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Abstract: An iron(III) complex of tetradentate N,N′-disubstituted bis(aminophenoxide) (designated
as salan, a saturated version of the corresponding salen ligand) with a sterically hindered organic
base anchored on the ligand framework, can selectively mediate the conversion of carbonyl
sulfide to sulfur-containing polymers by the copolymerization with epoxides. This single-site
catalyst exhibits broad substrate scope, and the resultant copolymers have completely alternating
structures. In addition, this catalyst is efficient in producing diblock copolymers, suggesting a living
polymerization nature.
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1. Introduction

Carbonyl sulfide (COS), as one of the largest components of organic sulfur compounds, is mainly
produced from volcanic eruption and catabolism of biogenic volatile sulfur compounds, as well as
human industrial activity [1]. COS is thought to be the most abundant sulfur-containing gas in the
troposphere and therefore has been proved to be a major source of acid rain [2–4]. Apart from its effect
on the environment, COS is normally regarded as a significant poison which can cause the deactivation
of the industrial catalysts [5–7]. As a consequence, the removal of COS is one of the most important
issues in the process of feed gas deep purification [8], while approaching the transformation of COS to
desirable, economically competitive products remains a challenge [9,10].

Previously, Zhang and coworkers reported the transformation of COS to a degradable
sulfur-containing polymer by means of the copolymerization with propylene oxide (PO) in the presence
of a binary Cr(III)-salen complex/ionic ammonium salt catalyst system [11]. The formed copolymer
has a high refractive index of 1.63. Subsequently, various poly(monothiocarbonate)s were prepared
by the use of this Cr(III)-based catalyst systems or zinc–cobalt double metal cyanide complex [12–17].
We also developed a bifunctional Cr(III)-salen catalyst for COS/epoxides copolymerization in
a remarkable activity, and no oxygen–sulfur exchange reaction was observed even at elevated
temperatures [18]. This bifunctional catalyst was also efficient in converting COS to the semicrystalline
polymer by the stereoregular copolymerization with enantiopure epichlorohydrin [19]. Recently, the
semicrystalline poly(monothiocarbonate)s with good crystallization behavior were synthesized by
the copolymerization of COS with achiral oxetane [20] or ethylene oxide [21] mediated by binary or
bifunctional Cr(III)-based catalyst systems, respectively. More recently, colorless and highly transparent
poly(monothiocarbonate)s were successfully obtained by the use of metal-free Lewis pair catalysts [21].

Iron, the most abundant transition metal in nature, is one of the most ideal metals for catalysis
due to its low-cost and environmentally benign [22]. To date, various iron-catalyzed reactions for
organic compounds and polymers have been realized [23]. For example, iron complexes have been
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reported as active catalysts for the coupling reaction of CO2 and epoxides [24–28]. In addition, the
coordination of iron and sulfur exists widely in enzymes and synthetic ligands [29], indicating their
good compatibility.

We have demonstrated that the Cr(III)-salen complexes bearing a sterically hindered organic
base were excellent catalysts for COS/epoxides copolymerization to produce the corresponding
poly(monothiocarbonate)s with high molecular weight and narrow monodispersity [18]. By contrast,
the corresponding iron analogue was found to be inefficient in the same reactions. It is generally known
that the ligand of salan (N,N′-disubstituted bis(aminophenoxide)) possess greater donor character
than the corresponding salen ligand. Their chromium(III) and aluminum(III) complexes exhibited
higher activity than the corresponding salen complexes in some cases [30,31]. On the other hand,
we found the introduction of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (designated as TBD) on the ligand
framework could obviously decrease the catalyst loading and increase the polymer selectivity [18,32].
Motivated by these facts, herein we set out to develop an iron(III) complex of salan appending a TBD
as single-site catalyst for efficiently converting COS to a wide range of sulfur-containing polymers by
the copolymerization with epoxides.

2. Materials and Methods

2.1. Synthesis of the Ligand

2.1.1. Synthesis of Compound 5

A solution of compound 4 (3.57 g) in dry tetrahydrofuran (THF) (40 mL) was stirred at room
temperature and a solution of LiAlH4 (0.38 g) in dry THF (5 mL) was added dropwise. After stirring
3 h, water was added into the solution slowly. The resultant mixture was extracted by ethyl acetate
three times. The combined organic phase was dried over anhydrous Na2SO4 and the solvent was
removed under reduced pressure to give the desired product as a white solid. The compound 5 was
used in the following reactions without further purification.

