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Abstract: In the electrospinning process, a modified parallel electrode method (MPEM), conducted
by placing a positively charged ring between the needle and the parallel electrode collector,
was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN) composite
nanofibers. Characterizations of the samples—such as morphology, the degree of alignment,
and mechanical and conductive properties—were investigated by a combination of scanning
electron microscopy (SEM), transmission electron microscopy (TEM), universal testing machine,
high-resistance meter, and other methods. The results showed the MPEM could improve the
alignment and uniformity of electrospun CNTs/PAN composite nanofibers, and enhance their
mechanical and conductive properties. This meant the successful preparation of highly aligned
CNT-reinforced PAN nanofibers with enhanced physical properties, suggesting their potential
application in appliances and communication areas.
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1. Introduction

Polymer nanocomposites with nanoparticles show amazing mechanical, electrical, and thermal
properties due to the interaction between the polymer matrixes and nanoparticles [1–3]. Carbon
nanotubes (CNTs), which have excellent mechanical, physical, and chemical properties—such as good
stiffness, high strength, and electrical conductivity—have attracted a great deal of scientific interests in
the area of appliances, communication, and biomedical related applications [4–8]. However, a number
of challenges must be overcome before producing a homogeneous dispersion of CNTs in a polymer
matrix, including processing methods for fabricating CNTs/polymer composites.

Electrospinning (ES) is an efficient technique for the preparation of CNTs/polymer composite
nanofibers. The mechanical properties of the electrospun nanofibers are expected to be enhanced
through stretching and making composites. There are some reports concerning the preparation of
electrospun CNTs/polymer nanofibers [9–13]. However, these electrospun composite nanofibers
generally show randomly oriented nonwoven structures and weak alignment. The randomly oriented
composite nanofibers lead to low molecular orientation, and as a result, materials with low mechanical
properties are obtained [14,15]. The relatively low mechanical strength could ultimately limit the
practical use of composite nanofibers. It is desirable to generate aligned composite nanofibers to
broaden the application areas, such as electrochemical sensors, reinforcements, optoelectronic devices,
and so on.

Some techniques have been proposed to obtain aligned nanofibers [16–23]. Previously, we
presented a modified parallel electrode method (MPEM) by placing a positively charged ring between
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the needle and the parallel electrode collector to fabricate highly aligned electrospun nanofibers for
a long spinning time [24]. Figure 1 shows the schematic presentation of the modified ES apparatus.
In this work, the experimental and theoretical analyses were carried out to study the mechanical
mechanism of the MPEM, and the effects of the applied ring on quality of products were systematically
investigated to obtain the optimal parameters. The results showed the MPEM could decrease the
nanofiber diameter, enhance the diameter distribution, and improve the nanofiber alignment.
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Figure 1. Schematic of the modified parallel electrode method (MPEM) apparatus.

Recently, using the ES technique, many functional nanomaterials have been developed
using various polymers, such as poly(vinylidene fluoride) (PVDF) [25], poly(methyl methacrylate)
(PMMA) [26,27], polylactic acid (PLA) [28], and poly-N-vinylpyrrolidone (PVP) [29,30]. Polyacrylonitrile
(PAN), a well-known polymer with good stability and mechanical properties, has been widely
used in producing electrospun nanofibers due to their excellent characteristics, such as spinnability,
environmentally benign nature, and commercial availability [31].

Based on the above considerations, highly aligned PAN composite nanofibers containing
single-walled carbon nanotubes (SWCNTs) with concentrations ranging from 0 to 2 wt % were
prepared directly by the MPEM technology without any additional postprocessing. Characterizations
of the SWCNTs/PAN composite nanofibers—such as morphology, the degree of alignment, and
mechanical and conductive properties—were studied by means of scanning electron microscopy (SEM),
transmission electron microscopy (TEM), universal testing machine, high-resistance meter, and other
methods. The results showed the MPEM could improve the uniformity of diameter distribution and the
degree of alignment of electrospun SWCNTs/PAN composite nanofibers. In addition, mechanical and
conductive properties of the composite nanofibers were enhanced. As a result, for the CNT-reinforced
PAN nanofibers, strong interfacial adhesion, uniform dispersion, and high alignment were more crucial
factors for improving the physical properties of the composite nanofibers.

