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Abstract: In order to understand orientation-induced crystallization of polymers, we introduced
an intermolecular interaction between polymer chains based on quantum mechanics. We therefore
considered a pair of perfectly extended chains where the intermolecular interaction is assumed to be
based on the hydrogen interaction with a single chain. When two protons of each extended chain
become closer together under tension, the attractive force between the extended chains is caused
by the interaction between hydrogen atoms surrounding the main chains based on the hydrogen
molecule ion H+

2 . The energy is split into the ground and excited states, and the spontaneous process
leading to the ground state is the origin for orientation-induced crystallization.

Keywords: orientation-induced crystallization; crystalline polymers; hydrogen molecule ion

1. Introduction

Polymers are chain-like molecules made up of repeating units of a particular molecular group
jointed together by covalent bonds [1]. One of the simplest polymers is polyethylene, which has a
repeating unit of –CH2–CH2–. The basic unit of this sequence is called the “structural unit”, and the
total number of the units in a molecule corresponds to the polymerization degree. When a polymer
with configurational regularity is quenched to an ambient temperature from the melt, it undergoes
a first-order phase transition from a disordered amorphous state to form an ordered crystalline
structure [2,3], and they appear not to follow the Gibbs phase rule. Such a melt-crystallized polymer
exhibits an alternating two-phase structure that consists of plate-like crystalline lamellae and the
amorphous layers. The contour length of a polymer molecule is far greater than the typical lamellar
thickness of the order of 10 nm, resulting in the formation of folded chain crystallites consisting of
partially stretched conformations, and the chain axes within the lamellae are approximately normal to
the face of the lamellae (see Figure 1a). Although the crystallizable arrangement of polymer chains has
a lower conformational energy, concomitant reduction of the entropy required for the persistence of
sequential crystalline conformation limits the crystalline lamellar thickness.

The molecular relaxation time of polymers is very long when compared with small molecules
because of chain–chain entanglements in the melt, leading to high viscosity [4,5]. These slow relaxation
dynamics impose kinetic activation barriers for the crystallization nucleation process under cooling.
Accordingly, there exists a large amount of experimental kinetic data concerning nucleation and growth
for polymer crystallization [6,7]. In addition, most theories of polymer isothermal crystallization from
the melt state have been proposed based on the primary and secondary (or growth) nucleation
kinetics [8–13].
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Figure 1. Schematic illustrations of crystallization from (a) an equilibrium melt and (b) a flowing melt.

A majority of commodity plastic products are manufactured by extrusion and injection molding
from flowing melts followed by a crystallization process [14–16]. In the case of extrusion molding, the
formation of oriented shish structures occurs in regions of high shear near the walls in an extrusion
flow [17]. The layer nearest to the wall is the oriented skin, followed by a somewhat oriented
fine-grained layer and finally isotropic structural morphology around the center of the die in the
regions that experience no stress [17,18]. Regarding the manufacturing of polymer films and fibers,
solid state drawing is usually carried out by a high speed drawing under flowing melt conditions.
The structure and properties of these polymeric products depend on the manner in which polymer
molecules crystallize in the drawing solid and/or flowing melt (see Figure 1b) [19].

When the draw rate is greater than the inverse of the chain retraction time, i.e., the Weissenberg
number is greater than unity, the orientation induced by stretching is not dissipated by viscous
processes but is set as the polymer crystallizes after the draw process [20–22]. Draw-induced
crystallization apparently proceeds without an activation barrier or a nucleus, and is limited only by
local molecular relaxation [17,23]. This orientation-induced barrier-free transition to the crystalline
phase is initiated by the spontaneous ordering of flexible conformations into rigid conformational
sequences. The bundles of rigid sequence persist to temperatures higher than the nominal melting
point. Aside from this, when natural rubbers are stretched beyond a critical value, chain molecules
arrange themselves in an ordered structure, presumably composed of fibrillar chains aligned with the
stretching direction, which is accompanied by the stress reduction [24–26]. This behavior is called the
strain-induced crystallization, but the crystalline structure in stretched rubbers is found to start to melt
as soon as retraction begins.

