, η is
the viscosity of the solvent, a is the particle radius, and v(x) is the flow velocity. To solve Equation (1),
the boundary conditions for the irreversible shear-driven aggregation are given by

c(x) = 0 at x = 0,
c(x) = c0 at x = δ/a

(2)

where the δ value can be determined from the boundary layer approximation [63]

δ/a =
√
(1/κa)/Pe (3)

where κ is the Debye length, and Peclet number, Pe, is defined as,

Pe =
3πη

.
γa3

kBT
(4)
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with
.
γ the shear rate. From Equation (1), the derived kinetic constant or kernel, k1,1, for the aggregation

between two particles forming a doublet can be expressed as,

k1,1 =
8πDac0∫ δ/a

0
dx

G(x)(x+2)2 exp
∫ x
δ/a dx

(
1

kBT
dUT(x)

dx + Peṽr

) (5)

where ṽr is the effective velocity for aggregation. The k1,1 values predicated from Equation (5) have
been verified by comparing them with those obtained from numerical simulations of the full convective
diffusion equation, Equation (1) [63].

After proper simplification and approximation in the frame of the DLVO
(Derjaguin-Landau-Verwey-Overbeek) interactions, Equation (5) can reduce to the following
Arrhenius form

k1,1 ≈ 8πDac0

(
Pe−

U′′T,max

kBT

)1/2

exp
(
−UT,max

kBT
+ 2αPe

)
(6)

where U′′T,max < 0, and α is a geometrical parameter. From Equation (6), it can be clearly seen that
at small Pe values, the exponent can be negative so that the aggregation rate is rather small. As the
Pe value increases, the collision rate increases, and once Pe increases to a certain critical value, Pecr,
which can be defined by setting the exponent in Equation (6) equal to zero as

Pecr =
UT,max

2αkBT
(7)

the shear force (Pe) plays a prominent role. In particular, when Pe << Pecr, the colloidal interaction
barrier (UT,max) plays the dominant role, and the aggregation rate (k1,1) increases as UT,max decreases,
corresponding to the Brownian motion controlled aggregation. When Pe >> Pecr, the shear force
takes over the dominant role, and the effect of UT,max becomes negligible. The k1,1 value increases
exponentially with Pe, corresponding to the shear controlled regime.

It should be particularly noted that from Equation (4), Pe is proportional to the radius of the
particles, a, to a power of 3, indicating that the particle or cluster size has substantial influence on the
aggregation rate. During the shear-driven event, the formed doublets progressively grow to larger
clusters. Then, even though initially one has Pe << Pecr, as the cluster size increases progressively with
time to reach a critical radius, acr, the situation, Pe >> Pecr, occurs, leading to an exponential increase
in k1,1, thus, self-acceleration. The critical cluster radius, acr is given by

−UT,max

kBT
+ 2α

3πη
.
γa3

kBT
= 0 ⇒ acr =

(
UT,max

6πηα
.
γ

)1/3
(8)

The above self-accelerating aggregation predicted by the theory is in excellent agreement with the
experimental results in Figure 2. At each particle volume fraction, the induction stage corresponds to
the time needed to reach the critical value, acr and then after the radius of the clusters has reached acr,
the conversion to big clusters increases sharply, i.e., the aggregation accelerates. The acr value has been
identified experimentally and confirmed to increase as the shear rate decreases [71].

3. Applications of the Shear-Driven Aggregation to Binary Colloids

Recently, in the frame of preparation of nanocomposites where the fillers have to be uniformly
and randomly distributed inside a polymer matrix, a general methodology has been developed [48,50],
which is purely based on the intense shear-driven aggregation discussed above but starting with
binary colloids, without using any additives. The setup used for the shear-driven aggregation of the
binary colloids is the same as that sketched in Figure 1a. The design concept is shown in Figure 3 and
described as follows:
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(1) It starts with two colloids: fillers (A) NP dispersion and polymer (B) NP dispersion, both of which
have the same sign of charges;

(2) When the two colloids mix, a stable binary colloid is formed, where A and B NPs are
homogeneously distributed at nanoscales;

(3) The polymer (B) is the dominant colloid, and the volume fraction of the fillers (A) is smaller;
(4) The colloidal interactions are controlled such that the B (polymer) NPs are unstable under the

used shear rate (referred to as shear active) and can aggregate to form clusters or gels. Instead,
the A (fillers) NPs are very stable under the same shear rate and the shear-driven aggregation
does not occur, referred to as shear-inactive.

