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Abstract: Cinnamaldehyde (CA) was successfully encapsulated in β-cyclodextrin (β-CD),
and polylactic acid (PLA)-based composite fibers were prepared by incorporating CA/β-CD via
electrospinning. Morphological, structural, spectral, and antibacterial properties of different weight
ratios of PLA:β-CD/CA (88:12, 94:6, 97:3, and 98.5:1.5) and PLA/CA/β-CD fibers were investigated.
PLA and CA/β-CD were incorporated by mixing of CA/β-CD inclusions to enhance the viscosity
of the mixed solution. The mechanical properties and hydrophilicity of nanofibers were improved
following the addition of CA/β-CD. Moreover, CA/β-CD improved the antibacterial activities of
the mixture against Escherichia coli and Staphylococcus aureus. PLA/CA/β-CD-3 exhibited excellent
antibacterial effects and low cytotoxicity. Thus, our study showed that PLA/CA/β-CD fibers may
have applications as wound dressing materials and for use in other biomedical applications.
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1. Introduction

Cinnamaldehyde (CA) is a botanical essential oil derived from cinnamon bark. Due to its excellent
antibacterial effects, low toxicity, and strong antioxidant properties, CA is widely used in the food,
pharmaceutical, biomedical, and cosmetics industries [1]. However, CA is highly volatile in nature,
unstable, and readily undergoes oxidation upon exposure to oxygen, light, and heat. In recent years,
numerous studies have demonstrated the significance of polymer blends, such as polylactic acid
(PLA), poly(ethylene oxide) (PEO), polycaprolactone, poly(vinyl alcohol) (PVA), and polyethylene
terephthalate, in maintaining the stability and bioactivity of CA [2]. CA-containing polymers can form
films, gels, beads, and particles. Notably, in vitro experiments have shown that addition of CA to
composite films applied to slices of bread and cheese during storage effectively inhibited Penicillium and
Aspergillus niger growth, thereby prolonging the storage period of bread and cheese [3]. Additionally,
using Schiff alkali chitosan as carrier materials, researchers prepared a loaded composite of CA and
graphene and found that this composite inhibited Rhizopus growth on sliced bread [4]. Copolymer
fibers prepared by electrospinning as a biodegradable multilayer structure of poly butadiene copolymer
acid, corn protein, and CA poly-3-hydroxybutyrate showed antibacterial effects, suggesting that this
polymer could have applications in the establishment of an active bio-based multilayer system for
food packaging applications [5]. Moreover, a cinnamon essential oil/cyclodextrin inclusion complex
(CEO/b-CD-IC) integrated into PLA nanofibers was prepared via electrospinning and co-precipitation,
showing better antimicrobial activity than the PLA/CEO nanofilm, effectively prolonging the shelf life
of pork and supporting its potential applications in active food packaging [6]. Further studies have
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shown that electrospun PVA/CEO/β-cyclodextrin (β-CD) antimicrobial nanofibrous films (average
diameter of 240 ± 40 nm), fabricated under optimal conditions with a mild electrospinning process
to generate nanofibrous mats, showed higher antimicrobial activity than PVA/CEO/β-CD films.
Additionally, these PVA/CEO/β-CD nanofibrous mats could prolong the shelf-life of strawberries,
indicating their potential applications in active food packaging [7].

The controlled release of essential oils from food packaging structures is mainly based
on concentration-dependent passive diffusion. Essential oils are known to have anticancer [8],
antifungal [9], antioxidant [10], anti-inflammatory [11], and antimutagenic effects [12], highlighting
their utility as matrix materials for wound dressing applications. However, essential oils have poor
physical properties, including hydrophobicity and susceptibility to degradation, hindering their use in
tissue engineering applications. In order to overcome these disadvantages, essential oils have been
encapsulated into films, gels, beads, and particles. Essential oils can be delivered via carrier-solutions,
polymer derivatives, or encapsulation in solid particles/films [13,14]. Liakos et al. fabricated sodium
alginate and essential oil composite films by the drop and cast method and found that films containing
different percentages of essential oils could show antibacterial effects against Escherichia coli and Candida
albicans. Such films could be used as disposable wound dressings, food packaging, or medical device
protectants [15]. Many essential oils, such as thyme, lavender, peppermint, cinnamon, and lemongrass
oils, have been found to exhibit specific antimicrobial properties [16]. For example, eugenol and
limonene added to nanofluid-based magnetite have been shown to have antimicrobial properties in
wounds, and Eugenia carryophyllata essential oil showed antifungal effects in biomedical applications
after stabilization using an iron oxide/oleic acid core/shell nanostructure [17].