Consequently, a number of theoretical as well as computational investigations of
orientation-induced crystallization have also been performed for material design in plastic products,
films, fiber spinning, and rubbers so far [27–30]. It has been accepted that the orientation-induced
crystallization mechanism from the sheared melt is quite different from that of the isothermal
crystallization from the quiescent melt state. However, fundamental questions remain as to how
chain-like molecules are crystallized under the drawing process. The aim of this study is to
provide a physical insight into the origin of these orientation-induced crystallization processes.
For that purpose, a pair of perfectly aligned extended chains are employed as the simplest
model. A coupling interaction is investigated between hydrogen atoms surrounding the extended
main chains from a quantum-mechanical point of view where van der Waals interections are not
included semi-empirically.
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2. Polymer Model

A polymer chain can take a huge number of different conformations in a melt state.
This corresponds to micro-Brownian motion and the chains are rapidly converted into other
conformations. Each conformation exists for only a very short time, so that the resulting conformations
are temporal averages over all actual bonds. Time-averaged conformational states of the polymer
can be calculated as ensemble averages over the successive steps of Brownian random walks.
This results in polymer molecules being expressed by random flight chains composed of statistical
bonds (effective bonds) joining beads of unit mass where an appropriate number of actual bonds are
replaced by a single effective bond [31,32]. Real flexible polymers have been identified to be effectively
treated as such a random flight chain, and the details of the chemical structure of real polymers can be
smeared out [33,34]. This chain is a simple coarse-graining polymer chain [35].

According to the central limit theorem in statistical physics, the instantaneous shape of a linear
chain, which is obtained by time-averaging over many conformations, can be described by a Gaussian
distribution [36,37]. Here, let beads be labeled from numeral 1 though N. The distribution function
W(bi) of the effective bond vector bi = ri + 1 − ri, where ri is the position vector of the i-th effective
unit, can be defined either as the time-averaged incidence of bi within the specified range for a
given molecule or as the average incidence for an ensemble of many identical units subject to
identical conditions. Then, the distribution of the effective bond vector bi is given by a Gaussian
distribution function [37]. Consequently, the probability distribution of the set of position vectors
{ri} = {r1, ..., rN} is

P({ri}) =
(

3
2π 〈b2〉

)3/2
exp

[
− 3

2 〈b2〉

N−1

∑
i = 1

(ri + 1 − ri)
2

]
, (1)

where
〈
b2〉 is the mean square of time-averaged bond length.

The equilibrium state of this chain is described by a distribution function proportional to
exp(−V/kT), where V is the potential energy, k is the Boltzmann constant, and T is the absolute
temperature. Therefore, if we choose

V =
3kT

2 〈b2〉

N−1

∑
i = 1

(ri + 1 − ri)
2, (2)

then the chain’s equilibrium distribution function is reduced to Equation (1). This means that a polymer
molecule can be modeled as a chain of beads connected by a Hookean spring with a spring constant
3kT/

〈
b2〉 . Thus, the Hookean spring is associated with the dynamic potential based on the changes

in conformational entropy [38].
The equilibrium distribution function of statistical bonds in random flight chains is consistent

with the Gaussian distribution function if and only if the value of
〈
b2〉1/2 is identical with the effective

bond length b. The spring of the Gaussian chain is then called the “segment” [37], which is composed
of several structural units. It follows that the probability density function for the end-to-end distance
R(= |rN − r1|) of a random flight chain with N beads can be expressed by

P(R) = 4πR2
(

3
2πNb2

)3/2
exp

(
− 3R2

2Nb2

)
. (3)

We can find that the root mean square of the end-to-end distance is
√

Nb.
In this work, we accepted as an axiom that crystallizable polymers are flexible, and the flexible

polymer chains before crystallization are expressed by a random flight chain composed of identical
bonds (or segments) of length b joining N beads of unit mass (Axiom I). Because all conformations
maintain the same internal energy during elongation under isothermal conditions, the free energy
change ∆F for a single chain stretching process is dominated by the entropy change due to the
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extension of the chain through the conformational arrangement; i.e., ∆F = −T∆s. The loss of
conformational entropy is caused by changes in the number of bond arrangements.

