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Abstract: Conventional methods for seismic retrofitting of concrete columns include reinforcement
with steel plates or steel frame braces, as well as cross-sectional increments and in-filled walls.
However, these methods have some disadvantages, such as the increase in mass and the need for
precise construction. Fiber-reinforced polymer (FRP) sheets for seismic strengthening of concrete
columns using new light-weight composite materials, such as carbon fiber or glass fiber, have been
developed, have excellent durability and performance, and are being widely applied to overcome
the shortcomings of conventional seismic strengthening methods. Nonetheless, the FRP-sheet
reinforcement method also has some drawbacks, such as the need for prior surface treatment,
problems at joints, and relatively expensive material costs. In the current research, the structural and
material properties associated with a new method for seismic strengthening of concrete columns
using FRP were investigated. The new technique is a sprayed FRP system, achieved by mixing
chopped glass and carbon fibers with epoxy and vinyl ester resin in the open air and randomly
spraying the resulting mixture onto the uneven surface of the concrete columns. This paper reports
on the seismic resistance of reinforced concrete columns controlled by shear strengthening using
the sprayed FRP system. Five shear column specimens were designed, and then strengthened with
sprayed FRP by using different combinations of short carbon or glass fibers and epoxy or vinyl ester
resins. There was also a non-strengthened control specimen. Cyclic loading tests were carried out,
and the ultimate load carrying capacity and deformation were investigated, as well as hysteresis in
the lateral load-drift relationship. The results showed that shear strengths and deformation capacities
of shear columns strengthened using sprayed FRP improved markedly, compared with those of
the control column. The spraying FRP technique developed in this study can be practically and
effectively used for the seismic strengthening of existing concrete columns.
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1. Introduction

Rapid progress in seismic design has resulted in new reinforced concrete (RC) buildings with
improved prospects of satisfactory behavior during an earthquake. However, innovations in seismic
design methodologies have simultaneously created some doubts regarding the adequacy of the seismic
behavior of existing RC buildings, as shown by the 1995 Kobe Earthquake in Japan, the 1999 Chi-Chi
Earthquake in Taiwan, the 2008 Sichuan Earthquake in China, the 2010 Chile Earthquake, the 2011
Christchurch Earthquake in New Zealand, the 2012 Great East Japan Earthquake, and the 2013 Lushan
Earthquake in China.

Over the last two decades, rehabilitation procedures have been promoted, and many seismic
strengthening techniques have been developed to improve the seismic performance of existing concrete
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buildings, especially their columns [1-5]. Conventional methods for seismic retrofitting of concrete
columns include reinforcement with steel plates or steel frame braces, as well as cross-sectional
increments and in-filled walls. However, these methods have some disadvantages, such as the increase
in mass and the requirement for precise construction. Others methods, such as fiber-reinforced
polymer (FRP) sheets for seismic strengthening of concrete columns using new light-weight composite
materials, including carbon fiber and glass fiber, have excellent durability and performance and have
been used widely to overcome the shortcomings of conventional seismic strengthening methods [6-8].
Nonetheless, the FRP-sheet reinforcement method still has some drawbacks, such as the need for prior
surface treatment, problems at joints, and relatively expensive material costs. Recently, to overcome
the weakness of FRP, a new class of cement-based composites was introduced in the civil engineering
field [9-16]. Thus, there is a continuing need for the development of new strengthening techniques
with better workability and reduced costs for concrete columns.

In the current research, the structural effectiveness of a new type for seismic strengthening of
concrete columns with FRP is investigated. The proposed technique is a sprayed FRP system, achieved
by mixing chopped glass and carbon fibers with epoxy and vinyl ester resin in the open air and
randomly spraying the resulting mixture onto the uneven surface of the concrete columns. There
has been little research on sprayed FRP [17-23]. Furthermore, the use of sprayed FRP for seismic
strengthening on columns using epoxy or vinyl ester resins has not been fully investigated.

The main purpose of this study was to develop a new technique for seismic strengthening of
existing RC columns. This study first involved tensile testing of the composed material, with the length
of the chopped glass and carbon fibers as well as the mix ratio of the fibers, epoxy, and vinyl ester resin,
all serving as test variables to determine the optimum properties for sprayed FRP on concrete columns.
The optimum sprayed FRP, based on the results of this material testing, was used to strengthen RC
columns controlled by shear (shear columns). Five specimens of shear columns were prepared and
strengthened by sprayed FRP with different combinations of short carbon or glass fibers and epoxy or
vinyl ester resins, including a non-strengthened control specimen. Cyclic loading tests were carried
out, and the ultimate shear load carrying capacity and deformation were investigated, as well as
hysteresis in the lateral load-drift relationship.

