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Abstract: The present study aims to improve the mechanical properties of epoxy composite by
incorporating supported ionic liquid silica (IL-silica). The IL-silica not only showed improved
interfacial interaction and reinforcement, but also served as cure agent of epoxy composites.
The differential scanning calorimetry analysis revealed that epoxy composites could be successfully
cured with IL-silica without any routine curing agents. IL-silica/epoxy composites presented higher
mechanical and thermal properties compared with epoxy composite containing un-functionalized
silica (u-silica). The dynamic mechanical analysis showed that the storage modulus of composites
significantly increased with the addition of IL-silica in comparison to that with added u-silica, as well
as the variation of Tg parameter. The incorporation of IL-silica simultaneously enhanced the tensile
strength, toughness, and thermal stability of the epoxy composites. The considerable improvements
in mechanical and thermal properties are ascribed to the improved dispersion of IL-silica and the
enhanced interfacial interactions between epoxy matrix and IL-silica by strong covalent bonding,
which results in an effective load transfer.
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1. Introduction

At present, silica particles are widely employed as fillers to reinforce polymer composites.
Silica particles can enhance the mechanical properties and overall performance of polymer
composites [1,2]. However, silica particles tend to agglomerate in polymer matrix, the high polarity
of the silica particles’ surface with silanol groups (Si–OH) and weak adhesion between silica and
polymer matrix have restricted the reinforcement effect. Researchers have put forth a great deal of
effort to make silica fillers disperse uniformly in polymer matrix and enhance the interfacial property
between silica and polymer [3,4]. A wide variety of chemical and physical treatments are applied
to modify silica particles for improving the dispersion and interface properties [5–7]. Guo utilized
a phosphonium ionic liquid (PIL) as a novel catalyst for the silanization reaction between silica and
bis(3-triethoxysilylpropyl)-tetrasulfide (TESPT) in silica-filled rubber composites, and the resulting
composite exhibited a superior overall performance [8]. Recently, we used epoxidized natural rubber
(ENR) as an interfacial modifier to improve the compatibility of silica in a polymeric matrix, and thus
produced an increase in the mechanical properties of natural rubber/silica composites [9].
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Epoxy resins have evolved as one of the most important thermosetting resins because of their
good creep resistance, high strength, good thermal stability, and structural stiffness [10,11]. However,
there are some critical properties that hindered the applications of epoxy resin; for example, they
are relatively brittle and have low fracture toughness, which need to be improved in the application
of advanced composites. Numerous methods have been designed with the goal of increasing the
toughness of epoxy resin [12,13]. The most common technique over the past decades was the addition
of elastic phase in epoxy resin such as carboxyl-terminated butadiene-coacrylonitrile (CTBN) or
poly(ether sulfone) thermoplastic polymers [14,15]. This technique can drastically enhance the
toughness of epoxy resin but also significantly reduce its modulus and thermal properties. To overcome
the limitations of elastomers and thermoplastic polymers, nanoscale reinforcements have been
developed in the past decades [16,17]. Recently, Hadavinia summarized the effects of nanoparticle
types, dispersion, and interfacial strength on the Young’s modulus (E), ultimate tensile strength (UTS),
and fracture toughness of epoxy composites [18]. The addition of nanofillers—especially silica
particles—has already provided significant reinforcing effects on the mechanical properties of epoxy
resin, especially impact resistance and fracture toughness [19,20]. However, the dispersion of silica
is still a challenge for epoxy composites with high fracture toughness [21,22]. The formation of
agglomerates would result in a reduction of the toughness, specifically when the volume fraction
is high. Another challenge in employing silica is the weak interfacial bonding between silica and
polymer matrix, resulting in the deleterious effect of silica-reinforced composite [23,24].

This work focuses on supported ionic liquid silica (IL-silica), in an attempt to achieve uniform
dispersion and strengthened interfacial bonding of epoxy composites. The surface of silica was
modified with 3-chloropropyltrimethoxysilane and 1-methylimidazole (see Figure 1). The effects of
IL-silica on cure behavior, mechanical and thermal properties of epoxy composites with different filler
weight fractions were demonstrated. The results of the measured mechanical and thermal properties
of epoxy composites were compared with an un-functionalized silica (u-silica) system. The results
show that the IL-silica can be used as curing agent for epoxy composites. The integration of IL-silica in
epoxy composites resulted in the simultaneous improvement of mechanical and thermal properties of
composites. Microscopy of the fracture surfaces was conducted using scanning electron microscopy
(SEM) to identify the failure mechanisms of epoxy composites.
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2. Materials and Methods