2.1.2. Synthesis of Compound 6

PBr3 (0.12 mL) was added to a stirred solution of compound 5 (3.41 g) in CHCl3 (50 mL). The white
solid dissolved slowly after the reaction mixture was stirred at room temperature for 2 h. Cold water
(30 mL) was added and the mixture was vigorously stirred for 2 min. The organic layer was separated
and the aqueous layer was extracted with CHCl3 (2 × 50 mL). The combined organics were dried
over anhydrous Na2SO4 and the solvent was removed under reduced pressure to give the desired
product as a pale yellow solid. The compound 6 was used in the following reactions without further
purification. Yield: 3.88 g (97%).

2.1.3. Synthesis of the Ligand 3

Compound 6 (1.53 g) in dry THF (100 mL) was added to a stirred solution of compound 7 (2.10 g)
and then triethylamine (0.80 mL) was added dropwise. A white solid formed immediately, and stirring
was continued for 2 h. The white solid was removed by filtration with water, and the solution was
extracted by CH2Cl2 three times. The combined organics were dried over anhydrous Na2SO4. Removal
of solvent under reduced pressure gave the crude product which was purified by chromatography
(silica gel, dichloromethane/methanol = 20/1) to give the ligand 3 (2.10 g, 65% yield) as a white solid.
1H NMR (500 MHz, CDCl3) δ 7.20 (d, J = 2.0 Hz, 1H), 7.14 (s, 1H), 6.81 (t, J = 5.2 Hz, 2H), 3.70 (m,
6H), 3.53 (s, 2H), 3.37 (t, J = 5.8 Hz, 2H), 3.30 (dt, J = 12.4, 6.1 Hz, 4H), 2.69 (dd, J = 25.2, 17.2 Hz, 6H),
2.28 (s, 3H), 2.23 (s, 3H), 2.00 (dd, J = 18.4, 12.6 Hz, 6H), 1.38 (s, 9H), 1.27 (s, 9H), 1.26 (s, 8H). 13C
NMR (125 MHz, CDCl3) δ 153.93, 152.85, 150.41, 141.78, 140.76, 135.52, 127.22, 123.55, 123.06, 121.03,
100.00, 62.65, 53.80, 50.58, 48.19, 47.47, 46.04, 41.63, 38.58, 34.80, 34.11, 33.93, 31.66, 31.63, 29.59, 27.39,
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21.14, 20.78 (see Supporting Information, Figures S1 and S2). HRMS (m/z): Calcd. for [C40H66N5O2]+

([3 + H]): 648.5217, found 648.5219.

2.2. Synthesis of Complexes

The ligand 3 (0.65 g, 1.0 mmol) and FeCl3 (0.17 g, 1.05 mmol) were dissolved in acetonitrile (10 mL),
and the mixture was refluxed under nitrogen for 3 h. Then the reaction mixture was poured into
diethyl ether (60 mL), and the organic layer was washed with aqueous saturated NH4Cl (3 × 60 mL)
and brine (3 × 60 mL) followed by drying with anhydrous MgSO4. After filtration to remove solid
impurities and drying agent, solvent was removed under vacuum, and thereby yielding a navy blue
powder. The crude product was recrystallized from dichloromethane and hexane to give the complex
1. Yield: 78%. HRMS (m/z): Calcd. for [C40H64N5O2FeCl]+ ([1 + H]): 737.4098, found 737.4098 (see
Supporting Information, Figure S3).

Complex 1 (0.37 g, 0.5 mmol) was dissolved in CH2Cl2 (10 mL) in a 40 mL Schlenk vial wrapped
in aluminum foil and then AgNO3 (0.090 g, 0.53 mmol) was added. The mixture was stirred for 24 h,
and filtered to remove the Ag byproduct. Removal of solvent under reduced pressure gave the crude
product which was further treated with the mixture of CH2Cl2 and hexane to give the complex 2 as
a navy blue solid (0.36 g, 95%). HRMS (m/z): Calcd. for [C40H64N6O5Fe]+ ([2 + H]): 764.4288, found
764.4285 (see Supporting Information, Figures S4 and S5).