Electrospinning is a well-established technique to generate micro- to nanometer-scale polymeric
fibers [18]. This method can also be used to encapsulate essential oils because it is responsive to
changes in the surrounding atmosphere, allows retention of controlled release and consecutive
delivery of multiple active ingredients, and creates highly porous and permeable scaffolds
with high surface-to-volume ratios, which are ideal for wound dressings [19]. Rieger et al.
obtained chitosan/CA/PEO electrospun fibers without surfactants. The release of CA from the
chitosan/CA/PEO nanofiber mats directly influenced their cytotoxicity against Pseudomonas aeruginosa.
The release of CA from the chitosan/PEO nanofiber mats demonstrated the potential of this material
as a flexible scaffold that could alleviate nosocomial infections by delivering a broad-spectrum natural
antimicrobial agent [20]. Later, researchers developed a new therapeutic wound dressing in which CA
and hydrocinnamic alcohol were electrospun in chitosan (CS)/PEO nanofibers; these composite fibers
broadened the delivery of therapeutics, allowing hydrophobic agents to be delivered by hydrophilic
nanofiber mats. However, no studies have evaluated the encapsulation of CA using β-CD as a wound
dressing [21].

Accordingly, in this study, we carry out CA encapsulation using β-CD and then incorporated
CA/β-CD into PLA via electrospinning. We investigate the morphology, structure, release behavior,
and antibacterial ability of PLA/CA/β-CD nanofibers. We hypothesized that the CA-loaded
PLA/β-CD nanofibers would show low cytotoxicity, suggesting the potential use of these nanofibers
in future biomedical and pharmaceutical applications.

2. Materials and Methods

2.1. Materials

PLA (Mw = 15,000 g/mol) was synthesized in our laboratory, as previously reported [22].
CA (≥93%, FG, Mw = 132.16 g/mol) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
β-CD, dichloromethane (DCM), and N,N-dimethylformamide (DMF) were supplied by Chengdu
Institute of Organic Chemistry, Chinese Academy of Science (Chengdu, China). Dulbecco’s modified
Eagle’s medium (DMEM) was obtained from Gibco BRL (Rockville, MD, USA), and bovine serum
albumin was purchased from Sigma-Aldrich. Deionized water was prepared using a Millipore Milli-Q



Polymers 2017, 9, 464 3 of 14

ultra-pure water system. The microorganism strains of E. coli (ATCC 29522) and Staphylococcus aureus
(ATCC 25923) were maintained in our laboratory. Difco Luria-Bertani (LB) broth was procured
from BD Biosciences Co. (Woburn, MA, USA). All chemical reagents used were of analytical
grade or better, and were purchased from Changzheng Regents Company (Chengdu, China) unless
otherwise indicated.

2.2. Preparation of β-CD/CA Particles

The inclusion complex of CA and β-CD was prepared using a co-precipitation method. Briefly,
10 g β-CD was dissolved in 100 mL distilled water and stirred using a magnetic stirrer (RT5; IKA,
Staufen im Breisgau, Germany) at 40 ◦C for 2 h. One milliliter of CA was then slowly added to the β-CD
solution with stirring at 700 rpm for 90 min to obtain a weight ratio of CA: β-CD of 10:90. The solution
was cooled to room temperature, and the final solution was freeze-dried to collect β-CD/CA particles.
Finally, the sample was washed twice with 30% ethanol solution and then freeze-dried into power for
24 h.