Although vinyl ester resin is generally used for sprayed FRP because it hardens rapidly after
being applied, this study considered a mixture of stronger epoxy resin and vinyl ester resin to reduce
the viscosity of the spray, resulting in an improvement in the overall workability of the sprayed
FRP technique. Material properties and cyclic loading tests were conducted to assess the seismic
strengthening performance, as well as the practical design equation, of sprayed FRP on RC columns,
and to determine the optimal chopped fiber length and fiber-resin mix ratio to achieve the same
strength as one layer of the currently used FRP sheets.

2. Material Tests

2.1. Test Specimens

Sprayed FRP is a new research field with a limited body of experimental data, and no standard
for FRP material has yet been established. Thus, in this study the existing JIS K7054 [24] specification
for tensile testing of glass fiber-reinforced plastic was used. The strengthening material used for
the material test included roving-type glass fiber (ERS 2310-233/C; Central Glass Co., Yamaguchi,
Japan) [25], roving-type carbon fiber (TR330-50K; Mitsubishi Rayon Co., Tokyo, Japan) [26], as shown
in Figure 1, and epoxy and vinyl ester resins (Conclinic Co., Seoul, Korea) [27]. As can be seen in the
photograph in Figure 2, spraying equipment, together with guns for chopping carbon and glass fibers
(Binks Polycraft, Inc., Franklin Park, IL, USA) [28], were used in the experiments.
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Figure 1. Glass and carbon fibers used in the experiments: (a) Glass fiber and (b) carbon fiber;
(c) chopped glass and (d) carbon fibers.
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Figure 2. Equipment used for sprayed fiber-reinforced polymer (FRP): (a) Spraying equipment;
(b) Chop-sprayed guns for epoxy and (c) for vinyl ester resins; (d) Installation of roving type-fiber.

In our previous research [23], the material properties for repair and strengthening of RC beams
with the sprayed FRP system were investigated. The following material tests in this study were carried
out in more detail, based on the tests conducted in the previous research [23].

Experimental variables for the material test were the length of the chopped fibers and the mix
ratio of the resin and fibers, which was based on weight. Figure 3 depicts a fiber material specimen for
tensile testing, and Tables 1 and 2 list the material test variables for glass and carbon fibers, respectively.
Figure 4 shows specimen samples fabricated based on the experimental variables.
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Figure 3. Specimen detail of material test: the unit is mm and thickness is 4 mm.

Table 1. Material test variables for glass fiber.

Specimen Materials Length (mm)  Ratio of mixture (Weight)  Fiber (g)  Resin (g)
Gl14:VE=14 14 1:4 5.66 22.63
G28:VE=1:4 28 1:4 5.66 22.63
G38:VE=1:4 38 1:4 5.66 22.63
G56:VE = 1:4 56 1:4 5.66 22.63
G14:VE=13 14 1:3 7.30 21.89
G28:VE =13 X . 28 1:3 7.30 21.89
GagVE—13  Class fiber + Vinylester 38 13 7.30 21.89
G56:VE =1:3 56 1:3 7.30 21.89
G14:VE=1:2 14 1:2 10.27 20.54
G28:VE =1:2 28 1:2 10.27 20.54
G38:VE =1:2 38 1:2 10.27 20.54
G56:VE = 1:2 56 1:2 10.27 20.54
G14:E=1:3.0 14 1:3 7.35 22
G28:E=1:3.0 28 1:3 7.35 22
G38:E =1:3.0 38 1:3 7.35 22
Gb56:E =1:3.0 56 1:3 7.35 22
Gl14:E=1:25 14 1:2.5 8.60 21.5
G28:E=1:25 Glass fiber + Epox 28 1:2.5 8.60 21.5
G38:E=1:2.5 poxy 38 1:2.5 8.60 215
G56:E =1:2.5 56 1:2.5 8.60 21.5
G14E=1:2.0 14 1:2 10.35 20.7
G28:E=1:2.0 28 1:2 10.35 20.7
G38:E=1:2.0 38 1:2 10.35 20.7
G56:E =1:2.0 56 1:2 10.35 20.7

Table 2. Material test variables for carbon fiber.