2.3. Representative Procedures for COS/Epoxides Copolymerization

A 50 mL autoclave equipped with a magnetic stirrer was heated to 120 ◦C under vacuum for 8 h,
cooled under vacuum to room temperature and moved to a dry box. Complex 2 (38.2 mg, 0.05 mmol)
and propylene oxide (5.8 g, 100 mmol, 2000 equivalent) were added in the autoclave. The autoclave
was placed in a bath at 25 ◦C, and pressurized to COS (7.2 g, 120.0 mmol). After the allotted reaction
time, the autoclave was cooled and the pressure was slowly vented. The reaction mixture was dried
in vacuum at 50 ◦C for isolating the solvent and unreacted epoxide, then weighed to calculate the
TOF (mol of product/mol of catalyst per hour) of the copolymerization. An aliquot was then taken
from the resulting crude product for 1H NMR analysis (Varian, Palo Alto, CA, USA) to give the
polymer selectivity. The crude polymer was suspended in a 10 mL CH2Cl2 and stirred for 10 min,
then 50 mL methanol was added and filtered. This process was repeated 3–5 times to completely
remove the catalyst. White precipitate was collected and dried in vacuum at 50 ◦C to constant weight.
The obtained copolymer was analyzed by 13C NMR spectroscopy (Bruker, Billerica, MA, USA) and
Gel Permeation Chromatography (GPC) (Agilent, Santa Clara, CA, USA).

3. Results and Discussion

The salan ligand with an appended TBD was prepared by our previously reported method
(Figure 1) [33]. The iron(III) complex 1 was synthesized by the reaction of the salan ligand and FeCl3 in
acetonitrile. The further treatment with AgNO3 gave complex 2 (Figure 2). Since these iron complexes
are easily dissolved in neat epoxides surveyed, the catalyzed copolymerization of COS and epoxides
does not require any organic cosolvent. Only in some cases for complete conversion of epoxides,
the addition of an organic solvent such as toluene is necessary for effective diffusion of the reactants.
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Figure 2. Structure of single-site iron(III) catalysts.

Initially, PO was used as a model monomer to investigate the catalytic performance of
the iron(III)-salan complexes. At a catalyst loading of 0.05 mol%, complex 1 exhibited a high
activity of 1040 h−1 with a polymer selectivity of 94% at ambient temperature (Table 1, entry 1).
The nucleophilicity of the axial anion of iron(III) complexes has a significant influence on COS/PO
copolymerization. Although a change in the axial anion from Cl− to less nucleophilic NO3

− decreases
the TOF from 1040 to 700 h−1, an enhanced polymer selectivity of more than 99% was achieved at
ambient temperature (entry 2). The resultant poly(propylene monothoicarbonate) has a completely
alternating structure. Then, the bulk PO/CO2 copolymerizations were tested using complex 2
at increased temperatures and decreased catalyst loadings (entry 2–4). An activity of 5400 h−1

was achieved along with a polymer selectivity of 99% when the reaction was performed at 80 ◦C
under a catalyst loading of 0.01 mol%. By way of contrast, complex 1 at the same conditions
showed an increased activity for this coupling process with a TOF of 7290 h−1; however, the
selectivity for copolymer formation was only 67% (entry 5). To better compare the discrepancy
of the anion on the selectivity for polymer versus cyclic product formation, the copolymerization
of PO and COS were conducted using complex 1 and 2 at 80 ◦C as monitored by in situ infrared
spectroscopy (METTLER-TOLEDO, Columbus, OH, USA) (Figure 3). In order to prevent the
intensity of (monothio)carbonate linkage resonance from growing too fast, the copolymerizations were
performed in the presence of 1,2-dimethoxyethane as a solvent. Even the copolymerization mediated
by complex 2 was performed over 2 h, only very weak vC = O absorption at 1755 cm−1 assigned to the
cyclic propylene monothiocarbonate was detected. In contrast, cyclic propylene monothiocarbonate
was producted to a significant extent as the same conditions using the complex 1 as a catalyst. Notably,
no oxygen−sulfur exchange reaction occurred in the present studies even at a high temperature of
80 ◦C, as confirmed by 13C NMR analysis. The single-site catalyst 2 was also proved to be efficient for
the PO/COS copolymerization under a COS pressure of 0.1 MPa at 25 ◦C (entry 6). In the presence of



