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Abstract: This paper describes the processing conditions needed to produce low density nanocellular
polymers based on polymethylmethacrylate (PMMA) with relative densities between 0.45 and 0.25,
cell sizes between 200 and 250 nm and cell densities higher than 10'* cells/cm?®. To produce these
nanocellular polymers, the foaming parameters of the gas dissolution foaming technique using CO,
as blowing agent have been optimized. Taking into account previous works, the amount of CO,
uptake was maintained constant (31% by weight) for all the materials. Foaming parameters were
modified between 40 °C and 110 °C for the foaming temperature and from 1 to 5 min for the foaming
time. Foaming temperatures in the range of 80 to 100 °C and foaming times of 2 min allow for
production of nanocellular polymers with relative densities as low as 0.25. Cellular structure has
been studied in-depth to obtain the processing-cellular structure relationship. In addition, it has
been proved that the glass transition temperature depends on the cellular structure. This effect is
associated with a confinement of the polymer in the cell walls, and is one of the key reasons for the
improved properties of nanocellular polymers.

Keywords: nanocellular polymer; nanocellular foam; gas dissolution foaming; confinement; PMMA

1. Introduction

The research on cellular polymers is a popular topic in material science since the development of
microcellular polymers in the 1980s at Massachusetts Institute of Technology (MIT) [1]. Nowadays,
microcellular polymers (with cell sizes in the range of a few microns and cell densities around
10° cells/cm3) are well known multiphasic materials. There are papers on the fabrication and
characterization of different systems: polysulfone (PSU) [2], polystyrene (PS) [3], polyvinyl (chloride)
(PVC) [4], polyurethane (PU) [5], polyethylene (PE) [6], polymethylmethacrylate (PMMA) [7], and
polycarbonate (PC) [8]. The key reason that explains the interest in microcellular materials is that these
materials improve the mechanical properties of conventional cellular polymers. This has been reported
by different authors for different systems such as poly (ethylene terephthalate) (PET) [9], acrylonitrile
butadiene styrene (ABS) [10], PVC [11] or PC [12]. In fact, these materials present better tensile and
impact properties than conventional cellular polymers. To further improve the mechanical properties
of these systems, there are two promising strategies: (1) improving the cellular structure by means
of increasing the homogeneity of the cellular structure; and (2) reducing the average cell size [13,14].
This is one of the reasons that explains the significant interest that has appeared in the last few years
in the development of nanocellular polymers. Nanocellular polymers are characterized by cell sizes
below 300 nm and cell densities higher than 10'4 cells/cm3 [15,16]. It is expected that a reduction in
cell size to the nanoscale will provide materials with superior properties. In fact, the high potential of
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these materials has been recently reported for different systems. Miller et al. have proven that cell size
reduction to the nanoscale in polyetherimide (PEI) results in an increase in strain to failure and tensile
toughness [17]. In addition, it has been proved that nanocellular PMMA presents higher modulus of
elasticity, higher impact strength and improved hardness than microcellular PMMA [18]. In addition,
another interesting fact recently proved for nanocellular PMMA is that cell size reduction allows for
decreasing the thermal conductivity due to the Knudsen effect [19,20].

Mechanical properties of cellular polymers depend on the cellular structure but relative density
also plays an important role [21]. Therefore, it is essential to design production methods able to control
both the cellular structure (generating cells with sizes in the nanoscale) as well as the density.

