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Abstract: Among amphiphilic polymers with diverse skeletons, fluorinated architectures have
attracted significant attention due to their unique property of segregation and self-assembly
into discrete supramolecular entities. Herein, we have synthesized amphiphilic copolymers by
grafting hydrophobic alkyl/perfluoroalkyl chains and hydrophilic polyglycerol [G2.0] dendrons
onto a co-polymer scaffold, which itself was prepared by enzymatic polymerization of poly[ethylene
glycol bis(carboxymethyl) ether]diethylester and 2-azidopropan-1,3-diol. The resulting fluorinated
polymers and their alkyl chain analogs were then compared in terms of their supramolecular
aggregation behavior, solubilization capacity, transport potential, and release profile using curcumin
and dexamethasone drugs. The study of the release profile of encapsulated curcumin incubated
with/without a hydrolase enzyme Candida antarctica lipase (CAL-B) suggested that the drug is better
stabilized in perfluoroalkyl chain grafted polymeric nanostructures in the absence of enzyme for
up to 12 days as compared to its alkyl chain analogs. Although both the fluorinated as well as
non-fluorinated systems showed up to 90% release of curcumin in 12 days when incubated with
lipase, a comparatively faster release was observed in the fluorinated polymers. Cell viability of
HeLa cells up to 95% in aqueous solution of fluorinated polymers (100 µg/mL) demonstrated their
excellent cyto-compatibility.

Keywords: fluorinated amphiphilic polymers; self-assembly; nanocarriers; drug encapsulation;
enzymatic release

1. Introduction

Targeted drug delivery using nanocarriers, which addresses specific tissues or organs in the
human body, is an area of research interest that has gained significant attention in recent years.
In particular, research on water soluble amphiphilic polymers has gained considerable momentum due
to their inherent self-aggregation ability to form diverse nanostructures with different morphologies
like vesicles [1], helices [2], rods [3], films [4] micelles [5], etc. [6] in aqueous media. Among these,
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polymeric micelles with a characteristic core-shell structure are useful nanocarriers for systemic and
controlled delivery of drugs due to their high loading, small size, long circulation times, and passive
accumulation in tumor tissues [7–9]. The kind of morphology formed, its size, and stability are found
to be sensitively dependent on the molecular structure as well as their physico-chemical properties [10].
Thus, the fabrication of defined structures and morphologies has been a persistent challenge in the
field of polymer synthesis. Various interactions like hydrogen-bonding, metal–ligand interactions, and
hydrophobic interactions, among others, could result in self-aggregation [11–13], whereas hydrophobic
interactions play a major role in driving the aggregation of polymeric amphiphiles. Proficient
architectures could be obtained by controlling the structure of polymer backbone and grafted functional
groups [6,14]. Grafting of polymers with suitable functional groups has proved to be a good technique
for the improvement of chemical and physical properties of amphiphilic polymers, and for the
synthesis of polymers of particular interest. Grafting of base polymers with different alkyl chains and
[G1.0]/[G2.0] generation polyglycerol dendrons (PG dendrons) has been studied by our group [15,16].
From our previous work on grafting of PG dendrons, we have shown that [G2.0]PG dendrons enhance
the stability as well as the biocompatibility of the resulting nanocarriers in aqueous solutions [15–17].

The replacement of the alkyl chain with a perfluorinated chain is known to reduce side chain
interactions among them, owing to comparatively denser and less polarizable electron cloud around
fluorine atoms in perfluoroalkyl chains compared to those around hydrogen in alkyl analogs [18,19].
However, the larger size of fluorine atoms in perfluoroalkyl chains as compared to hydrogen atoms in
alkyl analogs allows them to have a larger surface area, thereby increasing the overall hydrophobic
character [20,21]. This requirement of perfluoroalkyl chains to occupy a larger space provides the
fluorinated polymers with the unique ability to adopt an all-trans helical conformation compared to
the zig-zag conformation attained by simple alkyl chains [22]. As a result, the perfluoroalkyl chain
grafted polymers would build more rigid and orderly packed structures that allow them to form
stable micellar aggregates [20]. Also, they should exhibit a lower critical micelle concentration (CMC)
than the corresponding non-fluorinated analogs and thus could be more useful in drug delivery
applications [23]. With the aim to develop efficient nanocarriers and based on earlier results, we have
synthesized perfluorinated alkyl chain grafted polymers and compared their efficacy to that of simple
alkyl chain grafted analogs. We used different ratios of the perfluoroalkyl chain/alkyl chain and
PG dendron to optimize the hydrophilic and hydrophobic balance and attaining micellar stability
as well as to maximize the encapsulation efficiency of a guest molecule. Also, this study facilitates
a comparison of the resulting perfluorinated and non-perfluorinated polymeric architectures in terms
of their aggregation behavior and transport potential. The size of the resulting nanostructures formed
by synthesized polymers in aqueous solution was studied using dynamic light scattering (DLS) and
cryo-TEM measurements. Curcumin was selected as a model drug for studying the transport potential
and release profile of synthesized amphiphilic polymers by using UV and fluorescence measurements.
A release study of curcumin was performed by selecting one each of the representative fluorinated
and non-fluorinated polymers and incubating the guest encapsulated nanocarriers with/without
Candida antarctica lipase (Novozym 435). Also, dexamethasone, a poorly water soluble fluorine
containing steroidal drug, was selected for studying drug solubilization capacity and the transport
potential of all synthesized polymers.