Polymers 2017, 9, 515 5 of 9

an organic solvent such as toluene, quantitative conversion of the epoxide was achieved with >99%
high polymer selectivity by a prolonged reaction time (entry 7). Furthermore, benzyl alcohol (BnOH)
as a chain-transfer reagent was added into the reaction mixture for controlling the molecular weight of
the copolymer. Under a PO/BnOH of 25/1 (molar ratio) and the quantitative conversion of the epoxide,
the resultant poly(monothiocarbonate) has a molecular weight of 3000 g/mol (entry 8). The desired
initiating group of BnO− was present in the polymer chain, determined by electrospray ionization
mass spectrometry (see Supporting Information, Figure S6).

Table 1. Iron(III)-salan complexes mediated COS/PO copolymerization a.
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Selectivity c

(% Polymer)
Mn
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(kg/mol) PDI d

1 1 2000 25 1.0 1040 94 33.3 1.15
2 2 2000 25 1.0 700 >99 22.3 1.14
3 2 5000 50 0.5 2820 >99 33.6 1.17
4 2 10,000 80 0.5 5400 99 56.9 1.23

5 1 10,000 80 0.5 7290 67 48.9 1.28
6 e 2 2000 25 10.0 136 >99 57.4 1.17
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a toluene/PO of 2:1 (v/v) for entries 7 and 8. The monothiocarbonate linkages of the resulted copolymers are
all >99% based on 1H NMR spectroscopy. No oxygen–sulfur exchange reaction occurred as confirmed by 13C
NMR spectroscopy. b TOF = mol of product/mol of catalyst per hour. c Determined using 1H NMR spectroscopy.
d PDI = Mw/Mn. Determined by gel permeation chromatography in THF, calibrated with polystyrene standards.
e The copolymerization was carried out at 0.1 MPa COS. f Benzyl alcohol (BnOH) was added with a PO/BnOH of
25/1 (molar ratio). The theoretical molecular weight was calculated as: Mn,theor = [TOF]·[time]·118.02·[1 + r]−1

(r = nBnOH/ncat).
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Figure 3. Three-dimensional stack plots of IR spectra recorded every 30 s during the copolymerization
of PO with COS by the use of (a) complex 2 and (b) complex 1 as the catalyst at a [PO]/[catalyst] ratio of
2000, 80 ◦C, in the presence of 1,2-dimethoxyethane (DME) as solvent (PO/DME = 1/5, volume ratio).

Having established that iron complex 2 is an effiecient catalyst for converting COS to
poly(propylene monothiocarbonate), we then focused on its promising reactivity potential for
synthesizing a variety of poly(monothiocarbonate)s by the copolymerization of COS and various
epoxides. As expected, catalyst 2 was efficient in mediating the copolymerization of COS
and monosubstituted terminal epoxides, including aliphatic epoxides, aryl epoxide, halogenated
terminal epoxide and ether-containing terminal epoxides, to selectively afford the corresponding
sulfur-containing polymers with more than 99% polymer selectivity at 25 ◦C (Table 2, entries 1–8).
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Moreover, this catalyst can selectively convert COS to poly(alicyclic monothiocarbonate)s from alicyclic
epoxides at 50 ◦C (entries 9–12). All the resultant copolymers have completely alternating structure,
and no oxygen-sulfur exchange reaction occurred with regard to all terminal and alicyclic epoxides
(see Supporting Information, Figures S7–S14).

Table 2. COS/Various epoxides copolymerization results a.
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a Copolymerizations were mediated by complex 2 in neat epoxides at a COS/epoxide/2 of 2400/2000/1 (molar
ratio) under 25 ◦C for entries 1−8 and 50 ◦C for entries 9−12. No cyclic monothiocarbonates and ether linkages
were found by 1H NMR spectroscopy. No oxygen–sulfur exchange reaction occurred as confirmed by 13C NMR
spectroscopy. b TOF = moles of product per mole of catalyst per hour. c PDI = Mw/Mn. Determined by gel
permeation chromatography in THF, calibrated with polystyrene standards.