2.1. Materials

Silica (specific area of 210 m2) was obtained from Wanzai County Huiming Chemical Industry Co.,
Ltd., Yichun, China. 3-Chloropropyltrimethoxysilane (CPTMS), 1-methylimidazole (1-MI), and xylene
were supplied by Aladdin Industrial Corporation (Shanghai, China). Diglycidyl ether of bisphenol
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A (DGEBA) (epoxy equivalent weight = 190–195 g/eq) was purchased from Yueyang Resin Factory,
Yueyang, China. Alkyl (C12-C14) glycidyl ether (AGE) (epoxy equivalent weight = 275–300 g/eq) was
supplied by Hexion Inc., Shanghai, China.

2.2. Preparation of Supported Ionic Liquid Silica (IL-Silica)

The synthetic route of IL-silica was as follows: 1.00 g silica was added in 100 mL xylene and the
suspension was sonicated for 30 min. The obtained supernatant and 0.29 g 1-methylimidazole, 0.70 g
3-chloropropyltrimethoxysilane were loaded into a 250 mL three-necked flask with stirring at 80 ◦C
for 12 h under reflux condition in nitrogen atmosphere. The slurry mixture was filtered and washed
with acetone to eliminate any un-reacted chemicals. Finally, the filtercake was dried under vacuum at
60 ◦C for 24 h.

2.3. Composite Fabrication

In order to get well dispersed fillers in epoxy matrix, the epoxy composites were prepared by
the following procedures. An S-65 three-roll mill (Chang Zhou Wu Jin Ba Fang Mechanic Factory,
Changzhou, China) was used to mix fillers with epoxy resin. The IL-silica was mechanically mixed
with DGEBA and AGE on a hotplate and then transferred on the three-roll mill. The gap width
between the rolls was set to 2 µm and the velocities of the three rolls were set to 32/89/250 rpm.
Three processing cycles were performed. After each cycle, the mixture was refilled into the feed
opening and the rollers were cleaned. The mixture was finally transferred to a silicone rubber mold
and cured at 80 ◦C for 2 h and 120 ◦C for 2 h, followed by a post-curing at 150 ◦C for 2 h.

The detailed components of epoxy composites are shown (in parts per hundred epoxy, phr) in
Table 1. In addition, the 1-MI was fixed at 1.62 phr in the control sample. The amount of bonded 1-IM
on the surface of the silica was determined by the residue weight of IL-silica after being heated to
600 ◦C and calculated to ensure the equivalent 1-MI component was present in epoxy composites.
AGE was used as reactive diluent and composited with DGEBA to decrease viscosity.

Table 1. The formulation of epoxy composites. DGEBA: diglycidyl ether of bisphenol A; IL-silica: ionic
liquid silica; u-silica: un-functionalized silica.

Sample DGEBA AGE u-Silica IL-Silica 1-MI CPTMS

silica20 100 15 14.46 0 1.62 3.92
IL-silica20 100 15 0 20 0 0
IL-silica30 100 15 0 30 0 0
IL-silica40 100 15 0 40 0 0

2.4. Characterizations

Fourier transform infrared (FT-IR) spectroscopy was measured on a Nicolet NEXUS470
spectrometer (Nicolet, Madsion, WI, USA). Themogravimetric analysis was carried out on Netzsch
TG209 F3 instrument (NETZSCH-Gerätebau GmbH, Selb, Germany) with a heating rate of 10 ◦C/min
from 30 to 600 ◦C. X-ray photoelectron spectroscopy (XPS) was performed on an X-ray photoelectron
spectrometer VG Multilab 2000 (Thermo Electron Corporation, Waltham, MA, USA) with an aluminum
Kα source (1486.6 eV). Evaluation of cure kinetic parameters was performed by differential scanning
calorimetric analysis (NETZSCH-Gerätebau GmbH, Selb, Germany). About 5–10 mg of sample was
heated from room temperature to 250 ◦C in N2 atmosphere. Tensile tests were carried out on an
AI-700M universal test machine (Gotech Testing Machines Inc., Dongguan, China) according to ASTM
D638 (2014) at a crosshead speed of 1 mm/min. Flexural tests were performed on an AI-700M universal
test machine in accordance with ASTM D790 (2017) with a speed of 1 mm·min−1. The un-notched Izod
impact strength was measured on a GT-7045-MDL pendulum impact test machine (Gotech Testing
Machines Inc., Dongguan, China) according to ASTM D4812 (2011). Dynamic mechanical analysis
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(DMA) was analyzed using a DMA Q800 (TA instruments, Newcastle, DE, USA) in single cantilever
mode with a heating rate of 5 ◦C/min and a frequency of 1 Hz over a temperature range from room
temperature to 200 ◦C. Scanning electronic microscope (SEM) was carried out with a SU8010 (Hitachi,
Tokyo, Japan).