Several methods have been proposed to produce nanocellular polymers. For instance,
pattern-transfer techniques have been used to obtain thin film nanocellular polymeric materials [22].
Another approach is the use of solvent based techniques in which nanocellular polymers are fabricated
from block copolymers with thermally stable blocks and thermally labile blocks. The thermally labile
blocks are removed by using organic solvents leaving nanopores behind [23]. This route works
with high Tg polymers/copolymers systems. However, one of the most promising techniques in
the production of bulk nanocellular polymers is the gas dissolution foaming process, usually using
CO; as blowing agent. This technique involves the saturation of the polymer by the gas phase in
high pressure atmospheres and the release of the pressure when the polymer is saturated. When
the polymer is under atmospheric pressure again, its super saturation state results in a nucleation
process. The nucleation sites are able to grow, typically by heating the polymer over its effective
glass transition temperature [24]. There are several studies that have used this technique to create
nanocellular polymers. Nanocellular materials produced from pure polymers can be found in systems
such as PEI, studied by Sundarram and Li [25]. They were able to produce nanocellular PEI with
relative densities around 0.3 and 200 nm of cell size, using 8 MPa and 35 °C as saturation parameters.
Nanocellular PMMA with 120 nm of cell size and a relative density of 0.23 has been fabricated by
Guo et al. using a saturation process carried out at low temperatures (—20 °C) [22]. The same method
has been also used by Guo et al. for polycarbonate, achieving 200 nm of cell size and 0.38 of relative
density [26]. Another approach to produce nanocellular polymers using the gas dissolution technique
is the use of nano-structured polymers as precursors for the foaming process. These materials have
shown, to date, to be more appropriate for obtaining high cell densities using low saturation pressures
and high saturation temperatures, but, on rare occasions, they present low relative densities. For
instance, nanocellular PMMA /MAM (triblock copolymers poly(methyl methacrylate)-poly(butyl
acrylate)-poly(methyl methacrylate)) blends produced by Pinto et al. had relative densities of 0.41
and a cell sizes around 200 nm [27]. They used 30 MPa and 25 °C as saturation conditions. Another
PMMA copolymer, PMMA-0EA /SAN (styrene-acrylonitrile copolymer), studied by Costeux et al. was
able to produce nanocellular polymers with relative densities of 0.4 and cell sizes of 100 nm. They
used saturation conditions of 33 MPa and 30 °C [28]. Another strategy has been the introduction
of nanoparticles as nucleating sites. Nanocellular polymers from PC with silica nanoparticles were
fabricated by Zhai achieving cells with average sizes of 400 nm and 0.8 of relative density [29].
In addition, by using simultaneously homogeneous and heterogeneous nucleation mechanisms in
PMMA-co-EMA containing nanoparticles, it has been possible to reduce relative density up to values
of 0.2 obtaining cell sizes of 80 nm using 30 MPa as saturation pressure [30].

As it was described in the previous paragraphs, several types of nanocellular polymers have been
fabricated up to now by using different systems. However, low relative densities are hardly found and,
in the cases they were obtained, complex polymeric matrices such copolymers containing nanoparticles
or they have used non-conventional processing parameters such as low saturation temperatures (i.e.,
saturation temperatures clearly below room temperature) have been used. In addition, in the previous
published papers, the process-density-cellular structure relationship has not been analyzed in detail. In
particular, the effect of reducing the density on structural characteristics such as cell size, cell nucleation



Polymers 2016, 8, 265 3of16

density, cell size distribution, anisotropy ratio, fraction of mass in the struts or open cell content have
not been described in detail in previous publications.

Taking the previous information into account, this paper has two main goals. The first one is to
obtain nanocellular polymers with low relative density using a conventional PMMA homopolymer
and saturation conditions that do not require low temperatures. The second one is to analyze in detail
the process-density-cellular structure relationships for these novel materials.

2. Materials and Methods

2.1. Materials

Polymethylmethacrylate (PMMA) V 825T was kindly supplied by ALTUGLAS® International
(Colombes, France) in the form of pellets. The material used presents a density (p) of 1.19 g/cm3
(measured at 23 °C and 50% HR) and a glass transition temperature (T) of 114.5 °C measured by DSC.
Medical grade CO; (99.9% purity) was used as blowing agent.

2.2. Methods

2.2.1. Precursor Production

The as received PMMA was processed into sheets of (155 x 75 x 4 mm?) using a hot plate press.
The process consists of three stages. The pellets were first heated at 250 °C during 9 min in the hot
plates without applying any pressure. Then, they were pressed under a constant pressure of 2.2 MPa
for another minute. Finally, the sheet was cooled down at room temperature under the same pressure.

These sheets were cut into 20 x 10 x 4 mm?> samples that were used as precursors for the
foaming experiments.

2.2.2. Foaming Tests

Foaming experiments were performed in a high pressure vessel (model PARR 4681) provided
by Parr Instrument Company (Moline, IL, USA). The system to supply the gas pressure comprises an
accurate pressure pump controller (model SFT-10) provided by Supercritical Fluid Technologies Inc
(Newark, DE, USA). Thermal baths (J.P. Selecta Model 6000685, Grupo Selecta, Bercelona, Spain) have
been used to heat the samples after saturation with CO,. A set of foaming experiments have been
performed with this set-up using the so-called gas dissolution foaming process [24]. This production
route consists of three stages, the saturation step, the desorption step and the foaming step. Samples
are introduced in the pressure vessel under a high pressure atmosphere up to saturation. Then, the
pressure is released and after some time (desorption time) samples are immersed in a thermal bath
for foaming.