2. Materials and Methods

2.1. Materials

All the solvents and chemicals used for the synthesis were of analytical grade and were
purchased from Spectrochem Pvt. Ltd. (Mumbai, India), SD Fine Chemicals Pvt. Ltd.
(Mumbai, India) and Sigma-Aldrich Chemicals (Saint Louis, MO, USA). Novozym 435 (immobilized
Candida antarctica lipase) was purchased from Novozym A/S, (Bagsvaerd, Denmark). Poly[ethylene
glycol bis(carboxymethyl)ether]dimethyl ester and glycerol were dried under a vacuum at 60 ◦C for
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10 h prior to their use. A benzoylated dialysis membrane (MW cut off size 1200–2000 Da), purchased
from Sigma-Aldrich Chemicals, was used for purification of polymers. All the reactions were monitored
using pre-coated TLC plates (Merck silica gel 60 F254, Darmstadt, Germany) and the spots were
visualized by using ceric solution stain. Silica gel (100–200 mesh) was used for column chromatography.
Fresh Milli-Q water was used for the preparation of samples for encapsulation and physico-chemical
characterization experiments.

2.2. Instrumentation and Methods

2.2.1. NMR, IR Spectroscopy, and GPC Analysis

The 1H, 2D HETCOR, and 13C NMR spectra were recorded on a Jeol-400 MHz and Jeol-100.5 MHz
spectrometers (Tokyo, Japan), respectively, using the solvent residual peak as a reference for calibrating
the spectra. Deuterated solvents, e.g., CDCl3, CD3OD, and D2O, were used for recording the NMR
spectra, where chemical shift values are taken on δ scale and coupling constant value (J) are in Hz.
Infrared spectra (IR) of all the polymers were recorded using a Perkin-Elmer 2000 FT-IR spectrometer
(Singapore). The molecular weights Mw, Mn and Polydispersity Index (PDI) of the resulting polymers
were determined using an Agilent GPC instrument (Santa Clara, CA, USA) equipped with Agilent
1100 pump, refractive index detector, and PL gel columns using THF at a flow rate of 1.0 mL/min and
molecular weights were calibrated using polystyrene standards or pullulan standards.

2.2.2. Critical Aggregation Concentration (CAC) Measurement

The CAC of the polymers was determined by the fluorescence method, using pyrene as a model
dye [24]. A stock solution of pyrene was made by dissolving 0.13 mg of pyrene in 1 mL of acetone
to form a 6.4 × 10−4 M solution. The pyrene solution (10 µL) was taken into empty vials and the
acetone was evaporated completely. The polymer solutions of different concentrations (0.25 mM to
0.24 µM) were also prepared up to 2 mL using 1× PBS buffer. These polymer solutions were stirred for
almost 1 h and then transferred to the vials having pyrene in the same sequence and allowed to mix
overnight. The final concentration of pyrene was kept at approximately 3.2 × 10−6 M. All the solutions
were filtered using 0.22 µm polytetrafluoroethylene (PTFE) filter to remove the non-encapsulated
dye. The fluorescence spectra were recorded for the filtered clear solutions and from the fluorescence
intensity data, I1 (λ1: 373 nm) and I3 (λ3: 384 nm), the ratio of I3/I1 was calculated and plotted with
the log [polymer concentration] to obtain the CAC values.

2.2.3. Dynamic Light Scattering (DLS) and Cryogenic Transmission Electron Microscopy (cryo-TEM)

Malvern Zetasizer Nano ZS analyzer integrated with 4 mW He–Ne laser, λ = 633 nm, using back
scattering detection (scattering angle θ = 173◦) with an avalanche photodiode detector, was used
for determining the size of nanostructures (micelles/aggregates) formed by the supramolecular
organization of amphiphilic polymers in the aqueous solution. The samples were prepared by
dissolving polymers at the concentration of 3 mg/mL in Milli-Q water and then further allowed
to mix at 25 ◦C for 20 h with 600 rpm. The obtained solutions were then filtered through 0.22 µm PTFE
filters, transferred to UV-transparent disposable cuvettes, and used for DLS measurements. To gain
further insight into the morphology of nanostructures formed by perfluorinated polymers, their
cryo-TEM images were recorded using Tecnai F20 transmission electron microscope (FEI Company,
Hillsboro, OR, USA) operated at 160 kV accelerating voltage. The samples for cryo-TEM were prepared
by applying the droplets of the sample solution to a 1 µm hole diameter perforated carbon film
covering 200 mesh grids (R1/4 batch of the Quantifoil Micro Tools GmbH, Jena, Germany), which had
been hydrophilized before use. The extra supernatant fluid was removed using a filter paper to create
an ultra-thin layer of the sample solution spanning the holes of the carbon film. The samples were
immediately vitrified (to allow artifact-free thermal fixation of the aqueous solution) by propelling the
grids into liquid ethane at its freezing point (90 K) with a guillotine-like plunging device. The vitrified
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samples were then transferred to the microscope using a Gatan (Gatan, Inc., Pleasanton, CA, USA)
cryoholder and stage (model 626). The samples were kept at a temperature of 94 K. Imaging was
performed using the low-dose protocol of the microscope at a calibrated primary magnification of
62,000×with the defocus set to 1.8 µm. Data were recorded by an Eagle 4k CCD-camera (FEI Company,
Hillsboro, OR, USA) set to binning factor 2.