3. Results

Figure 2a shows the FT-IR spectra of u-silica and IL-silica. For u-silica, the bonds at 3430 and
1630 cm−1 correspond to the absorption of silanol groups and hydroxyl groups of the adsorbed water.
The stretching vibration of Si–OH group is located at 961 cm−1. The peaks at 1110 and 804 cm−1 are
assigned to the stretching vibrations of Si-O-Si group. In the FT-IR spectra of IL-silica, the bands at
2940 and 2839 cm−1 are due to the symmetric stretching band νs(C–H) and asymmetric stretching
band νas(C–H) of alkyl groups. The imidazole ring vibrations are observed at 1575 and 1510 cm−1.
The peak at 1446 cm−1 is assigned to the combined band of imidazole ring vibration and deformation
band δ(C–H).

The thermogravimetric analysis (TGA) curves of u-silica and IL-silica are shown in Figure 2b.
The major weight loss of u-silica between 30 and 200 ◦C is ascribed to the residual water. For IL-silica,
the first region is only about 2.5% weight loss in the range of 30–200 ◦C. The second region
in the range of 200–600 ◦C is due to the thermal cracking of propyl and imidazole segments.
The 1-methylimidazole weight percentage calculated from the TGA curves was 8.1%, corresponding
to 0.99 mmol 1-methylimidazole per 1 g of IL-silica.

The XP Survey and N1s high resolution XPS spectra of u-silica and IL-silica are presented in
Figure 2c,d. In the spectra of IL-silica, the peaks at 198.6 and 399.9 eV correspond to Cl 2p and N 1s,
respectively. The spectrum of N1s splits into two peaks, which justifies the two nitrogen atoms in the
structure of the supported imidazole ionic liquid.
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Figure 3 is the dynamic differential scanning calorimetry (DSC) thermographs of IL-silica and
DGEBA mixtures at IL-silica concentrations between 20 and 40 phr. It is observed that there is a dual
reaction exotherm for all systems. The onset curing temperatures of the first exothermic peak are
around 105–108 ◦C, the second exotherms are 135–137 ◦C. For an increase in the IL-silica concentration
from 20 to 40 phr, the heat of reaction (∆H) decreases from 450.8 to 406.3 J. The possible reaction
mechanisms of epoxy cured with imidazolium-based ionic liquids have been presented by Palmese and
Spychaj [25–28]. In the present work, the proposed cure reaction of DGEBA crosslinked with IL-silica is
shown in Figure 4. At relatively lower temperature, the thermal decomposition of supported imidazole
ionic liquid occurs so as to form a relatively stabilized N-heterocyclic carbon structure. In the initiation
step of curing, the pyridine-type nitrogen atom of imidazole ionic liquids reacts with epoxy groups
to form 1:1 adducts. In the following process, the pyrrole-type nitrogen of 1:1 adducts transforms
to pyrridine-type nitrogen with H+ transfer. The formation of the above pyridine-type nitrogen can
further react with epoxy polymer chains by combination of 1:1 adducts via anionic polymerization.
Furthermore, two possible options would form in the cross-linked networks, both of which lead
to the regeneration of 1-alkylimidazoles: (i) the cyclic epoxy polymer chains are formed through
N-dealkylation reaction; (ii) the unsaturated structures are formed from the epoxy cross-link structure
with carbonyl groups through tautomerization.