Saturation parameters have been chosen to achieve a 31% of CO, uptake, an amount suitable
to produce nanocellular materials in PMMA [18,31]. Saturation pressure (psat) was fixed at 31 MPa
and saturation temperature (Tsat) at 25 °C. Saturation time was 24 h for all the experiments. After
saturation, the pressure was released by using a fast depressurization rate (100 MPa/s), achieved
by using an electrovalve with Ky = 1.1 L/min. Desorption time for all the experiments was 3 min.
Foaming temperatures were modified from 40 °C to 110 °C and foaming times from 1 min to 5 min in
order to study the influence of these parameters in the density and cellular structure.

2.2.3. Amount of Gas Uptake

Gas uptake was calculated as the percentage of weight increment of the sample due to the gas
sorption. The final weight of the samples after the whole saturation process was evaluated from
the desorption vs. time curve, which was registered with a Mettler-Toledo balance (Mettler-Toledo,
Columbus, OH, USA). This curve can be extrapolated to zero desorption time in order to obtain the
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total amount of gas uptake during saturation [32]. As it has been previously mentioned, the gas uptake
for all the experiments was 31 + 0.3% by weight.

2.2.4. Density

Density of solid samples (ps) was measured with a gas pycnometer (Mod. AccuPyc II 1340,
Micromeritics, Norcross, GA, USA), and density of cellular samples (p¢) was determined using the
water-displacement method based on Archimedes’ principle. A density determination kit for an AT261
Mettler-Toledo balance has been used for this purpose. Relative density (p;) has been calculated as
ps/ ps. The solid skin of nanocellular samples (that present maximum values of 100 um) has been
removed with a polisher (model LaboPOI2-LaboForce3, Struers (Ballerup, Dinamarca), by removing
200 pm on each side. This polishing process was performed before measuring the material density ps.

2.2.5. Open Cell Content

The percentage of open cells (OC %) was measured with a gas pycnometer (Mod. AccuPyc II
1340, Micromeritics), according to ASTM D6226-10. The equation to calculate the open cell content is:
o V-V, =V
Oy (/0) Vi (1 — pr) ’ (1)
where V is the geometric volume of the sample, V}, is the volume measured by the pycnometer
and V; takes into account the exposed cells at the surface of the sample. The external volume,
V, was determined from the cellular material density (and its mass (m) (measured with an AT261
Mettler-Toledo balance) as V = m/p. In order to determine V},, a pressure scan (from 0.2 MPa to
1.3 MPa) with the gas pycnometer has been performed measuring the pycnometric volume for each
pressure. From a certain pressure, the volume remains constant, which demonstrates that no more gas
can enter inside the cellular material. V}, has been considered as the mean value of these last constant
values measured.
As V is proportional to the cell size, this value becomes negligible for nanocellular materials and
can be neglected in these measurements.

2.2.6. Scanning Electron Microscopy

To prepare the samples for SEM visualization, they were cooled down with liquid nitrogen and
then fractured. In addition, they were coated with gold using a sputter coater (model SDC 005, Balzers
Union, Balzers, Liechtenstein). An ESEM Scanning Electron Microscope (QUANTA 200 FEG, Hillsboro,
OR, USA) has been used to obtain images of the cellular structure. The homogeneity of the cellular
structure of the samples was analysed by taking different micrographs through the thickness. It was
observed that samples were very homogeneous once the external solid skin was removed.

Cellular structure of each material was characterised with a software based on Image] /FIJI [33].
Structural parameters such as cell nucleation density (Nj), calculated using the Kumar’s method,
average cell size(¢), cell size distribution, standard deviation of the cell size distribution (SD), and
anisotropy ratio (AR) calculated as the ratio of the cell size in the compression direction during
precursors production (set as z-axis) and the cell size in a direction perpendicular to it (x direction)
have been obtained [34]. A total of two micrographs randomly obtained have been used for the
analysis of each material. Therefore, more than 300 cells have been considered for each specimen.