2.2.4. Procedure for Curcumin Encapsulation

The encapsulation of curcumin was monitored by means of a UV–vis spectrophotometer using
a Cary-300 instrument from Agilent Technologies and a fluorescence spectrometer using Cary Eclipse.
The encapsulation of curcumin was followed by the mixed dispersion method [25]. For encapsulation
study, 1 mg of curcumin was weighed and dissolved in 2 mL of acetone. In another vial, polymer
solutions of 3 mg/mL concentration were prepared by dissolving in 1× PBS buffer. The prepared
curcumin solution in acetone was then added drop wise to the vial having an aqueous polymeric
solution. The resulting dispersion was further allowed to mix with the lid open for 24 h by covering the
vials with aluminum foil. After 24 h, if the smell of acetone persisted, the traces were removed under
reduced pressure on the rotary evaporator. The resulting dispersions were filtered using 0.22 µm PTFE
filter and characterized by UV–vis spectrophotometer (200–800 nm) and fluorescence spectrometer
(450–800 nm) for absorbance and fluorescence intensity (emission spectra) measurements respectively.
The quantification of curcumin was made by lyophilizing the known amount of encapsulated sample
and then re-dissolving it in methanol for absorbance and emission measurements. Beer–Lambert’s
law was applied for calculating the amount of encapsulated curcumin by using a molar extinction
co-efficient (ε) of 55,000 M−1·cm−1 at 425 nm [26].

2.2.5. Enzyme-Triggered Release Study

For the enzymatic release study, the curcumin was encapsulated in polymeric solutions in 1× PBS
buffer by using the same procedure used for the quantitative study. After encapsulation, the excess of
curcumin was removed by filtration through 0.22 µm PTFE filter followed by addition of a few drops
of n-butanol and 200 wt % of the enzyme. The final solutions having pH 7.4 were incubated with
600 rpm at 37 ◦C for 12 days under dark conditions. Fluorescence spectroscopy was used to study the
kinetics of time dependent release by measuring the emission maxima.

2.2.6. Procedure for Dexamethasone Encapsulation

The dexamethasone encapsulation was studied by using the film method in D2O. Dexamethasone
(50 wt % of the polymer) taken in a vial was dissolved in acetone and the solvent was allowed to
evaporate so as to have a thin film of it at the bottom of the vial. The polymeric solutions prepared
in D2O at the concentration of 10 mg/mL were then added to vials having dexamethasone and
further stirred for 20 h at 600 rpm. A blank sample (without polymeric nanocarriers) having the
same amount of the drug was also prepared following a similar procedure for comparative study as
dexamethasone possesses 1% solubility in water. The non-encapsulated drug was removed by filtering
through a 0.22-µm PTFE filter two or three times to obtain clear solutions. Two hundred and fifty
microliters of the filtered solution were diluted to 1 mL by using acetonitrile and analyzed by HPLC.
The quantification of solubilized dexamethasone was carried out using a Shimadzu LC-2010HT HPLC
(Kyoto, Japan) system integrated with an internal UV absorption detector (λ = 242 nm). The mobile
phase consisted of water:acetonitrile:phosphoric acid (70:30:0.5, v/v/v) and flow rate was set at
1 mL/min. The retention time of dexamethasone was 23.3 min and the total run time was 25 min.
The remaining filtered solutions were submitted as such for 1H and 19F NMR spectroscopy.

2.2.7. Cytotoxicity Studies

For the cytotoxicity study the perfluoroalkyl chain grafted polymers were dissolved in a PBS
buffer and further diluted to at least 1:10 in a cell culture medium (RPMI with 10% FCS). The study
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was carried out on HeLa cells at two different time intervals, i.e., after 48 and 72 h using real-time
cell analysis (RTCA). Doxorubicin was used as the standard drug at a concentration of 1 µM and
a cell culture medium with 10% PBS buffer was used as the control. In short, cells were seeded in
a 96-well E-plate that was placed in an RTCA SP device (Roche, Mannheim, Germany) for impedance
measurement. After 24 h, the polymeric solutions were added at a final concentration of 10 and
10 µg/mL and impedance was measured at least every 15 min for 72 h. The graphs were plotted using
end point data using Graph Pad Prism v5.01.

2.3. General Procedure for the Synthesis of Polymers 5a–5d

Polymer 1 (0.44 mmol), 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-8-(octaprop-2-ynyloxy)octane
(2)/1-(prop-2-yn-1-yloxy)octane (3), and propargylated [G2.0]PG dendron (4) were mixed in a 100-mL
flask and dissolved in 60 mL of a 1:1 mixture of anhydrous dichloromethane and dimethylformamide
under a nitrogen atmosphere. Then tris(triphenylphosphine)copper(I) bromide (0.011 mmol,
0.025 equivalent (eq.)) and DIPEA (2.74 mmol, 6.24 eq.) were added and the reaction mixture
was stirred for 48 h at room temperature. IR was used for monitoring the progress of the reaction.
On completion of the reaction, the solvent was removed and the product was washed four or
five times with hexane (by sonication), to remove non-polar reactants and residual copper catalyst,
tris(triphenylphosphine)copper(I) bromide. The residual reactants and traces of copper catalyst were
removed by dialysis using 2000 MWCO dialysis tubing, against chloroform for 48 h (changing the
solvent every 8 h), to yield the final purified functionalized polymers, 5a–5d, on concentrating the
dialyzed solution using a rotary evaporator.