2.3. Preparation of PLA/β-CD/CA Fibers

PLA solution (15%, w/w) was prepared by dissolving 15 g PLA in a 100 mL co-solvent system
of DCM to DMF with a ratio of 3:1 (v/v) with constant stirring for 3 h. The PLA/β-CD/CA fibers
were then fabricated by adding a certain amount of CA/β-CD into the PLA solution. The polymer
solution was added to a 5 mL syringe attached with a blunt metal needle as the nozzle. The distance
between the collector and needle was about 15 cm, and the flow rate was set 1.0 mL/h by a
precision pump (Zhejiang University Medical Instrument, Hangzhou, China). The electrospinning
voltage was controlled within 20 kV through a high-voltage statitron (Tianjing High Voltage Power
Supply Company, Tianjing, China). A grounded plate-type collector was used to collect the fibers.
Different fibers were vacuum-dried at room temperature overnight to remove any solvent residue
prior to further use. The electrospun fibers were denoted as PLA/β-CD/CA-12, PLA/β-CD/CA-6,
PLA/β-CD/CA-3, and PLA/β-CD/CA-1.5 for weight ratios of PLA:β-CD/CA of 88:12, 94:6, 97:3,
and 98.5:1.5, respectively.

2.4. Characterization of PLA/β-CD/CA Fibers

The viscosity of the solution was read directly from a Brookfield viscometer (Model DV-II +
Pro, Middleboro, MA, USA). The tests were carried out in triplicate, and the data were presented
as average values. The morphology of fibers was investigated by a scanning electron microscope
(SEM, FEI Quanta 200, Eindhoven, The Netherlands) equipped with a field-emission gun (20 kV) and a
Robinson detector after 2 min of gold coating to minimize the charge effect. Attenuated total reflectance
Fourier-transform infrared (ATR-FTIR) spectrometry was used to identify the chemical structures of
PLA/β-CD/CA fibers and the possible interactions between their components. A small section cut
from each composite fiber was used. The samples were analyzed with a resolution of 4 cm−1, aperture
setting of 6 mm, scanner velocity of 2.2 kHz, sample scan time of 32 s, and 100 total scans per sample,
in the range of 500 to 4000 cm−1. Spectral outputs were recorded in the absorbance mode, as a function
of wave number, using a Bruker 66 spectrometer (Karlsruhe, Germany) [23]. The diameters of fibers
were determined manually from SEM images using Image J software, and the specific methodology
was referred to http://rsbweb.nih.gov/ij/plugins/index.html. The analysis of the fiber diameter
was evaluated at three randomly-selected SEM images with a magnification of 5000×, and at least 50
different sites from each image were randomly chosen and measured to generate an average value
as previously reported [24]. To measure the mechanical properties, fibers with dimensions of 5 mm
× 50 mm were placed between the jaws of a mechanical testing machine (Instron 5567, Canton, MA,
USA). A constant elongation (3 mm·min−1) was applied along the longitudinal axis of the vessel until
rupture, to obtain a stress-strain curve, and the ultimate strength and strain at failure were obtained
as described previously [25]. The conductivity (σ, S/cm) was measured using the four-point probe
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technique, the fibers were punched into small strips (10 × 40 mm2). Then one pair of probes was used
for the current injection while the other pair was used for the voltage measurement [20], and calculated
based on the equation:

σ = l/(SRs)

where l is the distance between reference electrodes, S is the cross-sectional area of the fibrous sample,
and Rs is the ohmic resistance of bulk samples. Rs was measured with an impedance/gain-phase
analyzer (Solartron 1260, Farnborough Hampshire, UK) and an electrochemical interface (Solartron
1287, Farnborough Hampshire, UK), as described previously [24]. A video-based optical contact angle
meter (Data Physics OCA 15EC, Filderstadt, Germany) was used to measure the hydrophilicity of
the fibers. Briefly, 4 cm × 4 cm samples were fixed on a glass microscope slide, placed on the meter
stage, and instilled with a 5 µL drop of water. At least five contact angles at different locations were
measured, and the average contact angle for each sample was obtained [25]. The release behavior of CA
from the PLA/β-CD/CA fibers was assessed using the dialysis method as described previously [23].
Briefly, the fibers were punched into squares with a length of 1 cm, and then soaked to a dialysis bag,
containing 50 mL of phosphate buffered saline and 20% ethanol. The dialysis bag was adjusted to
pH 7.4 at 35 ◦C, which simulated the human body surface environment. All samples were incubated
under gentle agitation and collected every 10 h for 60 h. The percentage of released CA was measured
by a UV–Vis spectrophotometer at 275 nm [23]. Release studies were analyzed using the parameters in
Peppas’ equation [26]:

Qt = A × tn

where Qt is the cumulative percent of CA released at time t, A is a constant incorporating geometric
and structural features of the nanoparticles, and n is the release exponent that indicates the release
rate mechanism. Values of n less than 0.43 indicate that the dominant release mechanism is Fickian
diffusion (case I transport); values between 0.43 and 0.85 indicate a non-Fickian diffusion mechanism,
and values greater than 0.85 indicate a Case II release mechanism.

2.5. Antibacterial Test

The antimicrobial activity of PLA/β-CD/CA fibers against E. coli and S. aureus was as previously
described [20]. Briefly, the sample was punched into a rectangle measuring 10 mm × 20 mm, and
then immersed into test tubes containing 0.5 mL of inoculum (approximately 107 CFU/mL of tested
bacteria). The test tubes were shaken at 200 rpm and 37 ◦C, and the absorbance at 600 nm was
measured at selected time intervals. At each time point, 100 µL of the bacterial suspension was spread
onto LB plates using the spread plate method, and the loss of bacterial activity was applied to measure
the colony-forming units (CFU) of E. coli and S. aureus [27].

2.6. Cell Viability Assay

The viability of CCC-HSF-1 human skin fibroblasts (HSFs) on fibrous mats was using MTT assays.
Briefly, HSFs were cultured in DMEM (Gibco BRL) supplemented with 10% heat inactivated fetal
bovine serum (Gibco BRL). The cells were seeded on different fibers in 96-well plates at a density of
1 × 105 cells/cm2 and incubated in an incubator with 5% CO2. After culturing for 24 h, the medium
form each well was replaced with MTT solution and the plates incubated at 37 ◦C for 3 h. After
removal of the MTT solution, acid isopropanol was added into each well and incubated for 1 h at room
temperature according to the reagent instructions. One hundred fifty microliters of incubated medium
was pipetted into a 96-well tissue culture plate, and the absorbance at 570 nm was measured for each
well using a UV spectrophotometer. This experiment was repeated five times.
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2.7. Statistical Analysis

The values are expressed as means ± standard deviations (SDs) and were analyzed by one-way
analysis of variance followed by Tukey’s post-hoc test to discern the statistical differences between
groups. Differences with p values of less than 0.05 were considered statistically significant.

3. Results and Disccusion

3.1. Topological Characterization of Fibrous Mats

Figure 1a summarizes the morphologies of PLA/β-CD/CA fibers, produced by electrospinning.
The β-CD/CA particles appeared as multi-tier ellipse-shaped particle, and the small particles
adhered to one another. A similar phenomenon was observed by Wen et al. [6]. The composites
of PLA/β-CD/CA-1.5 to PLA/β-CD/CA-6 fibers showed a cylindrical structure and no visible
separation of the particles from the fiber matrix (without beads), confirming that the β-CD/CA
powder was successfully encapsulated into the PLA fibers. Notably, dispersed β-CD/CA-12 fibers
could not be obtained, and bead defects were observed when β-CD/CA content was higher than
12%. The low viscosity of the polymer solution could result in an increase in the surface tension of the
solvent, which favored the formation of beads [28].
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Figure 1. (a) SEM images of β-CD/CA-1.5 particle and PLA/β-CD/CA fibers; and (b) the average
diameters of different fibers determined from SEM images.