With the aim of obtaining a more complete description of the cellular structure, some advanced
cellular structure descriptors such as mean cell wall thickness (£) and mass fraction in the struts (fs)
have been measured. Mean cell wall thickness has been measured directly from the micrographs.
More than sixty cell walls have been measured per type of material. The average value has been
used to characterize the material. This is a 2D characterization method, so broken walls cannot be
easily detected in micrographs, thus the measured mean cell wall thickness values correspond to
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visible (non-broken) cell walls. fs has been calculated using Image]/FIJI and the method explained in
Figure 1. First of all, a representative region of the micrograph was cropped, then cells were marked
in order to create a mask (Figure 1a). The second step consists of binarizing the created mask to
isolate the solid phase and the gaseous one, marking the first one in white and the second one in black
(Figure 1b). Local thickness can be analysed from this image, obtaining a local thickness image of the
original cellular material (Figure 1c). In this image, due to the difference in thickness that struts and
walls present, it is possible to distinguish these two different structural elements and to obtain a local
thickness histogram (Figure 1d). This histogram quantifies the relative frequency corresponding to
each thickness. In order to evaluate the fraction of material in the struts, a threshold value has been
chosen as the minimum thickness corresponding to a strut (Figure 1d).

Relative Frequency

Thickness (nm)

Figure 1. Description of the method to measure the fraction of mass in the struts (fs). (a) cell mask;
(b) binarized cell mask; (c) local thickness cell image; (d) local thickness histogram.

This minimum thickness was chosen by measuring the thickness of different struts directly from
the micrographs and selecting the minimum value as threshold. For each image, it was confirmed that
this threshold value was selected properly to avoid an overlapping of the two distributions, i.e., to
avoid computing cell walls as struts. Finally, the fraction of mass in the struts can be determined as
the total sum of relative densities corresponding to struts thickness. Some samples (those with lower
densities) did not present sufficient differences in thickness between struts and cell walls (the two
distributions showed a significant overlap), so for these particular samples, it was not possible to apply
this quantification approach.

2.2.7. Differential Scanning Calorimetry

Glass transition temperature (Tg) has been measured by using a Mettler DSC30
differential-scanning calorimeter (Mettler-Toledo, Columbus, OH, USA) previously calibrated with
indium. The Ty was taken as the mid-point of the change in the DSC thermogram that characterizes
this transition. The weights of the samples were approximately 5 mg. To study the glass transition
temperature of the as processed samples a first heating step was performed between 20 °C and 160 °C
at 10 °C/min. Later on, samples were maintained at 160 °C for 3 min to erase any thermal history, and
then they were cooled from 160 °C to 20 °C at —10 °C/min. Finally, the initial cycle of heating from
20 °C to 160 °C at 10 °C/min was performed again to determine the glass transition temperature of
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samples with the same thermal history. These experiments were done on the cellular materials and on
the solid sheets. Tg increment (ATg), defined as the difference between the T of the cellular material
in the first heating step and that of the solid material in the same heating step, was calculated for each
material. The same calculation was performed for the second heating step defining ATg,.

3. Results
3.1. Influence of the Foaming Temperature and Time

3.1.1. Relative Density

To study the influence of the foaming parameters on the final cellular structure, different foaming
temperatures have been used, from 40 °C to 110 °C, increasing in intervals of 10 °C. Furthermore, the
influence of the foaming time has been determined using 1, 2 and 5 min of foaming time for each
temperature. Relative density of each sample has been measured. As it can be seen in Figure 2, the
relative density has a clear tendency with both the foaming temperature and the foaming time.

0.5 0.5

. ——40°C
—=— 1 min o 50°C
*—2min —A—60°C
—4A— 5 min »—70°C
> +—80°C
2 £ ——90°C
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o
a ]
P (a]
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E 0.3 3 0.3
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Figure 2. (a) relative density evolution with foaming temperature; (b) relative density evolution with
foaming time.

Relative density experiences an important decay from 0.46 at 40 °C of foaming temperature to a
minimum of around 0.24 when the temperature increases. This decay seems to reach equilibrium at
80 °C. No significant differences in relative density are observed between samples foamed at 80 °C
and the ones foamed at 90 °C and 100 °C. This is also true for samples foamed at 110 °C for foaming
times of 1 and 2 min, but for 5 min relative density suffers a sharp increase (Figure 2a and Table 1).

Figure 2b shows the effect of foaming time. An increase in the foaming time results in a decrease
in the relative density for temperatures from 40 °C to 80 °C. At this last temperature, the equilibrium
reached by p; is also detected. For higher temperatures, 90 °C and 100 °C, densities are similar for
times between 1 and 5 min. It can be observed again that the experiments performed at 110 °C of
foaming temperature do not follow the general trend; the lowest density is reached at 1 minute and
then the relative density increases to values above 0.35.