2. Experimental

2.1. Materials

PAN powder, the biodegradable polymer used in this study, with a molecular weight of
150,000 g/mol, was supplied by Beijing Lark Branch Co. Ltd. (Beijing, China). N,N-dimethylformamide
(DMF) (analytical reagent) was purchased from Shanghai Chemical Reagent Co. Ltd. (Shanghai, China).
The SWCNTs were purchased from Shanghai Aladdin Biochemical Technology Co. Ltd. (Shanghai,
China) (purity: ≥98%, ACOOH content: 2 wt %, inner diameter: <2 nm, length: 5–30 µm). All materials
were used without any further purification.
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2.2. Preparation of Spinning Solution

All concentration measurements were done in weight per weight (w/w). Initially, different weights
of SWCNTs were dispersed in the DMF by using an ultrasonic cleaner (SL-5200DT, Nanjing Shunliu
Instrument Co. Ltd., Nanjing, China) for 4 h at 25 ± 2 ◦C (room temperature). Then, the electrospinning
solution was prepared by dissolving 8 wt % of PAN in SWCNTs/DMF solution under magnetic stirring
for 6 h at room temperature (25 ± 2 ◦C) until it became homogeneous. The calculated SWCNTs’
concentrations for each component of the various samples were 0, 0.5, 1, 1.5, and 2 wt % (mass ratios
to PAN).

2.3. Fabrication of Highly Aligned SWCNTs/PAN Composite Nanofibers

Highly aligned PAN composite nanofibers containing SWCNTs with concentrations ranging from
0 to 2 wt % were prepared directly by the MPEM. The schematic of the MPEM apparatus is represented
in Figure 1. The apparatus consisted of a syringe, a needle, a parallel electrode collector, a flow meter,
and two variable DC high-voltage power generators (0–30 kV, DW-P303-1ACF0, Tianjin DongWen
high-voltage power generator Co., Ltd., Tianjin, China). The needle was connected to the positive
terminal of the first power generator, and the parallel auxiliary electrodes as the collection target were
connected to the negative terminal of the same power generator. The voltage supplied by the power
generator was designated as the spinning voltage. The positive terminal of the second power generator
was connected to a copper ring, and the voltage provided was referred to as the ring voltage [24].
The ring was 21 cm in diameter.

ES experiments were carried out at room temperature (25 ± 2 ◦C) at a relative humidity of
50%. The prepared SWCNTs/PAN/DMF solution was dropped into a 10 mL syringe. The flow rate
was 0.5 mL/h. The applied spinning voltage was 15 kV and the applied ring voltage was +5 kV.
The distance from the tip of the needle to the parallel auxiliary electrodes was 18 cm, the distance
from the ring to the parallel electrode collector was 5 cm, and the gap between two parallel auxiliary
electrodes was 4 cm.

2.4. Measurements and Characterizations

2.4.1. Scanning Electron Microscopy (SEM)

The morphologies of highly aligned SWCNTs/PAN composite nanofibers were examined by
a scanning electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan) at an acceleration voltage of 3 kV.
All samples were dried at room temperature, and then sputter-coated with gold by an IB-3 (Eiko,
Tokyo, Japan) for 10 min. The matrix morphology and fibrous diameter characterization were carried
out using ImageJ software (National Institute of Mental Health, Bethesda, MD, USA).

2.4.2. Transmission Electron Microscopy (TEM)

The distribution of SWCNTs in the composite nanofibers was characterized by a transmission
electron microscopy (TEM, Tecnai G2 F20 S-Twin, Hillsboro, OR, USA) operating at 200 kV. The samples
were prepared by placing the carbon-coated copper grids on the collector and directly depositing
a thin layer of electrospun nanofibers onto the copper grids. TEM images were subsequently obtained
by passing a beam of electrons through the copper grids containing the composite nanofibers at a high
voltage of 200 kV, a dark current of 10.57 µA, and an emission current of 64 µA.

2.4.3. Fourier-Transform Infrared (FTIR) Spectroscopy and Raman Spectroscopy

The PAN structure and its interactions with the SWCNTs were investigated through FTIR
spectroscopy (Nicolet5700, Thermo Nicolet Company, Madison, WI, USA). For each measurement,
each spectrum was obtained by the performance of 32 scans with the wavenumber ranging from 400
to 4000 cm−1 and a resolution of 4 cm−1. Raman spectra for the pure SWCNTs and the SWCNTs/PAN
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composite nanofibers were obtained on a Micro-Raman Spectrometer (LabRAM XploRA, HORIBA JY,
Paris, France) at 532 nm laser excitation (KIT-532-25) with edge filter and laser filter. The laser power
density was kept as 25 mW. Energy range of Raman spectrum was from 200 to 4000 cm−1, all the
integration time of the Raman tests was 5 s, and the accumulation was 10 times.