The diameter of PLA/β-CD/CA fibers increased as the amount of β-CD/CA increased, and a
relatively uniform fiber diameter distribution was observed (Figure 1b). Higher concentrations of
β-CD/CA caused a gradual linear increase in the diameter of PLA/β-CD/CA fibers (PLA/β-CD/CA-1.5:
4.15 ± 0.36 µm; PLA/β-CD/CA-3: 4.94 ± 0.41 µm; PLA/β-CD/CA-6: 5.45 ± 0.52 µm;
and PLA/β-CD/CA-12: 5.99 ± 0.64 µm). In addition, the average diameter of the PLA/β-CD/CA
fibers was significantly higher than that of pure PLA fibers (3.17 ± 0.23 µm; p < 0.05).

3.2. FT-IR

Figure 2 shows FT-IR spectra of PLA, CA, β-CD, CA/β-CD, and PLA/β-CD/CA fibers.
The characteristic absorption peaks of PLA were observed at around 1756, 1456, and 1183 cm−1

due to the –COOH, –CH3, and –OH stretching vibrations, respectively, as reported in the literature [29].
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The FT-IR spectrum of CA showed characteristic peaks at 2812 and 2743 cm−1 due to the C–H
stretching vibration; 1669 cm−1 represented the C=O stretching vibration, and 1394 cm−1 represented
the C–H in-plane bending vibration in –CHO [23]. The characteristic absorption peaks of pure β-CD
were observed at around 1030, 2930, and 3390 cm−1 due to the C–O–C, C–H, and O–H stretching
vibrations, respectively [6]. From the spectrum of CA/β-CD, characteristic peaks of CA and β-CD
were observed, confirming the presence of both CA and β-CD in the sample. However, the intensity of
CA was markedly decreased because most peaks depended on the concentration of the encapsulated
CA, similar to previously-published findings [30]. Weak peaks for β-CD and CA were found in the
spectrum of PLA/β-CD/CA fibers, indicating that β-CD and CA were efficiently incorporated into
the PLA. In addition, the characteristic peaks of CA at 1394 cm−1 and 1669 cm−1 shifted to 1453 cm−1

and 1756 cm−1 for PLA/β-CD/CA, respectively. Thus, there were many interactions between the
β-CD/CA and PLA; a similar phenomenon was also observed in previous studies [6].
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3.3. Physical Characteristics of Different Fibrous Mats

Table 1 summarizes the physical characteristics of the electrospun fibers at different concentrations
of β-CD/CA. The PLA concentration had a significant effect on the viscosity of PLA/β-CD/CA; higher
PLA concentrations resulted in greater viscosity (increased from 45.27 ± 3.54 to 129.15 ±12.61 mPa·s)
because the β-CD/CA inclusion filled the void of PLA [31]. Fatma et al. suggested that this effect
may be related to the presence of β-CD crystals in the PLA solution and/or interactions between the
β-CD and PLA polymer chains [30]. The conductivity of fibers increased as the CA concentration
increased from 0.037 ± 0.063 to 0.058 ± 0.079 µS/cm (p > 0.05); this could be attributed to the critical
β-CD/CA concentrations, and higher affinities of the hydrophilic groups of β-CD for CA during
particle formation [32]. Although the addition of β-CD/CA in PLA did not affect the formation of
PLA/β-CD/CA fibers, it affected the mechanical properties of the fibers. Table 1 shows the mechanical
properties of PLA nanofibers with different β-CD/CA contents. The addition of β-CD/CA l decreased
both the stress and strain from PLA/β-CD/CA-1.5 to PLA/β-CD/CA-6 fibers slightly (p > 0.05),
and the Young’s modulus was gradually increased from 64.21 ± 7.48 to 76.47 ± 8.27. We showed that
PLA/β-CD/CA-12 fibers exhibit a significant decrease in elongation at break (p < 0.05), suggesting that
when a large amount of inclusion was added; the inclusion filled small voids of PLA fibers, thereby
leading to the formation of fibers and increasing the breakpoint.
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Table 1. The physical characteristics of different fibers.