It can be concluded that, for these saturation conditions, there exist a minimum relative density of
0.25 that can be reached using temperatures between 80 °C and 100 °C and foaming times between 2
and 5 min. Moreover, 110 °C seems to be the upper limit for the foaming temperature because at 5 min
of foaming time, the relative density increases significantly. This is a consequence of the very close
value of this temperature and the Ty of the used polymer.
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Table 1. Production parameters and main characteristics of the materials under study.
F. Time F. Temp. 3 o ° o
Sample (min) 0 Pr No /em?) ¢ (nm) SD/¢d AR & (nm) fs OC (%) AT (°C) ATg, (°C)

1 1 40 0.47 1.78 x 104 212 0.45 1.24 26 0.60 4 49 0.1
2 2 40 0.43 1.55 x 104 220 0.37 1.22 30 0.54 3 6.4 2.1
3 5 40 0.37 2.17 x 101 225 0.39 1.26 24 0.54 8 7.3 0.7
4 1 50 0.42 1.74 x 104 219 0.40 1.30 24 0.57 4 5.9 0.5
5 2 50 0.37 2.24 x 1014 213 0.41 1.32 26 0.47 4 8.5 0.8
6 5 50 0.32 2.16 x 101 241 0.41 1.27 24 0.54 21 9.9 0.3
7 1 60 0.39 2.38 x 1014 207 0.42 1.21 26 0.46 5 8.3 1.6
8 2 60 0.33 2.34 x 101 221 0.40 1.27 26 0.36 11 10.0 —0.7
9 5 60 0.29 2.12 x 101 236 0.47 1.26 23 0.38 30 9.6 1.4
10 1 70 0.35 2.27 x 101 221 0.44 1.24 24 0.39 12 7.8 1.2
11 2 70 0.28 2.19 x 10 229 0.46 1.20 30 0.36 47 10.5 1.5
12 5 70 0.27 2.73 x 1014 221 0.44 1.28 25 0.34 73 10.3 0.3
13 1 80 0.27 3.56 x 1014 208 0.45 1.21 23 0.35 73 10.5 0.7
14 2 80 0.26 3.15 x 1014 227 0.40 1.14 26 90 11.6 2.2
15 5 80 0.29 2.81 x 101 224 0.41 1.23 29 0.35 91 11.3 2.4
16 1 90 0.27 3.04 x 101 222 0.40 1.12 29 0.35 99 10.0 0.5
17 2 90 0.26 3.13 x 101 222 0.44 1.14 26 100 10.3 1.0
18 5 90 0.26 2.79 x 101 234 0.40 1.09 28 100 10.5 0.6
19 1 100 0.27 3.44 x 1014 204 0.41 1.18 28 0.31 100 10.9 21.9
20 2 100 0.24 3.60 x 1014 216 0.46 1.03 26 97 10.7 2.5
21 5 100 0.28 2.67 x 1014 234 0.43 1.16 29 0.308 100 11.4 1.1
22 1 110 0.25 2.23 x 101 261 0.43 1.19 28 99 10.9 1.4
23 2 110 0.27 2.99 x 101 227 0.43 1.04 33 0.32 100 10.9 1.0
24 5 110 0.37 3.10 x 10 184 0.40 1.17 36 0.54 46 49 2.0
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3.1.2. Cellular Structure

One example of the typical cellular structures obtained is shown in Figure 3.

Figure 3. Micrograph of cellular structure of Sample 7.

As it has been previously mentioned, samples present cell sizes in the nanometric range. The high
homogeneity of the cellular structure, as well as a slight anisotropy of the cells in z-direction, can also
be observed.

Figure 4 shows the evolution of the cell size (a) and cell nucleation density (b) with foaming time
and foaming temperature. Between 40 °C and 100 °C of foaming time, cell sizes slightly increase from
205 to 240 nm (Figure 4a); consequently, only a small variation of 35 nm is detected. For a foaming
temperature of 110 °C, only samples foamed during 1 and 2 min follow the general trend, whereas the
cell size of the sample foamed during the 5 min experiment reduction due to the higher density of
this material. It is also remarkable that the standard deviation of the cell size distribution divided by
the average cell size (SD/®) (Table 1) remains constant for all temperatures and foaming times, with
values near 0.4. Therefore, the homogeneity of the cellular structure does not depend on the foaming
parameters, obtaining homogeneous cellular materials for all the foaming conditions.