Thus, when the binary colloid passes through the z-MC as shown in Figure 1a at an extremely
high shear rate and at a significantly high particle volume fraction (typically φB > 15%), the binary
colloid will be converted to a solid-like gel after passing through the z-MC. It should be particularly
noticed that since the residence time of the colloid in the z-MC is very short, in µs scales, the extremely
fast gelation of the B NPs can basically freeze the initially distributed A NPs (fillers) inside the formed
gel. It is this frozen mechanism that avoids the possibility of aggregation among the A NPs, being the
key novelty of the proposed methodology.
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Figure 3. Design concept for fabrication of nanocomposites via purely shear-driven
aggregation/gelation of binary colloids.

After the solid-like gel is formed and dried at a temperature larger than the melting point of
the polymer (B), the B NPs can fully melt to form a matrix where the fillers (A) NPs are uniformly
and randomly distributed with negligible aggregation among the A NPs. If one properly controls
the drying temperature such that the polymer particles are only partially coalesced, there is the
possibility of having desired pores inside the nanocomposites. In the following subsections, we show
two examples, where we demonstrate that, based on the design concept in Figure 3, the intense
shear-driven aggregation of binary colloids can indeed successfully distribute fillers homogeneously
inside the polymeric NP gels.

3.1. Distribution of PMMA Particles into PS NP Matrix

The first example is a model system where poly-methyl methacrylate (PMMA) NPs are distributed
in the matrix of polystyrene (PS) NPs [48]. Two types of colloids, the PMMA and PS NP aqueous
dispersions, have been first synthesized separately. The PS NPs are charged with the fixed negative
charges, –OSO3– and can undergo the shear-driven aggregation (shear-active), at a shear rate of
.
γ = 1.5 × 106 s−1. The PMMA NPs are also charged with –OSO3– In addition, the PMMA particles
possess certain hydrophilicity, because of the surface ester groups from the MMA monomers,
which favor the tendency of forming ordered water layers [75]. Thus, the PMMA particle surface
possesses substantial short-range, repulsive hydration forces. These non-DLVO forces together with
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the DLVO interactions from the charges provide an extremely high energy barrier and very shallow
primary minimum [74], such that aggregation among the PMMA particles under the same shear rate
does not occur. For example, the prepared PMMA colloid with the radius of the primary particles,
aPMMA = 75 nm, does not undergo any aggregation after passing through the z-MC at

.
γ = 1.5 × 106 s−1,

even for more than 20 times at a particle volume fraction larger than 20%.
Then, the PS and PMMA NP colloids are mixed to form a new binary colloid, which is stable at rest.

When this binary colloid is forced to pass through the z-MC, the shear-driven aggregation/gelation
can also occur, and the formed gels are composed of both the ‘shear-active’ PS and ‘shear-inactive’
PMMA particles. Moreover, in the case of low particle volume fractions where no gelation occurs,
the aggregated binary system, similar to the unary system, is also composed of two distinct classes of
clusters: Class 1, which is mainly composed of the primary PS and PMMA NPs; and Class 2, which are
big clusters (mainly made of the PS NPs) with an average size at least two orders of magnitude larger
than the primary NPs. Figure 4 compares typical morphology of the clusters formed after shear-driven
aggregation of the pure PS colloid and of the PMMA/PS (aPMMA = 75 nm, aPS = 21 nm) binary colloid.
It is seen that the general morphology is rather similar in Figure 4a,b, because in both cases it results
from aggregation of PS NPs. The only difference is that in Figure 4b the PMMA particles are uniformly
and randomly distributed (captured) within the clusters of the PS particles.

Polymers 2017, 9, 619  7 of 13 

 

primary particles, aPMMA = 75 nm, does not undergo any aggregation after passing through the z-MC 
at γ  = 1.5 × 106 s−1, even for more than 20 times at a particle volume fraction larger than 20%. 