Specimen Materials Length (mm)  Ratio of mixture (Weight)  Fiber (g)  Resin (g)
C28:VE=1:3 28 1:3 6.97 20.90
C38:VE=1:3 . . 38 1:3 6.97 20.90
CogVE=1p  Carbon fiber + Vinyl ester 28 12 9.63 19.26
C38:VE=1:2 38 1:2 9.63 19.26
C28.E=1:25 28 1:25 8.14 20.36
C38:E=1:25 . 38 1:2.5 8.14 20.36

C28:E =12 Carbon fiber + Epoxy 28 12 9.70 19.39

C38:E=1:2 38 1:2 9.70 19.39

Chopped glass fibers (lengths of 14 and 56 mm) were used as 24 test variables in different mix
ratios with vinyl ester or epoxy resins; 120 test specimens having five equal specimens for each variable
were fabricated. Eight variables for chopped carbon fibers (lengths of 28 and 38 mm) were set to test,
and 40 test specimens having five equal specimens for each variable were fabricated to evaluate the
construction workability and performance. In total 160 specimens of glass and carbon fibers were
fabricated and tested, respectively.
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The test specimens were cured for 7 days in the open air at 25 °C, after which they were assumed
to be completely hard. A strain gauge was installed at the center of each type of test specimen.
The tensile stress and strain was measured by a miniature 5-t universal test machine. Figure 5 shows
the experimental test setup. The test speed was set to speed type A (1 £+ 0.5 mm/min), as specified by

JIS K 7054 [24].

(© (d)

Figure 4. Specimen samples fabricated based on the experimental variables: (a) glass fiber + vinyl ester;
(b) glass fiber + epoxy; (c) carbon fiber + vinyl ester; and (d) carbon fiber + epoxy specimens.

R e ™ SR i

Figure 5. Loading apparatus for the material tests (universal test machine).
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2.2. Test Results

Tensile strength tests were carried out on five test specimens for each variable. The failure mode
in this material test was fracturing at both sides, 40 mm away from the center, and crushing of the joint
area. This study used the fracture mode at both sides as the final test result. The results of the material
tests, conducted to identify the optimum material properties for the sprayed FRP technique for seismic
strengthening, indicated that the tensile strength increased with the length of chopped fibers under the
condition that the quantity of the fibers in the mixture was greater than that of the resin. Based on the
performance and construction workability of the chopper gun, a fiber length of 38 mm and a resin mix
ratio of 1:2 by weight produced the best strength with the least fiber tangling. This material property
of the sprayed FRP was the same as estimated in previous research [23].

The stress—strain relationship for the optimum material composition, i.e., that which yielded the
best strength, is shown in Figure 6 in terms of the average value, together with the final fracture shapes.
The test specimen with chopped glass fiber had a good elastic deformation but was not as strong as
that made with chopped carbon fiber. Table 3 lists the results of the material tests and the spray design
thickness (f¢f) to be used. The design thickness was calculated from Equation (1) and compared with
the properties of the FRP sheets currently used to strengthen existing RC structures in Korea, shown in
Table 4, to compute the spray thickness yielding the same tensile strength as one layer of FRP sheet.

ot [FRP sheet] _
ot [sprayed FRP] s~ '

)

where o is the tensile strength, t¢, is the construction thickness of the FRP sheet, and ¢t is the design
thickness for the sprayed FRP.
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Figure 6. Stress—strain relationships for the optimum mixture and fracture shapes: (a) stress—strain
relationships of a fiber length of 38 mm and a resin mix ratio of 1:2 in terms of the average value; and
(b) final fracture shapes.

Table 3. Test results of the specimens including sprayed fiber-reinforced polymer (FRP)
design thickness.

Specimen Fiber Resin Strain *, ¢¢ (%) Stress *, oy (MPa) Design thickness (mm)
G38:VE =1:2 Glass VE 1.215 113.15 4.4
G38E=1:2 Glass Epoxy 1.036 119.31 42
C38:VE=1:2 Carbon VE 0.540 179.1 3.3

C38:E=1:2 Carbon Epoxy 0.550 198.1 3.0

* indicates the average value.
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Table 4. Material properties of the FRP sheets used to strengthen existing concrete structures in Korea.

Material Tensile strength Modulus of Construction thickness currently used to
(MPa) elasticity (MPa) strengthen RC structure in Korea (mm)
Glass fiber (CAF GL1000; 4
FRP Conclinic) [27] 500 2510 !
sheet -
type Carbon fiber (SK-N300; 3,550 235 x 105 0167

SK Chemicals) [29]

3. Structure Tests

3.1. Specimen Design and Test Variables

RC column specimens controlled by shear were designed and fabricated for cyclic loading tests.
Figure 7 shows details of the control shear column specimens. The purpose of these tests was to
determine the seismic behavior, that is, the ultimate shear and deformation capacities, as well as
hysteresis in the lateral load-drift relationship of shear columns, all of which were strengthened with
the sprayed FRP technique using the design thickness of material with an equivalent strength of one
FRP sheet.
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Figure 7. Details of the control specimens (dimensions are in mm).