245
240
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225
220
215
210
205
200
195
190
185
180 T T T T T T T T T

1 2 3 4 5

Foaming Time (min) Foaming Time (min)

" &

4x10"

3x10™ -

2x10™ A

Cell size (nm)

1x10"

Cell Nucleation Density (nuclei/cm

1 2 3 4 5

Figure 4. (a) evolution of the cell size with foaming time; (b) evolution of cell nucleation density with
foaming time.
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Cell nucleation density tendencies are shown in Figure 4b. Two different behaviours can be
distinguished. On the one hand, for foaming temperatures of 40 °C, 50 °C and 60 °C, the values of
Np are below 2 x 10 cm~3. On the other hand, samples corresponding to foaming temperatures
between 80 °C and 110 °C show higher values of Ny (above 3 x 10! nuclei/cm~3). For instance, Ny
increases from 1.5 x 10 nuclei/cm? for 40 °C of foaming temperature and 2 min of foaming time to
3.5 x 10 nuclei/cm 3 for 100 °C of foaming temperature and the same foaming time.

Table 1 also shows the other characteristics measured: anisotropy ratio, cell wall thickness, mass
fraction in the struts, open cell content and glass transition temperature increments. The anisotropy
ratio (AR) is higher than one for all the materials under study. This indicates that cells are slightly
elongated in the z-direction (i.e., the direction of the applied pressure during the production of the
solid precursors). In addition, the obtained at temperatures below 60 °C are between 1.2 and 1.3, while
for foaming temperatures higher than 60 °C AR are slightly reduced to values between 1.0 and 1.2.
The values of cell wall thickness are in a range between 22 nm and 30 nm, except for sample 24 (the
one foamed at high temperature and with high foaming times) that presents a higher value of 36nm.
Therefore, & seems to remain almost constant with foaming temperature as well as with foaming time.
In fact, there is no a clear trend of this parameter with foam density. Otherwise, mass fraction in the
struts changes significantly with foaming temperature; the values are reduced from 0.6 to 0.3 when
temperature is increased. As already discussed, this magnitude was not measured in some samples
(low density samples) because of the similarities between the sizes of cell walls and struts.

3.1.3. Open Cell Content

The evolution of open cell content with foaming conditions is shown in Figure 5. Up to 80 °C
of foaming temperature, OC increases from 3% at 40 °C to 91% at 80 °C. Temperatures of foaming
higher than 80 °C yield to completely open cell structures. A tendency with the foaming time is also
observed, and open cell content increases with this parameter. Cellular materials foamed during 5 min
present higher open cell content than those foamed during 1 or 2 min. Once again, the nanocellular
material produced at 110 °C of foaming temperature and 5 min of foaming time presents an anomalous
behaviour. Due to the higher density and change in the internal cellular structure, the sample does not
present a completely open cell structure.

100 -
T 80
Q
R
[=
S 60-
3
O 40-
c
[}]
o
O 20-
P —=%— 1 min
—— u 2 min
0 —A— 5 min
T T T T T T T T T T T

T T T T T T
30 40 50 60 70 80 90 100 110 120
Foaming Temperature (°C)

Figure 5. Open cell content as a function of foaming temperature.

3.1.4. Glass Transition Temperature

Table 1 shows that when the glass transition temperature is measured in the first heating step,
there are differences up to 11 °C between the glass transition of the nanocellular polymer and that
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of the solid precursor, while these differences disappear when the glass transition temperature is
measured in the second heating step.

4. Discussion

As it has been described in the previous section, nanocellular polymers with a wide range of
relative densities (from 0.47 to 0.24) have been produced. Consequently, the cellular structure of
these cellular materials is different. In this section, the correlations found between density and the
parameters that define the cellular structure are discussed. The section is divided into two parts—firstly
the analysis of the characteristics related to the gaseous phase and secondly the study of the parameters
connected to the solid phase.

4.1. Gaseous Phase

In order to analyze the relationship between relative density and the changes in gaseous phase,
obtained results for the cell size and cell nucleation density should be discussed.

As mentioned above, the relative density changes in a factor of nearly 2, from 0.47 for the material
with the highest density (sample 1) to 0.24 for the material with the lowest density (sample 20).

If the number of cells is constant, a change of a factor of two in relative density should be translated
in a change of 1.26 (21/3) in the cell size. However, the ratio of cell sizes between these samples (1 and
20) is only 1.02 (Table 1). This is just an example of the general trend observed (Figure 6).