2.4.4. X-ray Diffraction (XRD)

X-ray diffraction (XRD) analyses were performed to elucidate the crystalline structure of powdered
SWCNTs, PAN, and SWCNTs/PAN composites using Philips X’Pert-Pro MPD (PANalytical, Almelo &
Eindhoven, The Netherlands) with a 3 kW ceramic tube as the X-ray source (Cu-Kα) and an X’Celerator
detector. The TTK sample stage was set horizontally. The reflection peak positions were calibrated with
silicon powder (2θ > 15◦) and silver behenate (2θ < 10◦). Cu-Kα radiation was used with diffraction
angle 2θ range of 5◦–60◦ at 40 kV and 40 mA, and the diffraction patterns were collected at a scanning
rate of 2◦/min.

2.4.5. High-Resistance Meter and Universal Testing Machine

The surface resistance was measured by high-resistance meter (ZC36, Shanghai, China) at room
temperature and ambient condition. The tensile strength and elongation-at-break values of PAN and
SWCNTs/PAN composite nanofiber membranes were investigated by a universal electromechanical
test machine Instron-3365 (Instron Corporation, Boston, MA, USA). The electromechanical test machine
is well known for its ability to perform a wide range of quasi-static tension and compression tests at
test speeds up to 40 ipm (1000 mm/min). All samples were 50 mm × 10 mm rectangle membranes.
All measurements were carried out at room temperature. The measurement was repeated three times.

3. Results and Discussion

3.1. Morphological Characterization of Highly Aligned SWCNTs/PAN Composite Nanofibers (SEM)

The morphologies of SWCNTs/PAN composite nanofibers were carried out by SEM. To determine
the diameter distribution of nanofibers, 50 SEM images were chosen for diameter distribution analysis
using ImageJ software. Figure 2 illustrates SEM images of the composite nanofibers with the different
SWCNT concentrations, and the rightmost figures are the according nanofiber diameter distribution.
It can be seen that the MPEM decreases the composite nanofiber diameter, enhances the diameter
distribution, and improves the composite nanofiber alignment. With the increase of the SWCNT
content, the diameters of the composite nanofibers increased and their surface became rough, which
could be related to the aggregation of SWCNTs and the bundling phenomenon during the MPEM
process. The relationship between the content of the SWCNTs and the average diameters of composite
nanofibers is shown, respectively, in Figure 3a and Table 1. In Table 1, the standard deviation values
(σ) are high due to estimation of diameters of fibers based on observed sample data. Therefore,
a confidence interval gave an estimated range of values, which was likely to include unknown
diameters of fibers. The estimated range was calculated from a given set of sample data [32].
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Figure 2. Scanning electron microscopy (SEM) pictures of single-walled carbon nanotubes/
polyacrylonitrile (SWCNTs/PAN) composite nanofibers with different SWCNT concentrations.
The right most figures are the according diameter distribution. ES: electrospinning.

Table 1. The relationship between the content of the SWCNTs and the average diameters of
composite nanofibers.

Method SWCNTs
concentration (wt %)

Average diameter
(D) (nm)

Standard
deviation (σ) (nm)

Confidence
interval (nm)

MPEM 0 536 132.8 ±36.6
MPEM 0.5 539 120.7 ±33.3
MPEM 1 542 103.7 ±28.5
MPEM 1.5 634 104.8 ±28.9
MPEM 2 737 189.6 ±52.3

ES 1 635 184.4 ±36.1

Figure 3b displays the degree of alignment of the composite nanofibers. In this research, the angle
(θ) between the long axis of the nanofibers and its expected direction (the vectors of parallel electric
field) was used as the parameter to quantify the alignment. The degree of nanofiber alignment was
defined as the ratio of the number of nanofibers, whose θ is between −6◦ and 6◦, to the total number
of nanofibers. To determine the degree of nanofiber alignment, several SEM images were captured
from each sample. Finally, 50 images were chosen for alignment analysis. With the concentration of
SWCNTs increased from 0 to 2 wt %, the average diameters of composite nanofibers were 536, 539,
542, 634, and 737 nm and the degrees of their alignment were 70%, 60.9%, 78.1%, 78.1%, and 85.2%.
In this study, the viscosity and electrical conductivity of the spinning solution increased with the
increase of SWCNTs concentration from 0 to 2 wt %. With the increase of the viscosity, the polymer
chains resist electric field stretching, and the bending instability of jets can be suppressed. As a result,
both the diameter and degree of alignment of composite nanofibers increased [1]. In addition, with
the increase of the electrical conductivity, the surface charges of the electrospun jet increased, and
the resultant force produced by the ring increased, according to our previous work [24]. This would
increase the kinetic energy of the moving jet, accelerate the downward movement of the jet, and
shrink the radius of whipping circle [24]. As a result, the stability condition and the composite
nanofiber alignment were improved and the diameter became much smaller. Therefore, the diameter
first remained nearly constant and then increased, and the degree of alignment increased gradually,
considering the combined effects of the viscosity and electrical conductivity.
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3.2. Characterization of SWCNT Distribution in the Composite Nanofibers (TEM)