The set of conformation arrangements of the random flight chain can be considered to be the set
of random walks of N steps with a step length of b in an appropriate coordinate system [39,40]. The
total number of bond arrangements for the one-polymer system can be estimated to be Ω(N) = zN ,
where z is the number of possible microscopic state per each segment. The total number of random
walk chains with N steps lying at an end-to-end distance being between R and R + dR is given by
zN P(R)dR. Consequently, the entropy change between the fully stretched state and the initial random
coil state is estimated to be at most ∆s = −Nk ln z because the entropy of the fully stretched state is
negligible. Figure 2 shows a schematic of the conformational change of a random flight chain from
the initial random coil state to a completely oriented state. The mean end-to-end distance

√
Nb in the

random coiling state increases up to Nb for the fully stretched state.
The chain conformational problem for random flight chains can be reduced in a highly oriented

stage to that of a rotational isomeric state (RIS) model [34] by introducing a detailed mathematical
description of the local chain structure in which we put z ∼= 3 or more discrete values for conformations
corresponding to the potential minima (e.g., tans and ±gauche), and we consider N to be the degree
of polymerization. Notice that the mathematical description of RIS can be obtained on the basis of a
familiar one-dimensional Ising problem [33].

1 2 3 NN-1……….. ………..i i+1i-1

b

Figure 2. Schematic of stretching of a single random flight chain. Stretching is along the
horizontal direction.

3. Coupled Chains System

When crystallized polymers are uniaxially stretched under the appropriate tensile speed below
their melting temperatures, a large scale of morphological transformation from isotropic to highly
oriented or fibrillar structures takes place [41–44]. The ultimately extended-chain structure locally
appears in the strain-hardening stage under uniaxial tension or in the cooling stage from sheared
melt. The tensile load leads to the almost completely extended state from the isotropic random coil
state in the initial stage, and the further loading to the system contracts the distance between the
extended chains. This is called the “Poisson contraction” [45]. Consequently, the orientation-induced
crystallization in chain molecules is likely to result from contributions of the intramolecular and
intermolecular interactions [46].

To elucidate the mechanism of orientation-induced crystallization, we assumed the condition that
the Weissenberg number is greater than unity at a fixed temperature below melting point. Here, we
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consider a pair of random flight chains consisting of N units of identical mass, jointed together by
segments on the basis of Axiom I. The tensile loading to the system extends the random flight chains
in the stretching direction, leading to a parallel alignment of two extended chains (see Figure 3) [47].
The left chain is denoted the L-chain and the right one is denoted the R-chain in the figure. Most
polymer chains consist of a main carbon atom backbone saturated by covalently-bound hydrogen
atoms [48,49]. Thus, the dominant intermolecular interactions are (H· · ·H) interactions between
the neighboring aligned chains, and the intramolecular interactions of the main chain are based on
carbon–carbon covalent (C−C) interactions. In addition, we assume there are no interactions between
adjacent protons of the same polymer chains.

L R
1

i -1

i

i +1

N

Figure 3. Schematic array of two extended chains with N units. Solid lines denote the C−C interaction,
and the dotted lines denote the H· · ·H interaction. Stretching is along the vertical direction.

In general, the ends of polymer chains are actually unlikely to be directly subjected to external
forces because the span between two clamps of tensile machines is far greater than the end-to-end
distance of single chains. The present coupled-chains model is assumed to represent a local part
of specimen far enough from the location of load application or the clamps. Here, we employ the
Saint–Venant’s principle [50] as the Axiom II and assert that the Poisson contraction is preserved
throughout tension [45]. These mean that the external load is homogeneously dispersed over the L- and
R-chains and that a pair of extended chains, after aligning to the stretching direction, are closer together
perpendicular to the stretching direction according to the uniaxial elongation, being accompanied
without bond stretching and angle bending. This is because the force constants of bond stretching and
angle bending of main chains are considerably greater than that of interatomic interaction.