The column specimens were designed according to the guidelines for load-carrying capacity
specified by the Japan Building Disaster Prevention Association (JBDPA) [30]. Table 5 gives the specific
details of each specimen tested. In total, five test shear failure-type column specimens were prepared.
They consisted of a control test specimen (non-strengthened, SC-N), a test specimen strengthened with
the sprayed FRP using a glass fiber and vinyl ester resin (5C-5-GV), a test specimen strengthened with
a glass fiber and epoxy resin (SC-S-GE), a test specimen strengthened with a carbon fiber and vinyl
ester resin (SC-5-CV), and a test specimen strengthened with a carbon fiber and epoxy resin (SC-S-CE).
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Table 5. Summary of the specimens.

Strengthening types
Specimens Column clear Column h/D Tensile reinforcement Shear reinforcement - -
4 height i, (mm)  depth D (mm) '° ratio p¢ (%) ratio ps (%) Fiber Resin
type type
SC-N 1,400 400 3.5 0.97 0.14 - -

Vinyl

SC-S-GV 1,400 400 3.5 0.97 0.14 Glass estor
SC-S-GE 1400 400 35 0.97 0.14 Glass Epoxy
SC-S-CV 1,400 400 35 0.97 0.14 Carbon ‘e’;’t‘eyrl
SC-S-CE 1,400 400 3.5 0.97 0.14 Carbon Epoxy

All specimens had identical dimensions and rebar arrangements. The cross-section of the columns
was 400 mm x 400 mm, and the ratio of column clear height to depth (h,/D) = 3.5. Each specimen
was prepared with a 12-D22-type SD40 main rebar, reinforced with shear reinforcement D10 steel bars
at 250-mm intervals. A sub, with high stiffness, was installed at the top of each specimen to provide
confinement for the columns. The average vertical load on columns was ~3 MPa, which is 10% of
the nominal compressive strength of the concrete. Table 6 lists the load-carrying capacity, calculated
according to the JBDPA [30].

Table 6. Load-carrying capacity of the columns calculated according to JBDPA [30].

Ultimate lateral

Specimens Axial force Ultimate flexural Shear force at ultimate Ultimate shear load-carrvine capaci
pect N (kN) strength Mu (kN-m) flexural failure Viny (kN) strength Vg, (kN) Vl'y (k%\l) pacity
u
SC-N 480.0 284.6 406.6 280.0 280.0

3.2. Material Properties of Concrete, Steel Rebar, and Resins

The normal compressive strength of the concrete was f. = 30 MPa, and cylindrical compression
tests resulted in a compressive strength of 33.0 + 1.2 MPa. The nominal tensile strength of the steel
reinforcing bar (rebar) was 400 MPa. Two different diameter rebars were used: D10 for the shear
reinforcement and D22 for the main rebar of the specimens (see Section 3.1 for further details).
The uniform building code [31] pertains to RC design in earthquake zones and specifies that the
ratio of the tensile stress to the yield stress of the rebar should not be less than 1.25, to ensure adequate
ductility under simulated earthquake loading. From tensile testing of the rebar, this ratio was 1.35
for the D10 rebar and 1.28 for the D22 rebar. The tensile strength of the steel rebar was measured
using a universal testing machine (UTM); there were obtained 509.9 + 1.15 MPa for the D10 rebar and
547.6 &+ 2.17 MPa for the D22 rebar, where the error margins correspond to the standard deviation of
the measurement results.

The sprayed FRP technique involves mixing chopped glass and carbon fibers with epoxy and
vinyl ester resin in the open air and randomly spraying the resulting mixture onto the uneven surface of
the concrete columns. The strengthening material for the sprayed FRP (Figure 1) was roving-type glass
fiber (ERS 2310-233/C; Central Glass Co.) [25], and roving-type carbon fiber (TR330-50K; Mitsubishi
Rayon Co.) [26]. Vinyl ester and epoxy resins (Conclinic Co.) [27], with 30 and 45 MPa of flexural
strength, were used. Table 7 lists the material properties of the vinyl ester and epoxy resins.

Table 7. Material properties of the vinyl ester and epoxy resins.