Sample Viscosity
(mPa·s)

Conductivity
(µS/cm) Strain (%) Stress (MPa) Young’s

modulus

PLA 129.15 ± 12.61 a 0.037 ± 0.063 a 96.74 ± 12.54 a 4.42 ± 0.92 a 84.62 ± 9.74 a

PLA/β-CD/CA-1.5 118.46 ± 10.19 a 0.039 ± 0.065 a 91.25 ± 11.81 a 4.31 ± 0.89 a 76.47 ± 8.27 a

PLA/β-CD/CA-3 97.82 ± 7.18 b 0.043 ± 0.069 a 88.63 ± 10.17 a 4.27 ± 0.87 a 73.88 ± 8.01 a

PLA/β-CD/CA-6 70.48 ± 5.53 b 0.049 ± 0.071 a 76.36 ± 8.34 a 4.02 ± 0.82 a 64.21 ± 7.48 b

PLA/β-CD/CA-12 45.27 ± 3.54 c 0.058 ± 0.079 a 70.49 ± 7.87 a 3.63 ± 0.74 a 52.74 ± 5.94 b

Notes: a,b,c means with the same letter in the same column are not significant different (p > 0.05).

3.4. Surface Hydrophilicity of PLA/β-CD/CA Fibers

Water contact angles of PLA/β-CD/CA fibers are shown in Figure 3. Pure PLA fibers are
hydrophobic, and our results showed that addition of β-CD/CA could significantly decrease the
water contact angle; water contact angles of PLA/β-CD/CA-1.5, PLA/β-CD/CA-3, PLA/β-CD/CA-6,
and PLA/β-CD/CA-12 were 76.4◦ ± 5.1◦, 62.4◦ ± 4.3◦, 32.7◦ ± 2.1◦, and 19.2◦ ± 1.2◦, respectively.
All water contact angles were less than 90, confirming the hydrophilic behavior of PLA/β-CD/CA
fibers and the presence of hydrophilic β-CD/CA with abundant –OH groups on the surface of the
composite fiber [6]. Indeed, incorporation of a higher concentration of β-CD/CA resulted in the
formation of more hydrophilic PLA/β-CD/CA fibers.
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3.5. Release Characteristics of PLA/β-CD/CA Fibers

The release profiles of CA from PLA/β-CD/CA fibers are shown in Figure 4. Each curve of
the PLA/β-CD/CA fibers showed a slight initial burst within the first 15 h, due to the CA absorbed
or loosely bound near the surface of the fibers. After 15 h, PLA/β-CD/CA-12 with sphere-fiber
morphology resulted in uncontrolled release of CA. The release of CA from PLA/β-CD/CA-1.5,
PLA/β-CD/CA-3, and PLA/β-CD/CA-6 exhibited a gradual accumulation. Moreover, the cumulative
release percentage increased with increasing CA contents. In contrast, the cumulative amount of CA
released from PLA/β-CD/CA-6 fibers was significantly higher than that from PLA/β-CD/CA-1.5
fibers, indicating that increased loading of CA correlated with increased release during the 20 h period.
One possible reason is that the CA was wrapped in PLA/β-CD/CA-1.5 fibers and diffused through a
longer distance than others. After 20 h, more than 60% CA was released from PLA/β-CD/CA-3 and
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CA showed a significantly gradual increase in the accumulative release compared with others (p < 0.05).
This could be explained by the hypothesis that incorporation of CA may destroy the interaction between
β-CD and PLA chains, which would have favored the excellent release percentage of CA. In addition,
for the PLA/β-CD/CA-3 sample, we observed values of 0.43 < n < 0.85, which demonstrated that
CA release was controlled by diffusion-swelling. This could be a result of the low degree of swelling
and the presence of CA at the surface or in the exterior layer of β-CD [23]. Yet, the release behaviors
of CA were varied considerably depending on the morphology and composition of PLA/β-CD/CA
fibers [23].