300

250

200 +

150

Cell Size (nm)

100

50 4

T T T T :
0.2 0.3 0.4 0.5
Relative Density

Figure 6. Average cell size as a function of relative density.

Even though the range of relative densities is wide, almost all the samples have cell sizes in the
same range.

Cell nucleation density has also been analyzed. Ny changes from 1.5 x 10'* for samples produced
at low temperatures to 3.5 x 10'* for samples produced at high temperatures, that is, Ny doubles its
value when the foaming temperature is modified (Figure 7a).

Figure 7a shows Ny as a function of the foaming temperature. Cell nucleation density clearly
increases between 40 °C and 80 °C, temperature at which the number of nucleation sites reaches its
maximum value. Again, it is demonstrated that 110 °C is the upper limit for the foaming temperature
because Ny drops again at this temperature. This is a behaviour opposite to that found for relative
density (see Figure 2a). Between 40 °C and 80 °C, cell nucleation density grows due to a reduction in
the energy barrier to create cells [8]. At higher temperatures, there is a competition between the higher
nucleation rate and the emergence of degeneration mechanisms such as a coarsening, coalescence
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and/or collapse of the cellular structure. These last mechanisms seem to play a significant role when a
temperature of 110 °C is used for foaming (cell nucleation density is reduced).

2 |
~&

4x10" - 4x10" 4

3x10™ 3x10" "
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1x10™ 4 1x10" 4

Cell Nucleation Density (nuclei/cm®)
-

Cell Nucleation Density (nuclellcms)
|
]

T T T T T u
40 50 60 70 80 90 100 110 0.2 0.3 0.4 0.5
Foaming temperature (°C) Relative Density

Figure 7. (a) change of cell nucleation density with foaming temperature; (b) change of cell nucleation
density with relative density.

In short, the reduction in relative density is a result of an increase in the number of nucleation
sites when the foaming temperature increases (Figure 7b). Cells created reach very similar sizes at any
of the temperatures tested, so the increase in the volume of the samples produced at high temperatures
is the result of having more cells (two times more cells) of equal size.

Open Cell Content

Figure 8 shows the relationship between the open cell content and the relative density. Samples
with high relative densities present low contents of open cells. As density decreases, the open cell
content increases up to a maximum value of 100%. Therefore, low density samples present a totally
interconnected gas phase.

1004
80
60 -
40

20

Open Cell Content (%)

T
0.2 0.3 0.4 0.5
Relative Density

Figure 8. Open cell content as a function of relative density.
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In previous sections, it has been proved that high temperatures are needed to decrease the relative
density. These high temperatures imply a decrease in the polymer viscosity that causes cell wall
ruptures during the expansion process.

Cell wall thickness has been measured to be constant, so it seems that there exists a minimum
thickness value below which cell walls start to break down.

4.2. Solid Phase

As a consequence of the evolution in the gaseous phase, the topology of the solid part of the cellular
material is also modified. With the purpose of determining these modifications, parameters such as
the cell wall thickness and the fraction of solid mass in the struts have been analysed. Mean cell wall
thickness is almost constant for all the analysed materials (Table 1). In contrast, fs is strongly modified
when density is reduced (Figure 9). When a cellular material reduces its relative density, increasing as
a consequence its expansion ratio, it is common to expect a reduction in the cell wall thickness.

0.7
0.6 s .
& e RN !
E / ] [_IEEN n
- | 1 \
» 0.5 | . - |
£ ‘. /
2 ‘ /
n \
k]
c 0.3-
o — Low density
'g - — Medium density
= 0.2 1 - - - - High density
01 T T T T T
0.2 0.3 0.4 0.5

Relative Density

Figure 9. Fraction of mass in the struts with respect to relative density.

For example, in PU foams, it has been observed that a reduction in relative density implies
drainage from the cell walls to the struts [35]. Then, cell walls become thinner as relative density
decreases, reaching a minimum value at which coalescence starts to occur.

The results in Figure 9 and Table 1 demonstrate that a reduction in relative density results in totally
different effects for nanocellular PMMA. As p, decreases, the cell wall thickness remains constant,
while the fraction of mass in the struts becomes smaller.

As it is shown in Figures 9 and 10, samples in this paper can be divided into three groups, taking
into account their relative density and fraction of material in the struts: low density nanocellular
materials, medium density nanocellular materials, and higher density ones. In order to clearly show
the modifications in the local thickness, one example of the histograms of the local techiest for each
group is included in Figure 10.