2.3.1. Polymer 5a (50% Perfluoro-alkyl Chain and 50% PG Dendron Functionalized)

Polymer 5a was synthesized by grafting the base polymer 1 with compounds 2 (0.5 eq.) and 4
(0.5 eq.) in a 1:1 mixture of DCM and DMF, as a viscous oil in 80% yield. IR (Thin film, cm−1): 3436,
2916, 1752, 1353, 1458, 1107; 1H NMR (400 MHz, CDCl3): δ = 7.99–7.30 (br s, 2H, H-1′), 5.23–5.06 (m,
2H, H-2a), 4.89–4.53 (m, 8H, H-1a and H-3a), 4.19–4.04 (m, 12H, H-α, H-α′, H-2′a, H-2′b), 3.90–3.37
(m, 194H, –(OCH2CH2)n~20 & H-1′ ′), 2.35 (m, 2H, H-2′ ′). 13C NMR (100.5 MHz, CDCl3): δ = 170.4,
170.0, 169.7, 117.7, 70.9, 70.8, 70.5, 70.0, 68.4, 68.3, 68.2, 64.5, 63.7, 63.2, 62.3, 61.1, 60.8, 58.4, 51.7, 49.5,
31.5, 31.3, 31.1, 29.6, 29.3, 22.6, 14.1; Mn (NMR analysis) = 14,690 g/mol; GPC (THF, 1 mL/min):
Mw = 5552 g/mol, Mn = 4127 g/mol, PDI = 1.3 (Figure S7A).

2.3.2. Polymer 5b (70% Perfluoro-alkyl Chain and 30% PG Dendron Functionalized)

Polymer 5b was synthesized by grafting the base polymer 1 with compounds 2 (0.7 eq.) and 4
(0.3 eq.) in a 1:1 mixture of DCM and DMF, as a viscous oil in 75% yield. IR (Thin film, cm−1): 3435,
2916, 1752, 1352, 1459, 1108; 1H NMR (400 MHz, CDCl3): δ = 8.06–7.33 (br s, 2H, H-1′), 5.53–5.19 (m,
2H, H-2a), 5.01–4.67 (m, 8H, H-1a and H-3a), 4.42–4.20 (m, 12H, H-α, H-α′, H-2′a, H-2′b), 4.05–3.52 (m,
144H, –(OCH2CH2)n~20 & H-1”), 2.54–2.45 (m, 2H, H-2′ ′). 13C NMR (100.5 MHz, CDCl3): δ = 170.2,
170.1, 169.8, 169.7, 169.5, 144.6, 122.4, 70.7, 70.6, 70.3, 68.2, 68.0, 63.5, 63.0, 62.3, 62.1, 61.4, 61.3, 61.0, 60.5,
58.1, 51.5, 49.1, 31.3, 31.1, 30.9, 29.3, 13.9; Mn (NMR analysis) = 14,380 g/mol; GPC (THF, 1 mL/min):
Mw = 4336 g/mol, Mn = 3284 g/mol, PDI = 1.3 (Figure S7B).

2.3.3. Polymer 5c (50% Alkyl Chain and 50% PG Dendron Functionalized)

Polymer 5c was synthesized by grafting the base polymer 1 with compounds 3 (0.5 eq.) and 4
(0.5 eq.) in a 1:1 mixture of DCM and DMF, as a viscous oil in 74% yield. IR (Thin film, cm−1): 3435,
2917, 1752, 1459, 1105; 1H NMR (400 MHz, CDCl3): δ = 7.90–7.33 (br s, 2H, H-1′), 5.13–5.05 (m, 2H,
H-2a), 4.60–4.53 (m, 8H, H-1a and H-3a), 4.25–4.10 (m, 12H, H-α, H-α′, H-2′a and H-2′b), 3.76–3.41 (m,
203H, –(OCH2CH2)n~20 & H-1”), 1.56–1.51 (m, 2H, H-2′ ′), 1.28–1.21 (m, 10H, H-3′ ′-H-7′ ′), 0.82 (t, 3H,
H-8′); 13C NMR (100.5 MHz, CDCl3): δ = 170.0, 169.9, 169.8, 169.6, 169.4, 71.0, 70.6, 70.4, 70.1,68.5, 68.3,



Polymers 2016, 8, 311 6 of 15

68.0, 67.9, 63.8, 62.9, 62.2, 57.9, 31.4, 29.2, 29.0, 28.8, 25.9, 22.2, 13.7; Mn (NMR analysis) = 13,638 g/mol;
GPC (THF, 1 mL/min): Mw = 2162 g/mol, Mn = 1431 g/mol, PDI = 1.5 (Figure S7C).

