

Supplementary Materials: Conjugated Polymers Containing BODIPY and Fluorene Units for Sensitive Detection of CN⁻ Ions: Site-Selective Synthesis, Photo-Physical and Electrochemical Properties

Tian He,⁺ Danting Tang,⁺ Cuiling Lin, Xi Shen, Chenjie Lu, Luonan Xu, Zhengye Gu, Zheng Xu, Huayu Qiu, Qian Zhang^{*} and Shouchun Yin^{*}

Table of Contents

1.	¹ H, ¹³ C NMR and FTIR spectra of monomersP2-7
2.	¹ H NMR and FTIR spectra of polymersP7-10
3.	Cyclic voltammograms of the polymersP11
4.	Experimental and calculated electrochemical data of polymersP11
5.	Spectroscopic responses of polymers to anionsP12-16
6.	Plot of fluorescence intensity changes of polymers versus various concentrations of CN-
	anionsP16
7.	Partial ¹ H NMR spectra of BODIPY and P3 before and after the addition of 20 equiv. [(n-
	Bu)4N]+CNP17
8.	Spectroscopic responses of BODIPY monomers to anionsP18

Figure S1. ¹H NMR spectrum of M1.

Figure S2. FTIR spectrum of M1.

Figure S4. ¹³C NMR spectrum of M2.

Figure S6. ¹H NMR spectrum of M3.

Figure S7. FTIR spectrum of M3.

Figure S8. ¹H NMR spectrum of M4.

Figure 10. FTIR spectrum of M4.

Figure S11. ¹H spectrum of P1.

Figure S12. FTIR spectrum of P1.

Figure S13. ¹H spectrum of P2.

Figure S14. FTIR spectrum of P2.

Figure S16. FTIR spectrum of P3.

Figure S19. Cyclic voltammograms of the polymers (P1, P2, P3 and P4) in THF solutions of 0.1 mol L^{-1} Bu₄NPF₆ with a scan rate of 100 mV s⁻¹.

Compound	HOMO	LUMO	$\mathbf{E}_{\mathbf{g}}$	HOMO ^{cal}	LUMO ^{cal}	E_{g}^{cal}
Compound	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
P1	-5.22	-3.36	1.86	-5.19	-2.85	2.35
P2	-5.08	-3.41	1.67	-5.15	-3.03	2.12
P3	-5.14	-3.25	1.89	-5.10	-2.57	2.53
P4	-5.11	-3.35	1.75	-5.15	-2.77	2.37

Table S1. Experimental and calculated electrochemical data of polymers.

Spectroscopic responses of polymers to anions:

Figure S20. (a) UV-vis spectra of P1 ([RU] = 30μ M) in THF/H₂O (98:2, v/v) in the presence of 20 equiv. of different anions; (b) UV-vis spectra of P1 ([RU] = 30μ M) in THF/H₂O (98:2, v/v) in presence of varying concentration of CN⁻ ranging from 0, 60, 120, 150, 210, 240, 270, 300, 450, 600, 900, 1200 and 1500 μ M; (c) Visual images observed for P1 solutions upon addition of 50 equiv. each anion.

Figure S21. (a) Fluorescence emission spectra of P1 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in presence of varying concentration of CN⁻ranging from 0, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, 480, 540, 600, 700, 800 and 900 μ M, λ_{ex} = 365 nm; (b) Fluorescence emission spectra of P1 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in the presence of 20 equiv. of different anions, λ_{ex} = 540 nm; (c) Fluorescence observed for P1 solutions upon addition of 50 equiv. each anion under the excitation of 365 nm.

Figure S22. UV-Vis responses of P1 ([RU] = 30 μ M) containing 20 equiv. of CN⁻ upon addition of 20 equiv. of other competing ions in THF/H₂O (98:2, *v*/*v*).

Figure S23. (a) UV-vis spectra of P2 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in the presence of 20 equiv. of different anions; (b) UV-vis spectra of P2 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in presence of varying concentration of CN⁻ ranging from 0, 60, 120, 180, 240, 300,360, 420, 480, 540, 600, 700, 800 and 900 μ M; (c) Visual images observed for P2 solutions upon addition of 50 equiv. each anion.

Figure S24. (a) Fluorescence emission spectra of P2 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in presence of varying concentration of CN⁻ ranging from 0, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 700, 800 and 900 μ M, λ_{ex} = 540 nm; (b) Fluorescence emission spectra of P2 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in the presence of 20 equiv. of different anions. λ_{ex} = 540 nm; (c) Fluorescence observed for P2 solutions upon addition of 50 equiv. each anion under the excitation of 365 nm.

Figure S25. UV-Vis responses of P2 ([RU] = 30 μ M) containing 20 equiv. of CN⁻ upon addition of 20 equiv. of other competing ions in THF/H₂O (98:2, *v*/*v*).

Figure S26. (a) UV-vis spectra of P4 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in the presence of 20 equiv. of different anions; (b) UV-vis spectra of P4 ([RU] = 30 μ M) in THF/H₂O (98:2, v/v) in presence of varying concentration of CN⁻ ranging from 0, 60, 120, 150, 210, 240, 270, 300, 450, 600, 900, and 1200 μ M; (c) Visual images observed for P4 solutions upon addition of 50 equiv. each anion.

Figure S27. (a) Fluorescence emission spectra of P4 ([RU] = 30μ M) in THF/H₂O (98:2, *v*/*v* in the presence of 20 equiv. of different anions, $\lambda_{ex} = 540 \text{ nm}$; (b) Fluorescence emission spectra of P4 ([RU] = 30μ M) in THF/H₂O (98:2, *v*/*v*) in presence of varying concentration of CN⁻ ranging from 0, 60, 120, 150, 210, 240, 270, 300, 450, 600, 900, 1200 and 1500 μ M, $\lambda_{ex} = 540 \text{ nm}$; (c) Fluorescence observed for P4 solutions upon addition of 50 equiv. each anion under the excitation of 365 nm.

Figure S28. UV-Vis absorption changes of P4 ([RU] = 30μ M) containing 20 equiv. of CN⁻ upon addition of 20 equiv. of other competing ions in THF/H₂O (98:2, *v*/*v*).

Figure S29. Plot of fluorescence intensity changes of polymers versus various concentrations of CN^{-} anions. The red solid lines represent the linear fitting of the scattered data points. (**a**) P1, the slope is 0.21; (**b**) P2, the slope is 0.37; (**c**) P3, the slope is 1.02; (**d**) P4, the slope is 1.58.

Figure S30. Partial ¹H NMR spectra of P3 (**a**, **b**) and BODIPY monomer (**c**, **d**) before and after the addition of 20 equiv. $[(n-Bu)_4N]^+CN^-$ (recorded in THF-*d*⁸ at room temperature).

Figure S31. (a) UV-Vis spectra of BODIPY monomer ([RU] = 30μ M) in THF/H2O (98:2, v/v) in the presence of 20 equiv. of different anions; (b) Visual images and (c) fluorescence observed for BODIPY monomer solutions upon addition of 50 equiv. each anion under the excitation of 365 nm.