When two protons of the L- and R-chains are closer with a distance r0, but not too large of a
separation, the electron density around a proton bonded to a main chain carbon is spread out because
of the uncertainty principle and interact with neighboring protons. For simplicity, we assume only
interatomic interaction between the pair of protons of L- and R-chains, and assume that a half-electron
brought by the L-proton is combined with another half-electron brought by the R-proton into a single
electron, found half-way between each proton pair [47].

Consequently, N pairs of protons with a single electron are formed. It is well known that the
imaginary hydrogen molecule ion H+

2 possesses a bound state at the minimum energy point; i.e., a
ground state whose energy is less than that of a hydrogen atom or a free proton combined. It should
be noted here that the interaction system possesses the bonding orbital that has a possibility to cause
association through interatomic bonding.
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4. Orientation-Induced Crystallization Process

We take time zero, t = 0, to be the time when two protons of extended chains are closer with a
distance r0, where their quantum atomic interaction is initiated. Since the Poisson contraction motion
of protons is much slower than electron motions, electron and proton motions are decoupled and the
interactions can be determined under the Born–Oppenheimer approximation [51]. The Hamiltonian of
a proton pair with a single electron, i.e., a hydrogen molecule ion H+

2 system, has the form

H = − h̄2

2me
∇2 − e2

rL
− e2

rR
+

e2

r
, (4)

where h̄(= h/2π) is the reduced Plank constant, e is the elementary charge in Gaussian unit, me is the
electron mass, r is the interproton distance, and rR and rL are the distainces of the electron from the L-
and R-protons, respectively. Distances are given in atomic units (a.u.).

Here, we consider two symmetric states in which the single electron is trapped by either the L-
or R-proton. We take these two different configurations as the base states, and we call them |L〉 and
|R〉. Both can be considered to be one hydrogen atom in its ground state. Then, the two configurations
are related by mirror reflection in the plane of a single proton pair and the expectation value of the
energy α(r) is the same: α(r) = 〈L | H | L〉 = 〈R | H | R〉, which corresponds to be the ground-state
energy of a hydrogen atom. Since two protons get close to one another as deformation proceeds, the
electron jumps from one proton to the other. The exchange energy β(r) for the electron is given by
β(r) = 〈L | H | R〉 = 〈R | H | L〉.

The prerequisite [47] that a half-electron brought by the L-proton is combined with another
half-electron brought by the R-proton into a single electron is here postulated. Then, letting the
time-dependent of wave vector of the electron be |ψ(r)〉, we arrive at the following statement.

Corollary 1. The probabilities of finding the electron around the L- and R-protons are the same at t = 0 :
i.e., | 〈L |ψ(0)〉 |2 = | 〈R |ψ(0)〉 |2 = 1/2.

Any state |ψ(r)〉 at any t ≥ 0 is represented by the linear combination of the two base vectors |L〉
and |R〉:

|ψ(t)〉 = |L〉 〈L |ψ(t)〉+ |R〉 〈R |ψ(t)〉 . (5)

Under orthogonality conditions, 〈L | L〉 = 〈R | R〉 = 1 and 〈L | R〉 = 〈R | L〉 = 0. The amplitude vector
satisfies the following time-dependent Schrödinger equation:

ih̄
d
dt

[
〈L |ψ(t)〉
〈R |ψ(t)〉

]
=

[
α(r) −β(r)
−β(r) α(r)

]
·
[
〈L |ψ(t)〉
〈R |ψ(t)〉

]
, (6)

where i =
√
−1. We can determine the amplitudes 〈L |ψ(t)〉 and 〈R |ψ(t)〉 according to specific initial

conditions. Their general solution is[
〈L |ψ(t)〉
〈R |ψ(t)〉

]
= e−iα(r)t/h̄

[
cos (β(r)t/h̄) i sin (β(r)t/h̄)
i sin (β(r)t/h̄) cos (β(r)t/h̄)