2.3.4. Polymer 5d (70% Alkyl Chain and 30% PG Dendron Functionalized)

Polymer 5d was synthesized by grafting the base polymer 1 with compounds 3 (0.7 eq.) and 4
(0.3 eq.) in a 1:1 mixture of DCM and DMF, as a viscous oil in 79% yield. IR (Thin film, cm−1): 3435,
2918, 1752, 1459, 1107; 1H NMR (400 MHz, CDCl3): δ = 7.93–7.35 (br, 2H, H-1′), 5.11–5.06 (m, 2H, H-2a),
4.61–4.52 (m, 8H, H-1a and H-3a), 4.26–4.11 (m, 12H, H-α, H-α′, H-2′a and H-2′b), 3.78–3.42 (m, 147H,
–(OCH2CH2)n~20 & H-1”), 1.58–1.52 (m, 2H, H-2′ ′), 1.29–1.23 (m, 10H, H-3′ ′-H-7′ ′), 0.83 (t, 3H, H-8′);
13C NMR (100.5 MHz, CDCl3): δ = 170.1, 169.9, 169.7, 169.6, 169.5, 70.8, 70.6, 70.5, 70.1, 68.6, 68.3, 68.1,
67.9, 63.9, 62.9, 62.3, 57.9, 31.5, 29.3, 29.1, 28.9, 25.8, 22.3, 13.8; Mn (NMR analysis) = 12,907 g/mol; GPC
(THF, 1 mL/min): Mw = 2454 g/mol, Mn = 2011 g/mol, PDI = 1.2 (Figure S7D).

3. Results and Discussion

The major focus of this work was to compare the effect of perfluoroalkyl and simple alkyl chains on
the supramolecular self-assembly behavior of nanocarriers and their transport potential for curcumin
and the fluorinated drug, dexamethasone. For this purpose, the amphiphilic graft copolymers were
synthesized by grafting the block copolymer of poly[ethylene glycol bis(carboxymethyl) ether]diethyl
ester and 2-azidopropan-1,3-diol with perfluoroalkyl chain and the corresponding simple alkyl analog
besides the [G2.0]PG dendron using a “click chemistry” approach.

3.1. Synthesis and Characterization

The base polymer was functionalized with varying ratios of 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-
8-(octaprop-2-ynyloxy)octane (2)/1-(prop-2-yn-1-yloxy)octane (3) and propargylated [G2.0]PG
dendron (4) using “click chemistry” to yield the grafted polymers 5a–5d (Scheme 1).
1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-8-(octaprop-2-ynyloxy)octane (2) in turn was synthesized from
3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctan-1-ol following the literature [27].

All the polymers grafted with perfluoroalkyl/alkyl chain and PG dendron were characterized
by their physical and spectral properties. The attachment of a perfluoroalkyl chain was confirmed
by the observance of peaks in the 1H NMR spectra at around δ 2.35 and 2.49 ppm for polymers 5a
and 5b, respectively (Figures S1 and S2). Also, the presence of a peak in the aromatic region at
around δ 7.30–8.00 ppm in 1H NMR confirmed the triazolyl ring proton with its corresponding carbon
appearing around δ 120 ppm in the 13C NMR spectrum. The peaks around δ 68.2, 68.0 ppm and
δ 63.5, 62.1, 61.0 ppm in 13C NMR spectrum of polymer 5b were assigned to C-α, C-α′, C-2′a, C-2′b
and C-1a, C-3a respectively, and the methine carbon (C-2a) of polymer 5b attached to triazole moiety
was observed at δ 58.1 ppm. The peak assignment was carried by comparing their cross-peaks in
2D HETCOR NMR spectrum; the above assignment was further supported by the DEPT-135 NMR
spectrum (Figure S3). The attachment of an alkyl chain in polymer 5c was confirmed by the observance
of a peak at δ 0.82 ppm for the terminal –CH3 in 1H NMR spectrum, which is further supported by the
peaks at δ 1.28–1.21 and 1.56–1.51 ppm for the remaining alkyl chain’s protons. The peaks at δ 13.7,
22.2, 25.9, 28.8, 29.0, 29.2, and 31.4 ppm in the 13C NMR spectrum also confirmed the attachment
of an alkyl chain to the base polymer (Figure S4). The characterization of polymer 5d was done in
a similar manner (Figure S5). The complete functionalization of azide groups of the base polymer was
confirmed by the complete disappearance of the azide peak at 2115 cm−1 in the IR spectra (Figure S6).
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= 1.16 × 10−5 M and 5d = 4.48 × 10−5 M). This trend is in accordance with the literature, wherein the 
fluorinated amphiphiles displayed lower CAC than their non-fluorinated analogs. The lower CAC 
values of the polymeric amphiphiles having perfluoroalkyl chains indicate that they form more 
stable micelles compared to their non-fluorinated analogs. The stability of micelles formed can be 
explained by the more rigid and orderly packed structure of the perfluoroalkyl chain due to their 
unique ability to attain an all-trans helical conformation [19,22]. 

 

Figure 1. Evaluation of CAC of polymers using pyrene as a hydrophobic probe and by measuring 

I3/I1 ratio: (A) polymers 5a and 5b; (B) polymers 5c and 5d. 

3.3. DLS and Cryo-TEM Analysis 

Scheme 1. Synthesis of functionalized amphiphilic polymers: (i) [Cu(PPh3)3]Br, DIPEA, DCM/DMF.