Modifications between different groups are clear. As it can be appreciated, mass fraction in the
struts decreases as relative density falls. In fact, while in the high density materials, the struts have a
clearly higher thickness, whereas in the low density nanocellular polymers, the struts have a thickness
similar to that of the cell walls. In addition, the thickness distribution becomes narrow as the density is
reduced. For low density materials, strut thickness is similar to cell wall thickness, which explains the
fact that we were not able to accurately measure f; for the materials with the lowest densities.
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Figure 10. Solid phase distribution for high (Sample 1), medium (Sample 8) and low density samples
(Sample 21).

Therefore, this analysis has proven that the key point in density reduction is to increase the
foaming temperature, a parameter that induces a higher number of cells. This density reduction takes
place by keeping constant the values of cell size and the cell wall thickness but reducing the fraction of
material in the struts and increasing the interconnectivity of the cells.

Confinement Effect

As previously reported, there exist significant differences between the glass transition temperature
of the nanocellular PMMA materials and that of the bulk material. This fact has been previously
observed, and it is attributed to a confinement effect of the polymer matrix [18,36]. When the cellular
polymers evolve from microcellular to nanocellular, higher cell densities, smaller cell sizes, and thinner
cell walls, between 22 and 36 nm in our case, are obtained.

The size of these cell walls is of the same order of magnitude as the polymeric chain length,
resulting in a confinement of the polymer within cell walls. This confinement restricts the mobility of
the polymeric chains, making the Tg of the foamed material higher than the Ty of the solid precursor.

The importance of the confinement effect has recently been reported. It has been demonstrated that
nanocellular materials present enhanced physical properties (modulus of elasticity, shore hardness), in
comparison to microcellular ones, and this seems to be due, in part, to the confinement effect [18].

For the materials in this paper, c cell wall thickness remains constant independently of the relative
density. Meanwhile, ATy change in the studied range of relative densities (Figure 11). AT increases
when the relative density is reduced, from 4 °C for the cellular materials with highest densities to
11 °C for cellular materials with the lowest densities.

Confinement effect is related to the solid phase of the cellular polymer, so although the cell wall
thickness remains constant, it has been observed that fs changes with p,.. Figure 11b shows that there
is a clear relation between ATy and the fraction of material in the struts. Reducing this value increases
the ATy values.

All the samples present confinement effect because thickness of the cell walls are of the same order
of magnitude as that of PMMA chains. However, high density materials present a higher proportion
of solid phase in the struts. In those areas, molecular mobility increases due to its higher size. As the
struts size becomes smaller (i.e., density is reduced), the confinement starts to take part also in this part
of the solid phase. This results in an increase of the confinement effect as relative density is reduced.
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Figure 11. (a) glass transition temperature increment as a function of relative density; (b) glass transition
temperature as a function of the fraction of mass in struts.

When a second measurement of the glass transition temperature is performed, after erasing
the thermal history (Table 1), no differences between the nanocellular PMMA and the solid sheets
are observed. This can be explained because when the nanocellular cellular structure disappears as
a consequence of the increase in the temperature of the cellular material above its glass transition
temperature (this was confirmed by performing SEM images of the samples after erasing the thermal
history), the confinement effect disappears.

5. Conclusions

Low density nanocellular polymers have been fabricated using a PMMA homopolymer as
raw material by means of the optimization of the foaming parameters. A wide range of relatives
densities have been achieved, from 0.47 for 40 °C of foaming temperature to 0.24 for 90 °C of foaming
temperature. A complete analysis of the cellular structure has been carried out, leading to a complete
correlation process—density—structure. On the one hand, it has been found that cell sizes remain
almost constant for all the samples, the increase of cell nucleation density being the key factor in the
reduction of relative density. An increase in the foaming temperature from 40 °C to 90 °C increases
the cell nucleation density by a factor of two, resulting in a reduction of the relative density of the
same magnitude. In addition, it has been found that reducing the relative density increases the cells’
connectivity, and, in fact, for low relative density materials, the open cell content is 100%. On the
other hand, whereas cell wall thickness is almost constant for all the produced material, maintaining a
low value between 22 and 36 nm, the fraction of mass in the struts radically drops when the foaming
temperature is increased and therefore when the relative density is reduced. Finally, it has been
confirmed that the production of these nanocellular polymers with thin cell walls and struts results in
a confinement effect of the polymeric matrix. The reduction of strut sizes when density is reduced
causes a significant increase of this effect.
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