Figure 5 exhibits the mechanical properties of epoxy composites with different IL-silica loading.
Compared with u-silica20/epoxy composites, the tensile strength, flexural strength, flexural modulus,
and impact strength of IL-silica20/epoxy composites increased from 32.8 MPa, 43.0 MPa, 1.57 GPa, and
7.8 kJ·m−2 to 46.1 MPa, 70.2 MPa, 2.13 GPa, and 16.4 kJ·m−2. The improvement is due to the uniform
dispersion of fillers and chemical bonds at the matrix/filler interface via polymerization of epoxy
resin with the active imidazole groups of IL-silica. The reinforcement effect of polymer composites
largely depends on the efficiency of load transfer at the interface [29,30]. In the present epoxy network,
IL-silica served as a linker for epoxy polymer chain. This can efficiently improve the interactions
between epoxy matrix and the silica filler. The uniform dispersion of IL-silica and improved interfacial
interaction are favorable to enhance the load transfer from epoxy matrix to silica filler, and thus
significantly increase the mechanical properties [31,32]. By using 30 phr IL-silica in epoxy composite,
tensile strength increased from 46.1 to 52.3 MPa, flexural strength from 70.2 to 84.4 MPa, flexural
modulus from 2.13 to 2.32 GPa, and impact strength from 16.4 to 19.2 kJ·m−2. A further increase
in IL-silica content (up to 40 phr) generated a slight decrease of mechanical properties. This can be
explained by the agglomeration of IL-silica in high content.
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Here the thermomechanical properties of epoxy composites are investigated based on the
DMA results. The storage modulus and tan δ of various epoxy composites are shown in Figure 6.
The homogeneous dispersion of fillers in polymer matrix and their interfacial interaction will have
a significant effect on the thermomechanical properties [33,34]. For epoxy composites containing
IL-silica, IL-silica can be used both as curing agent and effective reinforce filler for epoxy composites.
Epoxy composite with IL-silica exhibited higher storage modulus in the rubbery region than the
composite filled with u-silica. The storage modulus E′ of the epoxy composites in the rubbery region
increased by increasing the IL-silica content. This behavior is attributed to the improved interfacial
interactions, since the IL-silica can discourage the mobility of epoxy matrix around IL-silica and provide
additional stress transfer under loading. In IL-silica/epoxy composites, imidazole groups of IL-silica
could react with epoxies and construct the crosslink network through covalent bonds on the interface.
This effectively restricts the movement of epoxy polymer chains and promotes energy dissipation from
the matrix to filler, resulting in an increase in modulus. Figure 6b shows the temperature dependence
of tan δ values of epoxy composites. Clearly, the Tg value of the IL-silica20 sample shifted toward
higher temperature by 9.2 ◦C compared to that of the silica20 sample. The presence of IL-silica led to a
higher cross-linking degree of the resultant network than u-silica/epoxy composites. The Tg value of
IL-silica/epoxy composites continuously shifted to higher temperature with increasing IL-silica content.
This can be attributed to the increase of crosslinks density of epoxy resin with increasing IL-silica
content, which would restrict the mobility of the epoxy chains for the enhanced interfacial interactions.
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The TGA curves of epoxy composites are presented in Figure 7. The presence of IL-silica enhanced
the thermal stability of epoxy composites, as both the decomposition temperature (Tonset) and T10%

shifted toward higher temperatures than that of the composite containing u-silica. For the composites
containing various loadings of IL-silica, the Tonset and T10% increased with increasing IL-silica content.
This can be explained in terms of the improved interfacial interaction and increased cross-linking
density of epoxy composites [35–37].
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Figure 8 presents the representative morphologies of the fractured surfaces of epoxy composites.
From Figure 8a,b, the u-silica is present in the form of agglomerates in the epoxy matrix due to the
formation of hydrogen bonds among abundant silanol groups, which partially offsets the reinforcement
effect on mechanical properties. In case of IL-silica/epoxy composites, most of the silanol groups
have been reacted and the surface has been changed from hydrophilic to hydrophobic, thus the
agglomeration tendency would be reduced. As shown in Figure 8c,d, the absence of obvious
aggregates on the fractured surface confirms the more uniform dispersion of IL-silica in epoxy
resin than u-silica. Clearly, the IL-silica is embedded well into and tightly bound to the epoxy
matrix. Additionally, in Figure 8c,d, large and elongated crack patterns confirm higher crack growth
resistance of IL-silica/epoxy composite, which facilitates energy dissipation and increases the fracture
toughness [38]. These characteristics are consistently associated with the increased interfacial adhesion
and efficient transfer of the load in IL-silica/epoxy composites.
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4. Conclusions

This study demonstrated supported ionic liquid silica (IL-silica) as curing agent for epoxy
composite with improved dispersion and interfacial interaction. Epoxy composites were successfully
cured with IL-silica without the addition of any routine curing agent. The IL-silica were observed to
be highly dispersed and well integrated in epoxy resin compared to un-functionalized silica (u-silica).
The uniform dispersion and improved interfacial adhesion provide for an efficient load transfer
from the epoxy matrix to silica and thus enhance the overall mechanical and thermal properties of
epoxy composites.
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