3.2. CAC Calculation Using Fluorescence Measurement

The CAC of the polymers was determined by fluorescence measurements, using pyrene as a model
dye. The ratio of I3/I1 was calculated and plotted with the log [polymer concentration] to obtain
the CAC values (Figure 1). The CAC of fluorinated polymers i.e., 5a and 5b, was observed to be
8.90 × 10−6 M and 7.80 × 10−6 M, respectively, less than the CAC of their non-fluorinated analogs
(5c = 1.16 × 10−5 M and 5d = 4.48 × 10−5 M). This trend is in accordance with the literature, wherein
the fluorinated amphiphiles displayed lower CAC than their non-fluorinated analogs. The lower CAC
values of the polymeric amphiphiles having perfluoroalkyl chains indicate that they form more stable
micelles compared to their non-fluorinated analogs. The stability of micelles formed can be explained
by the more rigid and orderly packed structure of the perfluoroalkyl chain due to their unique ability
to attain an all-trans helical conformation [19,22].
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3.3. DLS and Cryo-TEM Analysis

The supramolecular self-organization behavior of the synthesized polymers in aqueous solution
was studied using DLS measurements at a concentration of 3 mg/mL. The DLS size distribution graphs
of polymers 5a, 5b and 5c, 5d are shown in Figures S8 and S10, respectively. The size distribution
profile was found to be bimodal in intensity and monomodal in volume and number for polymers 5a
and 5b. The presence of two peaks in intensity distribution profile could be assigned to micelles and
micellar aggregates, while the appearance of a single peak in volume and number corresponding
to the smaller peak in intensity, assigned to micelles, indicated that micelles are the predominant
species in the aqueous solution. The obtained data from DLS measurements, summarized in Table 1,
indicates that the polymers grafted with perfluorinated alkyl chain form smaller micelles compared to
their non-fluorinated analogs. This could be attributed to the additional rigidity provided by highly
ordered and dense packing of perfluoroalkyl chains in their core. The zeta potential of the studied
polymers (5a–5d) was also measured and perfluoroalkyled polymers were observed to have a higher
negative zeta potential value (−14 to −20 mV) as compared to alkyled polymers (approx. −8 mV)
(Figure S17, Table S1). To gain additional insight into the morphology of nanostructures resulting from
perfluorinated polymers, cryo-TEM images were taken using 1 mM aqueous solutions. Interestingly,
cryo-TEM images of both the polymers 5a and 5b showed monodisperse spherical particles with
a diameter about 5 nm (Figure 2), thereby supporting the DLS results.
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Table 1. Critical aggregation concentration (CAC) and particle size distribution profile of the
nanostructures in aqueous solution.

Polymer
Hydrophobic unit Hydrophilic unit

CAC (M)
DLS size (nm)

PDI
C8 chain PG dendron Intensity Volume Number

5a 50% perfluoroalkyl 50% 8.90 × 10−6 8.11 7.05 6.27 0.509
5b 70% perfluoroalkyl 30% 7.80 × 10−6 10.92 8.33 6.87 0.486
5c 50% alkyl 50% 1.16 × 10−5 143.5 110.7 83.15 0.291
5d 70% alkyl 30% 4.48 × 10−5 124.2 96.24 75.94 0.269

3.4. Transport Potential for Curcumin

Curcumin is a hydrophobic drug possessing various therapeutic properties, e.g., antioxidant [28],
anticancer [29], and anti-inflammatory [30], among various others. Owing to its potential medicinal
value, it is widely used as a dietary supplement in Southeast Asia. Also, it is used in cosmetics, and as
a food flavoring and coloring agent [31,32]. However, for medicinal purposes, the actual amount of
curcumin that reaches target sites (bioavailability) is very low because of its low aqueous solubility
and fast chemical and photochemical degradation. To enhance the bioavailability of curcumin,
various approaches have been explored such as drug polymer conjugate formation [33], nanoparticle
formation, encapsulation by different nanocarriers [34–36], and synthesis of its structural analogs [37].
Among the various approaches studied, the encapsulation strategy seems to be the most suitable due
to its target specificity, intact activity, and ease of synthesis.

We have studied the transport potential of polymers by encapsulating curcumin and quantifying
its amount from the absorption spectra of encapsulated samples in methanol (Figure 3). Polymer 5a
grafted with 50% perfluoroalkyl chain and 50% PG dendron exhibited the highest encapsulation of
curcumin with a transport efficiency of 5.3 mg/g and transport capacity of 213 mmol/mol. Polymer 5b
having 70% perfluoroalkyl chain and 30% PG dendron showed a transport efficiency of 4.5 mg/g
and transport capacity of 176 mmol/mol for curcumin encapsulation. However, polymers 5d and
5c, grafted with non-fluorinated alkyl chain, were found to have a lower encapsulation potential
of 3.9 and 2.7 mg/g (curcumin/polymer), respectively (Figure 4). Hence, the polymers grafted
with perfluoroalkyl chain exhibited higher transport potential for curcumin than the corresponding
non-fluorinated analogs. This may be due to the presence of a more hydrophobic micellar core in
the fluorinated polymers in comparison to their non-fluorinated analogs. A cryo-TEM image was
also recorded for the curcumin-encapsulated fluorinated polymer 5a to gain insight into the resulting
morphology (Figure S18). The representative micrograph of the study is shown in Figure 2c and shows
homogeneous distribution of spherical particles in the 8 nm range, slightly larger than the unloaded
polymer (5 nm, Figure 2a).
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3.5. Cytotoxicity Study

The perfluoroalkyl chain grafted polymers with high transport potential, i.e., 5a and 5b were
chosen for the cytotoxicity study on HeLa cells (Figure S11). Both polymers showed nearly no toxicity
at test concentrations, 10 µg/mL and 100 µg/mL, after 48 h and 72 h. Thus, the good cell viability
values, along with their promising transport potential, qualify these polymers as potential nanocarriers
for drug delivery applications.