Then, the PS and PMMA NP colloids are mixed to form a new binary colloid, which is stable at 
rest. When this binary colloid is forced to pass through the z-MC, the shear-driven 
aggregation/gelation can also occur, and the formed gels are composed of both the ‘shear-active’ PS 
and ‘shear-inactive’ PMMA particles. Moreover, in the case of low particle volume fractions where 
no gelation occurs, the aggregated binary system, similar to the unary system, is also composed of 
two distinct classes of clusters: Class 1, which is mainly composed of the primary PS and PMMA NPs; 
and Class 2, which are big clusters (mainly made of the PS NPs) with an average size at least two 
orders of magnitude larger than the primary NPs. Figure 4 compares typical morphology of the 
clusters formed after shear-driven aggregation of the pure PS colloid and of the PMMA/PS (aPMMA = 
75 nm, aPS = 21 nm) binary colloid. It is seen that the general morphology is rather similar in Figure 
4a,b, because in both cases it results from aggregation of PS NPs. The only difference is that in Figure 
4b the PMMA particles are uniformly and randomly distributed (captured) within the clusters of the 
PS particles. 

  

Figure 4. SEM pictures of the clusters formed after shear-driven aggregation of (a) pure PS dispersion 
and (b) the PMMA + PS binary dispersion. Reproduced with permission from [48]. Copyright (2016) 
The Royal Society of Chemistry. 

In addition, it was found that the presence of the PMMA NPs does not affect significantly the 
shear-driven aggregation kinetics of the PS NPs nor the average cluster size at low volume fractions, 
and the PMMA NPs behave as inert fillers. Therefore, the above results confirm the proposed shear-
driven aggregation mechanism of the binary colloids. As schematically shown in Figure 5, since the 
shear-driven aggregation of the shear-active PS NPs takes place in micron seconds in the z-MC, the 
initially distributed PMMA NPs in the binary colloid, though shear-inactive, do not have time to 
escape from the PS aggregation process and are captured inside the clusters. The PMMA NP capture 
efficiency may reach 100% at low PMMA volume fractions, but it can be significantly lower at high 
PMMA volume fractions, particularly when the PMMA/PS size ratio is very large. On the other hand, 
if the volume fraction of the shear-active PS NPs in the binary system is high enough, such that the 
shear-driven gelation occurs after the binary colloid passing through the MC just one time, the 
PMMA NP capture efficiency can naturally reach 100%. 

  

Figure 4. SEM pictures of the clusters formed after shear-driven aggregation of (a) pure PS dispersion
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In addition, it was found that the presence of the PMMA NPs does not affect significantly
the shear-driven aggregation kinetics of the PS NPs nor the average cluster size at low volume
fractions, and the PMMA NPs behave as inert fillers. Therefore, the above results confirm the proposed
shear-driven aggregation mechanism of the binary colloids. As schematically shown in Figure 5,
since the shear-driven aggregation of the shear-active PS NPs takes place in micron seconds in the
z-MC, the initially distributed PMMA NPs in the binary colloid, though shear-inactive, do not have
time to escape from the PS aggregation process and are captured inside the clusters. The PMMA NP
capture efficiency may reach 100% at low PMMA volume fractions, but it can be significantly lower
at high PMMA volume fractions, particularly when the PMMA/PS size ratio is very large. On the
other hand, if the volume fraction of the shear-active PS NPs in the binary system is high enough,
such that the shear-driven gelation occurs after the binary colloid passing through the MC just one
time, the PMMA NP capture efficiency can naturally reach 100%.
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3.2. Distribution of GO Sheets into PVDF NP Matrix

The same methodology has been further verified by Sheng et al. [50], for a binary colloidal
dispersion composed of graphene oxide (GO) sheets and poly-vinylidene fluoride (PVDF) NPs. In this
case, the GO sheets are fillers. They are shear-inactive, because there are many oxygen-containing
groups (e.g., –OH and –COOH) on their edges and epoxide groups on their basal planes. These groups
are rather hydrophilic, leading to the GO sheets being extremely stable under the intense shear rate.
Instead, the (dominant component) PVDF NPs are shear-active, because of extreme hydrophobicity
of the polymer. After passing the binary dispersion through the z-MC device at an extremely high
shear rate (~106 s−1), aggregation/gelation of the shear-active PVDF NPs occurs, leading to uniform
capture and distribution of the shear-inactive GO sheets inside the PVDF NP matrix, as demonstrated
by the SEM pictures in Figure 6. Therefore, this example demonstrates again that through the intense
shear-driven aggregation of binary colloids, one can effectively distribute uniformly and randomly the
shear inactive fillers inside a polymer matrix, leading to well-defined nanocomposites.
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Society of Chemistry.