Classification Flexural Compressive Hardening Viscosity Density
strength (MPa) strength (MPa) time (h) (cps) (g/cm3)
Vinyl ester resin 30 90 24 250 1.04

Epoxy resin 45 100 24 630 1.10
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3.3. Fabrication of Test Specimens Strengthened by Sprayed FRP

To investigate the seismic resistance, column specimens were designed as controls to exhibit shear
failure modes (SC-N). The reinforcement ratios of the SC series were designed so that the structures
would exhibit shear failure modes. These structures were then modified, i.e., strengthened using the
sprayed FRP, according to different combinations of chopped glass or carbon fibers and vinyl ester or
epoxy resins, creating a total of five specimens on which cyclic loading experiments were carried out.
All of the specimens had identical dimensions, and a stub with a high stiffness value was installed at
the top of each specimen to provide confinement for the columns.

Figure 8 illustrates the construction details of the specimens. Following completion of the control
specimens, FRP were randomly sprayed on the uneven surface of the concrete columns by mixing
chopped glass or carbon fibers with epoxy or vinyl ester resins in the open air using the spraying
equipment, as previously shown in Figure 2. The spraying was continued to reach the design thickness
calculated in Table 3, which corresponds to the same tensile strength as one layer of FRP sheet, based
on the results of material tests. Finally, to enhance the bonding, the sprayed surfaces were treated
using a roll-type brush.

VANV mr
O F (v w )

M/flﬂa\\“

Figure 8. Preparation procedure of the specimens: (a) Installation of reinforcing bar; (b) control
specimens; (c) a specimen strengthened using the sprayed FRP with chopped glass fiber; (d) surface
treatment of sprayed glass fiber; (e) a specimen strengthened using the sprayed FRP with chopped
carbon fiber; (f) surface treatment of sprayed carbon fiber.

3.4. Test Procedure

The main purpose of the tests was to investigate the seismic resistance of the RC shear columns
strengthened using the sprayed FRP system in terms of the maximum load-carrying capacity,
deformation, and hysteresis of the lateral load-drift relationship. Figure 9 shows the test set-up for the
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cyclic loading test. The test set-up was originally developed by the Building Research Institute [32],
and has been frequently used to evaluate the seismic behavior of columns. Using this set-up, shear
force is effectively applied to the specimens because the action line of lateral load passes the center part
of the column specimen by the L-shaped steel frame installed at the top of the specimen. The column
was subjected to a constant vertical load of 480 kN during cyclic lateral loading using the two 1000 kN
actuators. The vertical load on the column was 3 MPa, which is 10% of the nominal compressive
strength of the concrete [32]. A 2000-kN actuator was used to apply the later load.

The load cycles were repeated three times at lateral rotation angles (R) of 0.08%, 0.1%, 0.12%,
0.15%, 0.2%, 0.25%, 0.31%, 0.4%, 0.49%, 1%, 1.24%, 1.54%, 2%, 3%, and 5%. The lateral rotation angle is
defined as the relative end displacement at each loading step divided by the clear length of column.
Table 8 lists the loading cycles applied to each specimen.

6000

wl [T Js

=)

200tonf Actuator Reaction wall
for lateral force

2800 ¢ 80mm

(b)

Figure 9. Experimental configuration for the cyclic loading tests: (a) photograph and (b) diagram views.

Table 8. Loading cycles.

Loading step 1 2 3 4 5 6 7 8

Loading cycles 1-3 4-6 79 10-12 13-15 16-18 19-21 22-24
Drift angle (R) (%) 0.08 0.1 0.12 0.15 0.2 0.25 0.31 0.4
Lateral drift  (mm) 1.12 1.4 1.68 21 2.8 3.5 4.34 5.6

Loading step 9 10 11 12 13 14 15 -
Loading cycles 25-27 28-30 31-33 34-36 37-39 4042 43-45 -
Drift angle (R) (%) 0.49 1 1.24 1.54 2 3 5 -

Lateral drift 4 (mm) 6.86 14.0 17.36  21.56 28.0 42.42 70 -
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4. Failure Sequence and Lateral Load-Drift Curves

The lateral load-carrying capacity of the control and the sprayed FRP-strengthened specimens
differed significantly. Generally, all specimens strengthened using the sprayed FRP technique exhibited
similar evidence of failure mode, with similar fracture appearance and lateral load-drift relationships.
The strengthened specimens, with complete hardening after spraying, showed a shear failure mode,
along with the simultaneous movement of the concrete and the reinforcement material, resulting
in the eventual fracture of both. In the following discussion, the authors focus on the fracture and
failure patterns of the reinforcement materials on the concrete surface in terms of the lateral drift and
load-drift relationships during the final stages of the test. Each loading step was identical during the
three loading cycles. Table 9 lists the results in terms of maximum shear strength and displacement
with positive and negative loads for the five specimens.