3.6. Enzyme-Triggered Release of Curcumin

Besides drug encapsulation, triggering its release in a controlled manner to maintain the
therapeutic concentration is even more important. Under physiological conditions, enzyme-mediated
release of the drug from amphiphilic polymers is of great relevance.

Since the polymers reported herein are based on ester linkages and are formed by a lipase mediated
trans-esterification reaction of PEG-1000 diester and the hydroxyl group of azido glycerol, they may
be sensitive to Novozym 435 catalyzed hydrolytic conditions. Thus, the release of encapsulated
hydrophobic molecules was studied by incubating the drug-encapsulated nanocarriers with Novozym
435 under dark conditions. A proposed systematic release of the drug from amphiphilic polymers is
shown in Figure 5. For comparative release study, Novozym 435 (200 wt %) was added to both the
solutions, i.e., curcumin-encapsulated fluorinated polymer 5a and the non-fluorinated polymer 5d.
The mixture having pH 7.4 was kept at 37 ◦C and release of curcumin from the nanocarrier was
measured for 12 days by comparing the decrease in % fluorescence intensity of the samples in the
presence and absence of the enzyme under similar conditions (Figure 6).
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A time-dependent decay of the emission intensity of curcumin was observed for 10–12 days for
polymers 5a and 5d using fluorescence spectroscopy (Figures S12 and S13). As is evident from Figure 6,
the intensity of the yellowish color of curcumin decreased with time in the samples having enzyme
as compared to the control without the enzyme. Approximately 50% decay in the intensity occurred
within 2–3 days for both the curcumin-encapsulated polymers, and maximum decay (95%–96%) was
reached after 10–12 days. In the control experiment without the enzyme, only 6% decay in fluorescence
intensity of curcumin was observed for the polymer 5a, as compared to 34% for 5d, thus suggesting
that the fluorinated polymer 5a stabilizes the encapsulation of curcumin in its hydrophobic core more
efficiently as compared to the non-fluorinated analog 5d. Comparing the kinetics of enzyme-mediated
release of curcumin in the polymeric systems 5a and 5d, a faster release was observed in the former (5a);
this may be due to the smaller size of fluoro polymers as compared to its alkyl analog 5d [38]. Thus the
fluorinated polymers have proved to be better nanocarriers for hydrophobic drugs/dyes in comparison
to non-fluorinated analogs.

3.7. Solubilization of Dexamethasone

To investigate the effect of perfluoroalkyl groups in the core of micelles of perfluorinated
polymers, dexamethasone, a fluorinated and poorly water soluble drug, was selected for encapsulation
purposes. Dexamethasone is a steroidal drug belonging to the glucocorticoid class, which possesses
potential anti-inflammatory and immunosuppressant properties [39]. A comparison of the 1H and
19F NMR spectra of encapsulated samples (perfluorinated polymers + dexamethasone in D2O)
with control (dexamethasone in D2O) confirmed the encapsulation of dexamethasone, whereas the
non-perfluorinated polymers exhibit a weak tendency for dexamethasone encapsulation (Figure 7).
The comparatively higher encapsulation efficiency of perfluorinated polymers for dexamethasone
might be explained by their stable micellar structures resulting from ordered packing of perfluoroalkyl
chains in the micellar cores. The DLS measurements of the drug-encapsulated perfluorinated
nanocarriers indicated that polymeric micelles do not show a significant increase in size on
encapsulation of dexamethasone (Figure S9), suggesting its solubilization in the core of micelles as
a result of interactions between the perfluoroalkyl chain and the fluorinated drug. The 1H NMR spectra
of polymer 5b (70% perfluoroalkyl chain grafted polymer) with encapsulated dexamethasone and
blank dexamethasone (drug in D2O, without adding polymeric nanocarrier) are shown in Figure S14.
The solutions prepared for 1H NMR analysis were lyophilized and re-dissolved in deuterated methanol
(having 2 mg/mL of 5-fluorouracil as an internal reference) and analyzed by 19F NMR spectroscopy.
The 19F NMR spectra exhibit peaks for dexamethasone at around 166 ppm and for 5-fluorouracil
(internal reference) at about 172 ppm. 19F NMR spectra of the dexamethasone encapsulated polymers
and blank dexamethasone (control, without polymeric nanocarriers) are shown in Figure 7.



Polymers 2016, 8, 311 12 of 15
Polymers 2016, 8, 311 12 of 15 

 

 

Figure 7. 19F NMR spectra of dexamethasone encapsulated polymers (5a, 5b, 5c, and 5d) and blank 
dexamethasone in deuterated methanol; 5-fluorouracil (2 mg/mL) used as internal reference. 

Due to the low solubility of dexamethasone in D2O (approx. 1%), a very low intensity peak for it 
was observed in the blank sample; even its encapsulation in non-perfluorinated polymers (5c and 
5d) led to only a slight enhancement in the signal intensity, suggesting a lower encapsulation. 
However, the observance of the comparatively high intensity peak of dexamethasone on 
encapsulation in perfluorinated polymers suggests a significant enhancement in its solubilization in 
the presence of perfluorinated nanocarriers. The amount of dexamethasone encapsulated in 
perfluorinated polymers was quantified using HPLC. The calibration curve (Figure S15) was 
prepared using dexamethasone solutions of known concentration to find the amount of drug loaded 
in polymeric nanocarriers. The HPLC chromatogram of blank dexamethasone and after 
encapsulation in fluorinated polymeric samples using acetonitrile:water:phosphoric acid (30:70:0.5; 
v/v/v) shows that the blank (control, without polymeric nanocarriers) solution contains 76 μg/mL, 
which is very close to its reported solubility data (Figure S16) [40]. 