The mechanisms underlying the antibacterial activity of PLA/β-CD/CA fibers are not fully
understood. Even though there are many reports proposing different mechanisms, there is no
consensus [33,34]. Tiwari et al. have demonstrated that CA-loaded electrospun fibers can effectively
inhibit the growth of both Gram-positive and Gram-negative bacteria, possibly due to CA leading to
enzyme inactivation or protein denaturation [35]; thus, the antimicrobial activities of PLA/β-CD/CA
fibers have been attributed to CA. As illustrated in Figure 5, PLA/β-CD fibers did not show any
antibacterial activity, indicating that the PLA/β-CD matrices did not exert any antibacterial effects.
PLA/β-CD/CA-1.5 fibers showed low antimicrobial activity against both E. coli (82.45% ± 2.56%)
and S. aureus (79.83% ± 2.41%), relative to the release amount of CA from the fibers and bacteria
exhibited sensitive concentration-dependent antibacterial effects. Except for the PLA/β-CD/CA-1.5
fiber, all PLA/β-CD/CA fibers completely inhibited the growth of E. coli and S. aureus for the
first 20 h, which could result in the rapid release of CA adsorbed on the surface, allowing the CA
concentration to reach the threshold for efficacy, consistent with a report by Hosseini et al. [36]. After
20 h, higher concentrations of β-CD/CA resulted in strong interactions between PLA and β-CD/CA
and a slower reaction rate, thereby blocking additional release of CA and decreasing antibacterial
efficiency. In contrast, for PLA/β-CD/CA-3 fibers, stable antibacterial activity (greater than 90%) was
observed after 60 h. Further studies are needed to determine the release kinetics of CA from the blend
fiber surface. Nguyen et al. also demonstrated that effective antibacterial materials should decrease the
microbial concentration by at least 30%; PLA/β-CD/CA-3 fibers could satisfy this criterion, exhibiting
excellent antibacterial efficiency [37]. Thus, these fibers could effectively prevent microorganism
infection and were safe for humans, suggesting potential applications as a wound dressing.
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3.6. Viability of CCC-HSF-1

Figure 6 shows that PLA/β-CD/CA fibers could significantly improve cell viability compared
with that of cells grown on CA alone (p < 0.05). This result could be explained by the encapsulation
of various concentrations of CA into the PLA matrix. The cytocompatibility of polymer/CA
composites has been demonstrated in numerous studies, despite the fact that CA was used at toxic
concentrations [15]. Our results also revealed that concentration-dependent cell viability was observed
following treatment with CA alone, or encapsulated CA. Cells exposed to CA alone showed toxic effects
with activities of 52% and 74% for CA-1.5 and CA-6, respectively. These results could be attributed
to the presence of various powerful anticancer components in CA, which were responsible for the
reduced cell viability [25]. In contrast, PLA/β-CD/CA-1.5 and PLA/β-CD/CA-6 showed lower toxic
effects, with decreases in viability of about 2% and 27%, respectively. Higher loading of CA is expected
to increase toxic activity, consistent with the finding that PLA/β-CD/CA-12 showed the highest
cytotoxicity of all examined PLA/β-CD/CA fibers (p < 0.05) [15]. In particular, PLA/β-CD/CA-3
showed less than 3% toxic activity compared with CA at the same concentration, demonstrating its
suitability for wound dressing applications. These findings also confirmed that encapsulated CA could
not directly reach individual cells to deliver CA [25].
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4. Discussion

Electrospun fibers have received a great deal of attention in antimicrobial wound dressing,
although the optimization of PLA/CA/β-CD fibers is rather limited. In the current study, CA-loaded
electrospun fibers were fabricated with various fiber morphologies. Many factors, including solvents,
polymers, voltages, and collecting distances, could influence the electrospun nanofibers. Thus,
our results could be explained by the different conductivities and viscosities of the solutions, consistent
with previous studies. For example, Liu et al. demonstrated that an increase in the concentration
of polymer solution resulted in increases in viscosity and mean fiber diameter [23], and Saquing
et al. showed that incorporation of β-CD/CA into a PLA solution decreased the conductivity of
electrospinning suspensions, thereby decreasing the surface charge density of the spinning jet and
increasing the diameter of PLA/β-CD/CA fibers [38]. The viscosity and conductivity of the polymer
solution were consistent with SEM images. When the PLA concentration was over 12%, the viscosity
was too low to form continuous nanofibers, and the lower conductivity resulted in the accumulation
of beads on the nanofibrous film, forming an unstable Taylor cone at the needle tip. Bhardwaj et al.
showed that lower conductivity would result in less stretching of the jet, thus producing nanofibers
with larger diameters [39]. These findings suggested that β-CD was well suited for encapsulation of
CA, consistent with the results of previous studies [40].