In the case of low initial particle volume fractions where only partial aggregation-instead of
complete gelation-occurs after the binary colloid passes through the z-MC one time, it is observed
that the GO/PVDF NP ratio inside the formed Class 2 clusters is lower than that in the initial binary
colloid. Moreover, if one allows the aggregated system to repeatedly pass through the z-MC, although
the conversion of the PVDF NPs to Class 2 clusters increases with the pass number, as shown in
Figure 7a, the amount of the captured GO sheets inside the clusters decreases monotonically with the
pass number, as reported in Figure 7b. This arises because of two main reasons. First, the GO sheets
are shear inactive and only captured (instead of aggregated) inside the PVDF NP clusters during the
extremely fast shear-driven aggregation. Second, along the shear-driven aggregation in the z-MC,
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there are also cluster breakage and restructuring, and these processes provide the opportunity to the
captured GO sheets to escape from the Class 2 clusters. In addition, it can be observed from Figure 7b
that the fraction of the GO sheets inside the clusters decreases as pH increases. This is considered to be
related to some specific interactions induced by the H···F halogen bonding between the –CF2– groups
of the PVDF NPs and the –COOH groups on the GO sheet [76,77]. In particular, the –COOH groups on
the GO sheets would be progressively deprotonated as pH increases, and this would reduce the H···F
halogen bonding interactions, thus promoting the escape of the GO sheets from Class 2 clusters during
the shear-driven aggregation/breakage. This phenomenon indicates that during the preparation of the
nanocomposites through the shear-driven aggregation of binary colloids, one should also consider the
roles played by the various interactions among the functional groups present on the surface of the two
colloidal identities.

On the other hand, in Figure 7a, the conversion of the PVDF NPs to Class 2 clusters, xp, does not
change significantly with pH. This arises because the PVDF NPs are shear-active, and their aggregation
is purely shear-controlled [63,65]. In the shear-controlled regime, the evolution of the aggregation is
independent of the surface charge or potential and governed by the value of the Peclet number, Pe,
defined by Equation (4).

The above results indicate that to effectively capture the GO sheets inside the PVDF NP clusters,
one should let the binary colloid pass through the z-MC only one time, instead of many times.
As mentioned above, if a solid-like gel of the binary colloid can be formed after passing through the
z-MC just one time, all the GO sheets can be captured inside the gel, leading to 100% capture efficiency.
Such an observation is particularly important, as an essential guideline, in practical applications of the
developed methodology to form nanocomposites.

In addition, it should be noted again that for this binary colloid, the conversion of the PVDF
NPs to Class 2 clusters in Figure 7a also reach a plateau value, which is far below 100% conversion,
as noticed in the unary colloid in Figure 2.
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4. Concluding Remarks and Perspectives

In this short review, we have presented recent advances in our knowledge about the aggregation
of unary and binary colloids. We have introduced the aggregation and gelation of colloids purely
based on intense shear force and the relevant theory and experimental validation. Then, we have
described how to apply the intense shear-driven aggregation technique to binary colloids to generate
nanocomposite materials, where A NPs as fillers are uniformly and randomly distributed inside a
matrix of B polymer NPs. We have also illustrated the advantages of the developed methodology
compared with the other common methods.
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The feasibility of the proposed methodology has been demonstrated using two stable binary
colloids: one is composed of PMMA NPs as the fillers and PS NPs as the matrix, and another of
GO sheets (fillers) and PVDF NPs. In the first case, the PS NPs alone undergo the shear-driven
aggregation (shear-active), while the PMMA fillers alone do not (shear-inactive). It was observed that
the shear-driven aggregation of the PMMA/PS binary colloids can occur, and the formed clusters
or gels are composed of both components. More importantly, the PMMA fillers are uniformly and
randomly distributed inside PS NP matrix. Similar results were also obtained in the case of GO/PVDF
binary systems, and the gelation of the shear-active PVDF NPs is able to uniformly capture and
distribute the shear-inactive GO sheets inside the PVDF NP gel matrix. All the results confirm the
feasibility of the proposed methodology.

The shear-driven aggregation mechanism of the binary colloids for the filler capturing
and distribution has been illustrated, which would help broaden the means of fabricating
nanocomposites through the binary colloidal route. Typical applications include incorporation of fillers
(e.g., graphene nanosheets, clays, or silica or oxide NPs) into the polymer NPs matrix to generate highly
electronically conductive materials, high-performance gas barrier composite membranes, composite
separators for lithium-ion batteries, etc. Studies regarding these applications have been started
in our groups, and the preliminary results for the properties of the generated nanocomposites are
very encouraging.
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