However, the perfluorinated polymeric nanocarriers 5a and 5b solubilized 106 and 124 μg/mL 
of dexamethasone, respectively, which is 1.4 and 1.6 times higher than the control. For 
dexamethasone, the % encapsulation efficiency of the studied polymers 5a and 5b was found to be 
2.12 and 2.48, respectively. The higher transport potential shown by polymer 5b, grafted with 70% 
perfluoroalkyl chain as compared to 5a having 50% perfluoroalkyl chain grafted, could be explained 
by the enhanced hydrophobicity resulting from increased perfluoroalkyl chain. 

4. Conclusions  

Herein, we have successfully compared the amphiphilic perfluoroalkyl-functionalized 
polymers with their nonfluorinated alkyl analogs in terms of supramolecular aggregation behavior 
and transport potential. Investigation of the self-assembly behavior of these polymers using DLS 
and cryo-TEM techniques has shown that perfluoroalkyl-grafted polymers form smaller (8–10 nm) 
micelles compared to their alkyl chain grafted analogs (100–150 nm). As evidenced by fluorescence 
and UV–Visible spectroscopy, the fluorinated polymers show better solubilization and good 
transport potential for the poorly water soluble drugs, viz. curcumin and dexamethasone. Although 
both types of polymeric systems showed up to 90% release of encapsulated curcumin in the presence 
of Candida antarctica lipase within 12 days, a faster release was observed in fluorinated polymers, 
which may be due to their better fit to the hydrophobic active site of the enzyme. Also, 
perfluorinated polymers stabilize curcumin more efficiently, as can be seen by the retention of 
fluorescence intensity in the absence of enzyme. In addition, the perfluorinated polymers have 

Figure 7. 19F NMR spectra of dexamethasone encapsulated polymers (5a, 5b, 5c, and 5d) and blank
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Due to the low solubility of dexamethasone in D2O (approx. 1%), a very low intensity peak
for it was observed in the blank sample; even its encapsulation in non-perfluorinated polymers
(5c and 5d) led to only a slight enhancement in the signal intensity, suggesting a lower encapsulation.
However, the observance of the comparatively high intensity peak of dexamethasone on encapsulation
in perfluorinated polymers suggests a significant enhancement in its solubilization in the presence of
perfluorinated nanocarriers. The amount of dexamethasone encapsulated in perfluorinated polymers
was quantified using HPLC. The calibration curve (Figure S15) was prepared using dexamethasone
solutions of known concentration to find the amount of drug loaded in polymeric nanocarriers.
The HPLC chromatogram of blank dexamethasone and after encapsulation in fluorinated polymeric
samples using acetonitrile:water:phosphoric acid (30:70:0.5; v/v/v) shows that the blank (control,
without polymeric nanocarriers) solution contains 76 µg/mL, which is very close to its reported
solubility data (Figure S16) [40].

However, the perfluorinated polymeric nanocarriers 5a and 5b solubilized 106 and 124 µg/mL of
dexamethasone, respectively, which is 1.4 and 1.6 times higher than the control. For dexamethasone,
the % encapsulation efficiency of the studied polymers 5a and 5b was found to be 2.12 and 2.48,
respectively. The higher transport potential shown by polymer 5b, grafted with 70% perfluoroalkyl
chain as compared to 5a having 50% perfluoroalkyl chain grafted, could be explained by the enhanced
hydrophobicity resulting from increased perfluoroalkyl chain.

4. Conclusions

Herein, we have successfully compared the amphiphilic perfluoroalkyl-functionalized polymers
with their nonfluorinated alkyl analogs in terms of supramolecular aggregation behavior and transport
potential. Investigation of the self-assembly behavior of these polymers using DLS and cryo-TEM
techniques has shown that perfluoroalkyl-grafted polymers form smaller (8–10 nm) micelles compared
to their alkyl chain grafted analogs (100–150 nm). As evidenced by fluorescence and UV–Visible
spectroscopy, the fluorinated polymers show better solubilization and good transport potential for the
poorly water soluble drugs, viz. curcumin and dexamethasone. Although both types of polymeric
systems showed up to 90% release of encapsulated curcumin in the presence of Candida antarctica
lipase within 12 days, a faster release was observed in fluorinated polymers, which may be due to
their better fit to the hydrophobic active site of the enzyme. Also, perfluorinated polymers stabilize
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curcumin more efficiently, as can be seen by the retention of fluorescence intensity in the absence of
enzyme. In addition, the perfluorinated polymers have shown nearly no toxicity in HeLa cells up to
a concentration of 100 µg/mL over 72 h. In summary, the good encapsulation potential, low toxicity,
and systematic release of a hydrophobic drug under physiological conditions demonstrate the potential
of these polymers to act as nanocarriers for the transport of hydrophobic drugs.

Supplementary Materials: Supplementary Materials can be found at www.mdpi.com/2073-4360/8/8/311/s1.
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