]
·
[
〈L |ψ(0)〉
〈R |ψ(0)〉

]
. (7)

Corollary 1 as the initial condition for the quantum interaction gives 〈L |ψ(t)〉 = ± 〈R |ψ(t)〉.
Introducing this initial condition into Equation (7), the energy of the system is split into ground
and excited states:

εg = α(r) + β(r), εu = α(r)− β(r), (8)
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where the α(r) and β(r) in Hartree units can be obtained as a function of a reduced distance r between
protons using the Coulomb integral J and the resonance integral K:

α(r) = εH +
1
r
+ J, (9)

β(r) = −K, (10)

where J = −1/r + (1 + 1/r)e−2r, K = (1 + r)e−r, and the εH denotes the ground state energy
of a hydrogen atom, which is −1/2 Hartree, and r is the interproton distance in atomic units.
These equations are obtained under the orthogonally condition 〈L | R〉 = 〈R | L〉 = 0. The eigenstates
that have these definite energies have the form:

∣∣Eg
〉
=

1√
2
(|L〉+ |R〉) , |Eu〉 =

1√
2
(|L〉 − |R〉) . (11)

The variation of the two energies εg and εu with the distance r(< r0) between two protons is
shown in Figure 4.

rℰ

ℰ𝑔

ℰ𝑢

0
re

𝜀𝐻

Figure 4. Bonding energy εg and anti-bonding energy εu plotted against the interproton distance.

Proposition 2. The probability of finding the electron around the L-proton is the same with that of finding the
electron around the R-proton being independent of time.

Proof. When |ψ(0)〉 = |Eg〉 at t = 0, we have

|ψ(t)〉 = |Eg〉 exp
(
−i

εg

h̄
t
)

. (12)

Likewise, when |ψ(0)〉 = |Eu〉 at t = 0, we have

|ψ(t)〉 = |Eu〉 exp
(
−i

εu

h̄
t
)

. (13)

In both cases, we can confirm | 〈L |ψ(t)〉 |2 = | 〈R |ψ(t)〉 |2 = 1/2.

This proposition indicates that there exists only one electron between the L- and R-protons, and
that electron has the same probability amplitude, 1/

√
2, to be in either proton.
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Proposition 3. The probability for the system to take εg or εu is independent of time and is determined by the
initial conditions.

Proof. The two stationary states can be derived from Equation (12) or (13):

〈
Eg
∣∣ψ(t)

〉
= exp

(
−i

εg

h̄
t
) 〈
Eg
∣∣ψ(0)

〉
, (14)

or
〈Eu |ψ(t)〉 = exp

(
−i

εu

h̄
t
)
〈Eu |ψ(0)〉 . (15)

Consequently, we have |
〈
Eg
∣∣ψ(t)

〉
|2 = |

〈
Eg
∣∣ψ(0)

〉
|2 or | 〈Eu |ψ(t)〉 |2 = | 〈Eu |ψ(0)〉 |2.

If the system is in the state |Eu〉, the energy increases as the distance between protons is decreased,
and the quantum effects impart a repulsive force that tends to keep the protons apart. In contrast, the
state |Eg〉 has a minimum energy point which is the equilibrium configuration and the lowest energy
condition. The energy at this point is lower than the energy of a separated proton as shown in Figure 4.
Both chains are spontaneously close at the minimum energy point r = re, coupled with the electron
transition from the antibonding to the bonding orbital. Consequently, orientational crystallization
may occur while the protons get close together, since the system becomes stable at r = re. The energy
drop reflects the latent heat release, i.e., Joule effect, being proportional to N where the value of N
corresponds to the degree of crystallinity.