The distribution of SWCNTs in the highly aligned SWCNTs/PAN composite nanofibers were
researched by TEM. Figure 4 displays the TEM photographs of the composite nanofibers with SWCNTs
contents of 1 and 2 wt %, respectively. The figure illustrates the SWCNTs were embedded in the
polymer matrix and almost aligned along the composite nanofiber axis. When the content of SWCNTs
increased to 2 wt %, the surface of the composite nanofibers became rough, which could be related to
the aggregation of SWCNTs and the bundling phenomenon occurring during the MPEM process.
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3.3. FTIR and Raman Spectra Analysis

Figure 5 shows the FTIR spectra for pure SWCNTs, PAN nanofibers, and corresponding composite
nanofibers containing SWCNTs. The intermolecular interactions between PAN and SWCNTs were
investigated by FTIR analysis, which showed minor changes in the spectra of the pure PAN nanofiber
upon addition of SWCNTs. One of these subtle modifications was observed at the 3300–3600 cm−1

region, indicating that the π electrons present in SWCNTs interact with the hydrogen (free and bonded)
attached to the nitrogen in the urethane bond, thus changing the shape of the band. Moreover,
the spectra showed sharp peaks at 1616 cm−1 (Figure 5a,c–f), which was due to the C=C stretch mode
in the SWCNTs.
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Raman spectra of the PAN nanofibers, pristine SWCNTs, and corresponding composite nanofibers
containing SWCNTs are presented in Figure 6, respectively. It has been well known that the ratio
of G-band to D-band depends on both the degree of graphitization and the alignment of graphitic
planes [33]. Figure 6a shows G-band (1576 cm−1), D-band (1341 cm−1), and G’-band (2648 cm−1) for
the samples, indicating their effective carbonization. Moreover, in the region from 350 to 120 cm−1,
SWCNTs yielded a series of bands that had been assigned to the radius breathing mode (RBM). From
the spectra (Figure 6c–f), it was confirmed that the SWCNT/PAN composites showed shifts of several
Raman bands of SWCNTs, such as the G-band showing a small shift from 1576 to 1585 cm−1, the D-band
shifting from 1341 to 1365 cm−1, and the G’-band shifting from 2648 to 2671 cm−1. Moreover, the IG/ID

value of composite nanofibers increased upon increasing the concentration of SWCNTs. However,
the spectra for SWCNT/PAN composites at different concentrations did not show the polymer peaks
because these were “masked” by the presence of the SWCNTs.
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3.4. XRD Spectra

In order to elucidate the crystalline structure of SMWNTs, PAN, and SMWNT/PAN composites,
their XRD patterns with distinctive crystalline peaks are shown in Figure 7. Figure 7b is the XRD
spectra for the electrospun PAN nanofibers. A strong peak was observed at 2θ = 17◦ and a weak peak
at 2θ = 21.5◦. The strong peak can be assigned as (200) crystal planes of PAN [34]. The crystallization
nature of SWCNTs is shown in Figure 7a. The peak at 2θ = 26.5◦ indicated the typical signal of
CNTs or graphite structures. This peak was associated with the (002) diffraction of the hexagonal
graphite structure in the carbon materials. Figure 7c–f shows the XRD spectra of the composite
nanofibers with the different SWCNT concentrations. It could be observed that the SWCNT/PAN
nanocomposites exhibited an obvious sharp diffraction peak of at 2θ = 17◦ and a less intense peak at
2θ = 21.5◦. The principal peak of graphene structure at 26.5◦ did not appear, probably because of the
high ratio of PAN composite with respect to SWCNTs [1,35]. The XRD results illustrated that there
was no new crystalline phase in the composite nanofibers, and SWCNTs and PAN still retained their
crystalline structures.
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In addition, these XRD patterns contained both sharp as well as defused bands. Sharp bands
corresponded to crystalline orderly regions and defused bands corresponded to amorphous regions.
The crystallinity was calculated by separating intensities due to amorphous and crystalline phase on
diffraction phase. Computer-aided curve-resolving technique was used to separate crystalline and
amorphous phases of the diffracted graph. After separation, the total area of the diffracted pattern
was divided into crystalline (Ac) and amorphous components (Aa). It was not difficult to obtain Ac

and Aa using a curve-fitting Gaussian technique. The crystallinity Xc could be calculated from Ac and
Aa using the relation Xc = Ac