Table 9. The maximum strengths and drifts of the specimens.

Positive Negative
Specimen Fail d
i Vinax* (N) S (Mm) Vi  kN) Oy ® (mam) ailure mode

SC-N 325 14.38 314 14.48 Shear failure and collapse of the column
SC-S-GV 422 19.22 327 14.02
SC-S-GE 461 21.28 385 20.72 The simultaneous behavior of the
SC-S-CV 423 20'72 376 1 4'1 4 concrete and the reinforcement material
SC-S-CE 390 20.88 397 21.08 resulted in the eventual fracture of both

Abbreviations: same as Table 5. # Vax, maximum shear strength; b § nax, drift at the maximum point.

4.1. Non-Strengthened Control Specimen (SC-N)

Figure 10 shows the failure pattern of the SC-N specimen following the final cyclic load test, as
well as the lateral load-drift curve for the SC-N specimen, which was designed to exhibit shear failure
as shown previously in Table 6. The first observed crack occurred at a negative load of 19.6 kN, and a
small flexural crack appeared in the bottom column faces after three cycles at the fourth loading step
(R =0.15%). Cracking was not observed in the center of the column. Flexural cracks extended into the
middle of the column after step four. Following the seventh loading step (R = 0.31%), with a load of
both positive 225 kN and negative 219 kN, shear cracks were observed at the top faces of the columns,
and diagonal shear cracks appeared, some of which were more than 2 mm wide. When the applied
load reached 250 kN, at the ninth positive loading step (R = 0.46%), larger shear cracks were observed,
with increased widths. During the test, peeling failure due to shear forces from the concrete cover was
observed. This was likely the result of insufficient shear confinement.

Shear failure occurred at the bottom of the column following the application of a load of 100 kN,
with a lateral drift of 70.0 mm (R = 5%). The maximum load capacity of the column of the SC-N
specimen was a positive load of 325 kN, with a lateral drift of 14.38 mm (R = 1.03%; Table 9). The
maximum positive load capacity was similar to the maximum negative load capacity of 314 kN, with a
lateral drift of 14.48 mm.

4.2. Sprayed FRP-Strengthened Specimens Using Glass Fiber and Vinyl Ester Resin (SC-S-GV)

Figure 11a shows a photograph of the SC-5-GV specimen following the cyclic loading test, and
Figure 11b shows the lateral load-drift curves. The SC-S-GV specimen did not show surface cracks,
because the surface had the reinforcement material sprayed on it, with glass fiber and vinyl ester
resin. For the first time, a fracturing sound of the glass fiber in the inner part of reinforcement material
occurred in the top and bottom column faces following the first cycle of the tenth loading step (R = 1%).
At aload of 303.8 kN, with a positive loading after step 10, the specimen started fracturing after the
simultaneous movement of the reinforcement and the concrete at the edge of the bottom column face,
some of which were ~50 mm wide, resulting in eventual debonding.
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Figure 10. Non-strengthened control (SC-N) specimen following the cyclic loading test: (a) failure

mode and (b) load-displacement relationship.
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Figure 11. Specimen strengthened with the sprayed FRP using a glass fiber and vinyl ester resin

(5C-5-GV) following the cyclic loading test: (a) failure mode and (b) load-displacement relationship.

The maximum load capacity of the SC-5-GV specimen was a positive load of 422 kN, with a
lateral drift of 19.22 mm (R = 1.37%; Table 9, Figure 11). It should be noted that the concrete and the
reinforcement behaved together with complete hardening. The sprayed FRP system for the RC column
was therefore an effective reinforcement technique that could markedly increase the shear strength.

4.3. Sprayed FRP-Strengthened Specimen Using Glass Fiber and Epoxy Resin (SC-S-GE)

The SC-5-GE specimen was strengthened using the sprayed FRP with glass fiber and epoxy resin.
Surface cracks were not seen because of the externally sprayed glass fiber and epoxy resin. Figure 12a
shows the failure mode of the SC-5-GE specimen following the cyclic loading test, and Figure 12b
shows the lateral load-displacement curve. The lateral strength of the SC-S-GE specimen did not
increase at the 34th positive loading cycle (12th loading step, R = 1.54%) with a maximum load of

461 kN.
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Figure 12. Specimen strengthened with the sprayed FRP using a glass fiber and epoxy resin (SC-S-GE):
(a) failure mode and (b) load-displacement relationship.