These propositions presented here are generalized in the quantum two-level system [52]. The
above deductive inference leads us to the following theorem:

Theorem 4. When a pair of two random flight chains representing typical flexible polymers surrounded by
hydrogen atoms is homogeneously extended, a spontaneous alignment of the two perfectly extended chains is
almost surely formed in the extending direction.

It should be noted here that the interproton interaction r0 at t = 0 cannot be determined with
certainty, although the time of the onset of the quantum interproton interaction is set to be t = 0.
The uncertainty in the initial condition in addition to the onset of the electron transition may possibly
lead to fluctuation of the onset time or position (strain) of crystallization.

5. Quantitative Analysis

To quantitatively estimate the energy profile between the L- and R-protons, we need to consider
the non-orthogonality of the basis orbitals, where the overlap interaction S = 〈R | L〉 = 〈L | R〉 6= 0 is
positive [53,54]. The orbital function is assumed to be expressed as a linear combination of atomic
orbitals, and their coefficients can be determined so as to minimize the total energy. The notable
improvement in the energy profile when considering the non-orthogonality is an energy shift of the
exchange integral, β̃(r) = −K + (εH + 1/r)S, while the overall description of the energy profile under
orthogonal conditions is maintained. Consequently, the two energy levels are adjusted by the overlap
integral S as follows:

εg =
α(r) + β̃(r)

1 + S
, εu =

α(r)− β̃(r)
1− S

, (16)

where S = (1 + r + r2/3)e−r.
Once N pairs of protons with a single electron are formed at t = 0, the energy of each pair is then

split into the ground and excited states, and the energy difference 2δ(r) = εu − εg becomes larger as
the chains are brought closer together. Let the electron transition to the ground state be allowed while
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both chains are aligned parallel to the stretching direction with a distance r = re. Then, the number of
pairs in the ground and excited states are determined by

ng(r) =
N

1 + e−2δ(r)/kT
, (17)

nu(r) =
N

1 + e2δ(r)/kT
. (18)

This becomes the initial state for interaction between both protons.
In the present system, tensile extension leads to extending the two coiled chains in the stretching

direction at t < 0, the two extended chains perfectly align, and N proton pairs with a single electron
are formed at t = 0. Saint–Venant’s principle (Axiom II) is always applicable to our system under
tension, so that the external stress of this system is homogeneously dispersed into each pair of L- and
R-protons at t ≥ 0. Because the internal energy change due to the chain stretching process can be
neglected, the macroscopic internal energy U is considered to be dominated by the interaction between
protons at t ≥ 0:

U = N 〈ε〉+ U0, (19)

where 〈ε〉 is the averaged quantum interaction energy of each pair, and U0 is the vibration and motion
energy of the two chains. According to the “force theorem” [55,56], in addition to Proposition 3, the
average energy 〈ε〉 is given by the mean value of the quantum interaction energy for each pair using
the number fraction of each energy state as follows:

〈ε〉 = νg(r)εg + νu(r)εu, (20)

where νg(r) = ng(r)/N and νu(r) = nu(r)/N.
Since the total entropy change during deformation is given by −2Nk ln z as described before,

and U0 is almost constant under isothermal conditions, the change of free energy F (r) of the present
system has the form:

∆F (r) = N(νg(r)εg(r) + νu(r)εu(r)− εH) + 2NkT ln z. (21)

As the extension proceeds, the fraction νg(r) rapidly approaches unity, and the free energy change can
be simplified as

∆F (r)/N ∼= εg(r)− εH + 2kT ln z ∼=
1
r
+

J − K
1 + S

. (22)

The free energy of the present system is minimized at the minimum of εg(r), which corresponds to
an interproton distance re of 0.132 nm (2.5 a.u.) and an energy depth D(re) = εg(re)− εH=−1.76 eV
(–0.0648 Hartree). Figure 5 shows the free energy profile per proton pair at 300 K. It was found
that the ∆F (r) is nearly insensitive to temperature and is almost identical to the εg(r) profile. This
is because the contribution of entropy is negligible at ambient temperatures in the present system.
Furthermore, the orientation-induced crystallization leads to the energy loss being proportional to
the length of the crystalline sequence N, given by D(re)N. In other words, increasing of N leads to an
additive increase of the cohesive force, suggesting a positive dependence of the stress with strain in
the strain-hardening stage.
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Figure 5. Free energy and attractive force in Hartree unit plotted against the interproton distance in
atomic unit (a.u.).