Ac+Aa
× 100%, and the results are illustrated in Table 2. Table 2 shows

the crystallinities of SWCNT/PAN composite nanofibers were higher than pure PAN nanofiber, and
remained nearly constant. It was possible that the addition of SWCNTs induced the recrystallization
of the polymer molecular chains in the amorphous region and incomplete crystalline region in the
electrospinning process.
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Table 2. The crystallinity of SWCNTs, PAN nanofibers, and corresponding composite nanofibers with
the different SWCNT concentrations.

Sample Crystallinity (%)

SWCNTs 85.69
PAN nanofibers 49.3

SWCNTs/PAN nanofibers with 0.5 wt % SWCNTs 55.62
SWCNTs/PAN nanofibers with 1 wt % SWCNTs 55.76

SWCNTs/PAN nanofibers with 1.5 wt % SWCNTs 55.76
SWCNTs/PAN nanofibers with 2 wt % SWCNTs 55.79

3.5. Mechanical Properties Analysis (Universal Testing Machine)

The mechanical properties, such as tensile strength and elongation-at-break, of random and
aligned SWCNTs/PAN nanofiber membranes with the different SWCNT concentrations are shown
in Figure 8. It was seen that the tensile strength of nanofibers firstly increased and then decreased,
and the elongation of nanofibers firstly decreased and then increased. When the content of SWCNTs
was 1 wt %, the tensile strength of SWCNTs/PAN nanofibers reached the maximum value, which
could be related to the well-dispersed and aligned SWCNTs in the polymer nanofibers under the
content below 1 wt %. In addition, the alignment degree of nanofibers had a profound effect on the
mechanical properties. For aligned nanofiber membranes, the combination of adding SWCNTs and the
ordered array made the tensile strength of SWCNTs/PAN composite nanofiber membranes increase
significantly. This implied that the incorporation of SWCNTs in polymer nanofiber structure generally
could give rise to stronger but fewer flexible nanofiber layers. Moreover, the increase in tensile strength
and drop in elongation-at-break has also been reported [1].
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3.6. Surface Resistance (High-Resistance Meter)

The surface resistances of random and aligned SWCNTs/PAN nanofiber membranes with the
different SWCNT concentrations were measured, respectively. As shown in Table 3, with the increase
of SWCNT content from 0.5 to 1.5 wt %, the surface resistances of random and aligned SWCNTs/PAN
nanofiber membranes varied from approximately 1 × 1015 to 1 × 1010 Ω/square. It could be seen
that the alignment degree of nanofibers had a profound effect on the electrical conductivity, and
the combination of adding SWCNTs and the ordered array made the electrical conductivity of the
composite nanofiber membranes increase significantly.
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Table 3. Surface resistances of random and aligned SWCNTs/PAN nanofiber membranes with the
different content of SWCNTs.

SWCNTs concentration (wt %)
Surface resistance (Ω)

MPEM ES

0 1.7 × 1014 6.0 × 1015

0.5 2.5 × 1012 2.4 × 1015

1 1.5 × 1011 4.5 × 1013

1.5 9.2 × 109 2.3 × 1012

4. Conclusions

In this work, a modified parallel electrode method (MPEM), carried out by placing a positively
charged ring between the needle and the parallel electrode collector, was successfully used to fabricate
highly aligned SWCNTs/PAN composite nanofibers with the different SWCNT concentrations.
The properties—such as morphology, the degree of alignment, crystallinity, mechanical properties,
and electrical conductivity—of highly aligned SWCNTs/PAN composite nanofibers with SWCNT
concentrations, which ranged from 0 to 2 wt %, were investigated. The results showed the properties
of PAN nanofibers were improved by adding SWCNTs.

SEM and TEM photographs showed that with the increase of SWCNT contents, the diameters
of the composite nanofibers increased and their surface became rough moreover, the SWCNTs were
embedded in the polymer matrix and almost aligned along the composite nanofiber axis. In addition,
the measurement of mechanical properties and surface resistances revealed that the tensile strength and
electrical conductivity of aligned composite nanofibers were obviously improved over that of random
composite nanofibers. The results showed that the MPEM could improve the alignment of electrospun
CNTs/PAN composite nanofibers, and enhance their mechanical and conductive properties.
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