Similar to the SC-5-GV specimen, a fracturing sound of the glass fiber in the inner part of the
reinforcement material occurred in the top and bottom column faces following the first negative
loading cycle of the 10th loading step (R = 1%). At a load of 323.4 kN, with a negative loading after
step 10, the specimen started fracturing at the edge in the middle of the column. When the applied
displacement reached 23 mm, after the 12th positive loading step (R = 1.54%), larger fractures were
observed, some of which were ~70 mm wide, and the fractures spread to the lower and upper ends of
the column specimen.

The concrete and the reinforcement, with complete hardening after spraying, behaved together in
the SC-S-GE column test specimen, as shown in Figure 12a, resulting in eventual fracture of both at the
14th step (R = 3%).

4.4. Sprayed FRP-Strengthened Specimen Using Carbon Fiber and Vinyl Resin (SC-S-CV)

Figure 13 shows the failure mode after the cyclic loading test, as well as the lateral
load-displacement curve for the SC-5-CV specimen. The SC-5-CV specimen was reinforced using
carbon fiber and vinyl ester resin. Surface cracks were not seen because of the sprayed materials; first,
a fracturing sound of the carbon fiber occurred in the top and bottom column faces at the first cycle of
the ninth loading step (R = 0.49%) with a load of 274 kN.

At aload of 390 kN, with a positive loading after step 11, the specimen started fracturing at the
edge of the bottom column faces. After the 12th positive loading step (R = 1.54%), larger fractures
were observed and they spread to the middle of the column, showing simultaneous movement of
the reinforcement and the concrete. Finally, at step 14, the reinforcement fractured and completely
debonded at the edge of the lower end of the column specimen. The lateral strength of the SC-5-CV
specimen did not increase at the 34th positive loading cycle (12th loading step, R = 1.54%) with a
maximum load of 423 kN.

4.5. Sprayed FRP-Strengthened Specimen Using Carbon Fiber and Epoxy Resin (SC-S-CE)

The SC-S-CE specimen was strengthened using the sprayed FRP with carbon fiber and epoxy resin.
Surface cracks were not seen because of the externally sprayed carbon fiber and epoxy resin. Figure 14
shows the failure mode following the cyclic loading test, as well as the lateral load-displacement curve.
The lateral strength of the SC-S-CE specimen did not increase at the 34th negative loading cycle (12th
loading step, R = 1.54%) with a load of 397 kN, which showed the maximum load.
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Figure 13. Specimen strengthened with the sprayed FRP using a carbon fiber and vinyl ester resin
(SC-S-CV) following the cyclic loading test: (a) failure mode and (b) load-displacement relationship.
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Figure 14. Specimen strengthened with the sprayed FRP using a carbon fiber and epoxy resin (SC-S-CE):
(a) failure mode and (b) load-displacement relationship.

A fracturing sound of the glass fiber in the inner part of the reinforcement material occurred in
the top and bottom column faces at the first negative loading cycle of the 10th loading step (R = 1%)
with a load of 333.2 kN.

After the load reached 333.2 kN, the specimen started fracturing at the edge of the middle of the
column. When the applied displacement reached 28 mm, after the 12th positive loading step (R = 2%),
larger fractures were observed, some of which were ~90 mm wide, and the fractures spread to the
lower and upper ends of the column specimen.

Similar to the other three strengthened specimens described above, the concrete and the
reinforcement, with complete hardening after spraying, behaved together in the SC-S5-CE column
specimen, as shown in Figure 14a, resulting in eventual fracture of both at the 15th step (R = 5%).

4.6. Strength and Deformation

Figure 15 shows positive envelope curves of the lateral load-displacement relationship up to
R =3% for the sprayed FRP-strengthened specimens (SC-S-GV, SC-S-GE, SC-5-CV, and SC-5-CE)
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with the non-strengthened control SC-N specimen for comparison with the strengthened specimens.
Table 10 lists maximum strength and deformation capacities. The larger of the maximum positive and
negative load values were used here (see Figures 10-14). The strength ratio (SR) is defined as the ratio
of maximum load Vax of specimens strengthened with the sprayed FRP to that of the SC-N control
specimen, and the displacement ratio (DR) indicates the ratio of displacement at the maximum point
dmax of the specimens strengthened with the sprayed FRP to that of the SC-N control specimen.