Orientation-induced crystallization of extended polymers can be interpreted as a spontaneous
process, leading the system comprised of a pair of chains to achieve a free energy minimum under
tensile elongation. This is the reason that orientation-induced crystallization proceeds without an
activation barrier. Equation (21) illustrates that the free energy increases with increasing temperature,
but the temperature sensitivity is negligibly small in this model. However, a rise in temperature does
impede the polymer chains from attaining the fully stretched state under tension. Thus, it follows that
the orientation-induced crystallization process is disturbed at higher temperatures.

On the basis of the force theorem, the attractive force function between two protons can be
determined from d∆F (r)/dr, showing a maximum at r∗(=0.187 nm) at which the flexural point locates
on the ∆F (r) curve. The attractive force profile is included in Figure 5. The re is the equilibrium
separation where the force is zero and the two chains separate spontaneously after reaching r∗.
Then, the depth is D(r∗) = −1.29 eV. In addition, the modulus EY can be calculated from the second
derivative of ∆F (r) with r as

EY =
1
r2

d2

dr2 ∆F (r)
∣∣∣
r→re

, (23)

and yields EY = 293 GPa, which is mostly in accordance with the experimental modulus (288± 10 GPa)
of polyethylene fibers [54]. Note that the EY values are nearly independent of temperature in the
present theoretical framework.

6. Conclusions

The significance of this work is to provide a novel physical concept for orientation-induced
crystallization in order to explain a fundamental question of why the flexible polymers are crystallized
under tension. In order to essentially understand the orientation-induced crystallization, we set up
a simple coupled chains model as a small collection of a two-level quantum system and employed
two axioms that (1) a crystallizable polymer molecule is expressed by a random-flight chain and
(2) Poisson contraction is preserved through tension according to Saint–Venant’s principle.
Accordingly, intermolecular interaction between two aligned chains can be postulated to be based on
the hydrogen molecule ion H+

2 , resulting in the origin for orientation-induced crystallization being
the association of the interaction between extended chains due to a bonding (or ground state) orbital
caused by a proton pair sharing one electron. When the tensile deformation proceeds, the resulting
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extended chains align along the elongation direction and adjacent extended chains become closer
together. Then, the electron density around a proton bonded to a main chain carbon is spread out,
resulting in minimization of a bonding orbital produced by the single electron system appearing
between a pair of protons.

The present theory requires that polymer chains are surrounded by hydrogen atoms that are
connected to the carbon atoms in the main chain. In order to widely characterize the orientation-induce
crystallization for other flexible polymers, we need adjust the value of electron charges such that
the ground-state potential curve is in accordance with the van der Waals potential function. For the
purpose, we can propose a reduced electron charge ξe, where ξ is a factor of electron charge resulting
from non-integral number of electron delivered from each proton [47]. In this work, ξ can be considered
to be 1/2.

The spontaneous process leading to the minimum energy state is the origin for orientation-induced
crystallization, and this spontaneous ordering process reflects that the orientation-induced
crystallization has no activation barrier and does not need precursors. Therefore, this type of structural
ordering process may be referred to as “solidification” rather than “crystallization”. The concept
of solidification was first proposed by Fischer [57] to explain the crystallization process under large
supercoolings for typical solid polymers in which their crystalline structure is formed by cooperative
ordering of the stiffened segments that occurs by partial straightening of the coil sequences without a
long-range diffusion process. The molecular relaxation due to viscosity may be introduced by replacing
the Gaussian chain model with a Rouse–Bueche chain model [58,59] in which the bead friction is
taken into account. This will make it possible to treat the crystallization and/or solidification under a
non-perfect extension.
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