Because of the living polymerization nature, we further investigated catalyst 2 for the
synthesis of diblock copolymer of poly(propylene monothiocarbonate) and poly(cyclohexylene
monothiocarbonate). In order to obtain the block copolymer as pure as possible, benzyl alcohol
as chain-transfer reagent was employed to minimize the effect of trace water from the reactants. The
block copolymer was produced by stepwise addition of the two different epoxides, PO and cyclohexene
oxide (CHO) under 50 ◦C (Scheme 1). Quantitative conversion of epoxides was achieved with more
than 99% polymer selectivity under a toluene/epoxides ratio of 2/1. The diblock copolymer formation
was detected by the shift of the GPC trace relative to the PO/COS copolymer trace (Scheme 1). Based
on 1H NMR analysis, the resulting diblock copolymer shows more than 99% monothiocarbonate
linkages (see Supporting Information, Figure S15). No oxygen–sulfur exchange reaction occurred as
confirmed by 13C NMR spectroscopy (see Supporting Information, Figure S16).

The thermal behavior of the diblock copolymer was studied by using Differential Scanning
Calorimeter (DSC) (NETZSCH, Bavaria, Germany) in a nitrogen flow. Similar with the reported
PO/CHO/COS terpolymer [15], only one glass transition temperature (Tg) of 68.5 ◦C was found
in the diblock copolymer (Figure 4A). But it is worth noting that the baseline shift is significantly
broader than that of the COS/PO/CHO terpolymer. By way of contrast, the thermogram of the blend
composed of PO/COS copolymer and CHO/COS copolymer shows two baseline shifts (Figure 4B),
one Tg at 25.6 ◦C (attributable to the PO/COS copolymer) and the other Tg at 115.1 ◦C (attributable to
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the PO/COS copolymer). This result suggests that PO/COS copolymer and CHO/COS copolymer
segments in the diblock polymer have good miscibility in comparison with the blend.
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Figure 4. DSC thermograms of (A) the diblcok polymer containing 50 mol% PO/COS copolymer
segment, (B) the blend of PO/COS copolymer and CHO/COS copolymer (1/1 molar ratio in
monothiocarbonate unit).

4. Conclusions

We have demonstrated that the salan complex of cheap, earth-abundant, and nontoxic iron(III)
metal was an efficient living polymerization catalyst for converting COS to sulfur-containing polymers
by the copolymerization with epoxides. The single-site catalyst displays a wide substrate scope and
functionality tolerance, including aliphatic, aryl, halogenated, ether-containing terminal epoxides as
well as alicyclic epoxides. Furthermore, complete consumption of the epoxide with high copolymer
selectivity was achieved in the presence of an organic solvent, allowing for the synthesis of the diblock
copolymer of poly(propylene monothiocarbonate) and poly(cyclohexylene monothiocarbonate).

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/10/515/s1,
characterization of the complexes and poly(monothicarbonte)s. Figure S1: 1H NMR spectrum of the ligand;
Figure S2: 13C-NMR spectrum of the ligand; Figure S3: The HRMS spectrum of complex 1; Figure S4: The HRMS
spectrum of complex 2; Figure S5: UV-Vis absorption spectra of a dichloromethane solution of complex 2

www.mdpi.com/2073-4360/9/10/515/s1
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(c = 6.2 × 10−6 M); Figure S6: Electrospray ionization mass spectrum of poly(propylene monothiocarbonate) with
the initiating group of BnO−; Figure S7: 1H NMR spectrum of OMA/COS copolymer; Figure S8: 13C NMR
spectrum of OMA/COS copolymer; Figure S9: 1H NMR spectrum of iPMO/COS copolymer; Figure S10: 13C
NMR spectrum of iPMO/COS copolymer; Figure S11: 1H NMR spectrum of VCHO/COS copolymer; Figure S12:
13C NMR spectrum of VCHO/COS copolymer; Figure S13: 1H NMR spectrum of CXO/COS copolymer;
Figure S14: 13C NMR spectrum of CXO/COS copolymer; Figure S15: 1H NMR spectrum of diblock copolymers of
poly(propylene monothiocarbonate) and poly(cyclohexylene monothiocarbonate); Figure S16: 13C NMR spectrum
of diblock copolymers of poly(propylene monothiocarbonate) and poly(cyclohexylene monothiocarbonate).
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