The increase in CA concentration decreased the mechanical properties of PLA/CA/β-CD fibers.
First, the β-CD/CA acted as filler and dispersant in PLA/CA/β-CD fibers. Second, the degree of
decrease in mechanical properties of the fibers was strongly dependent on the concentration and
molecular structure of β-CD/CA; similar results have been found using β-CD in PLA nanofibers [30].
Moreover, Ioannis et al. proved that encapsulation of essential oils into plasticized and surfactant
laden films only slightly decreased the Young’s modulus of the films, and the percent elongation
at break of the films was reduced gradually as essential oils were added [15]. Moreover, increased
CA concentrations resulted in lower viscosity, forming fewer macromolecular entanglements that
were looser and crisper [41]. As expected, the CA concentration in the solution decreased the surface
hydrophobicity of PLA fibers, due to the high hydrophilicity of β-CD and CA (Figure 4). Figure 5
summarizes the rate of CA release after 60 h, these results showed a similar initial burst release period.
Particularly for PLA/CA/β-CD-3, constant release was eventually observed. There may be two steps
to CA release into the medium. First, water molecules diffuse into the PLA/CA/β-CD fibers, and CA
is released abruptly from β-CD embedded in the surface of PLA/CA/β-CD fibers. CA will then react
with PLA/β-CD, allowing internal CA release to occur, and CA release slows down. CA release is also
influenced by the dissolution and swelling behavior of the matrix polymer [34].

In this study, the antibacterial properties of fibers were evaluated in E. coli and S. aureus.
The concentration of CA and the formation of PLA/CA/β-CD fibers have also been proposed as
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reasons for the antibacterial activity, where the accumulation of CA in fibers cause cell permeability
and the death of microorganisms. Although the exact mechanism responsible for the antibacterial
activity is unclear, and may be multifactorial, it is clear that PLA/CA/β-CD-3 fibers result in higher
antibacterial activity than PLA fiber, Moreover, CA in the matrix of PLA/CA/β-CD-3 fibers had
significant effects on antibacterial activity, and CA embedded in the polymers will cause microorganism
death over time. CA has various health benefits on human skin cells; additionally, our findings
demonstrated that the cytotoxicity of CA was concentration dependent and that CA showed no
cytotoxicity at low concentrations, but did have cytotoxic effects at higher concentrations. CA-loaded
electrospun fibers showed relatively lower cytotoxicity compared with untreated CA. The outcome
of treatment with CA may be cell- and tissue-specific. For example, although CA is known to
cause allergic contact dermatitis in skin [42], it has also been reported to be immunomodulatory and
reduce activation of lipopolysaccharide-stimulated macrophages [43], possibly via an anti-oxidative
mechanism [44]. The cytotoxicity of CA could be explained by its effects on promoting ROS generation,
reducing mitochondrial membrane potential, releasing cytochrome c, activating caspases, and inducing
apoptosis in human cells [45]. However, further studies are needed to elucidate the specific mechanism.

5. Conclusions

In this study, PLA/CA/β-CD fibers were successfully prepared via electrospinning. Effective
and proper incorporation of CA into fibers was confirmed by SEM. The CA concentration had a
significant effect on the morphology of fibers. The diameter increased when the percentage of CA
increased. The FTIR spectra demonstrated the presence of molecular interactions among PVA, CA,
and β-CD. The mechanical properties and hydrophilicity were improved. The CA concentration in
the initial fibers also influenced the CA release profile. Notably, the highest effective antibacterial
activities of PLA/β-CD/CA-3 for E. coli and S. aureus were well preserved for 60 h, and cytotoxicity
analysis revealed that these fibers showed no cytotoxicity toward human cells. Thus, these fibers
may have applications as novel antimicrobial wound dressing materials and other biomaterials in the
clinical setting.
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