The maximum shear strength of specimens SC-5-GV was 422 kN, that of SC-S5-GE was 461 kN,
that of SC-S-CV was 423 kN, and that of SC-S-CE was 397 kN these represent an increase of a factor of
~1.22 to 1.42 (i.e., 22%—42% larger) relative to the SC-N control specimen, where the maximum shear
strength was 325 kN. Also, as illustrated in Figure 15, the specimens strengthened using the sprayed
FRP exhibited a reinforcement effect, in terms of shear strength, on average 1.31 times greater than
the control specimen. The displacement at the maximum strength point (5max) of the four specimens
strengthened using the sprayed FRP ranged from ~19.22 to 21.28 mm; this indicates a reinforcement
effect (i.e., deformation) on average 1.43 times larger than the SC-N control specimen (Figure 15).

The results regarding the strength and deformation capacities mentioned above show that the
sprayed FRP technique for RC columns controlled by shear was an effective retrofitting technique
to provide both increased strength and deformation, which is a useful approach for existing low-
to medium-rise RC buildings that were not designed and built to seismic specifications. Adequate
strength and deformation can reduce the inelastic earthquake response in terms of hysteretic energy

dissipation [33,34].
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Figure 15. Envelope of the load-displacement relations of the specimens.

Table 10. Summary of the strengths and deformation capacities of the test specimens.

. Maximum shear Displacement at the . Displacement
Specimen strength Vipax (kN) maximEm Point dmax (mm) Strength ratio (SR) ra}t)io (DR)
SC-N 325 14.38 1.00 (325/325) 1.00 (14.38/14.38)
SC-S-GV 422 (30%) 19.22 1.30 (422/325) 1.34 (19.22/14.38)
SC-S-GE 461 (42%) 21.28 1.42 (461/325) 1.48 (21.28/14.38)
SC-S-CV 423 (30%) 20.72 1.30 (423/325) 1.44 (20.72/14.38)
SC-S-CE 397 (22%) 21.08 1.22 (397/325) 1.47 (21.08/14.38)

5. Applicability of Shear Strengthening Design Equations for the FRP Sheet to Sprayed FRP

In Japan, the current standard equations for calculating the maximum shear strength capacity
according to the shear strengthening effects of the reinforcement materials (FRP sheet) include an
equation proposed by the JBDPA [35] (Equation (2)), and one specified by the Architectural Institute of
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Japan (AI]) [36] (Equation (3)), revised using the shear capacity equation for the truss-arch mechanism
on the basis of the effective strain of the FRP sheet based on a regression analysis of existing
experimental data. For practical use of FRP sheets according to Equation (3), especially, the Al]J
proposed a coefficient of shear strength reduction of « = 0.67, based on a regression analysis of existing
experimental data.

Both Equations (2) and (3) were modified by converting a parameter showing shear reinforcing
bars, when the FRP sheet reinforcement was considered, in the existing equations to calculate the
ultimate shear strength of the columns.

0.053P%23 (17.6
Vy = L 176+ fot) 0.845\/Psw X Ot + & X Ppoy % 0y +0.100 p x b x j @)

where

Py = tensile reinforcement ratio (percent)

fex = compressive strength of concrete (N/mm?)
M/Q = shear span length; default value = h,/2
ho = clear height

d = effective depth of the column

Pgy, = shear reinforcement ratio of shear reinforcing bars
osw = yield strength of the shear reinforcing bars (N/mm?)
o = coefficient of shear strength reduction
Py, = shear reinforcement ratio of FRP sheets
Osw = tensile strength of FRP sheets (N/ mm?)
0y = axial stress in the column (N/mm?)

b = column width (mm)

j = distance between the centroids of the tension and compression forces
Vi =bxjp x (Psw X Osw + 0t X Pryy % O'fw) x cotp + tand- (1 —PB) x v x fy x bx D/2 3)
where

jt = distance between the centroids of the main reinforcing bars

cotd : min {Z.O,jt/ (D x tan®) ,\/v X ek — 1.0}

Psw X Osw + & X Ppy X Oy
¢ = compressive inner angle of concrete in truss mechanism

D = column depth

tan® = 1/ (ho/D)* +1—hy/D

v: effective coefficient of compressive strength of concrete (v = 0.7 — f/200)
B = {(1 + o) - (Psw X Gs + 0 X Ppy cfw)}/(u % fu)

Kang [37] conducted a comparison study of theoretical values computed from existing equations,
expressed in Equations (2) and (3), and experimental test values of column specimens reinforced using
FRP sheets. The results indicated that the equation proposed by the JBDPA [35] having a coefficient
of strength reduction of & = 1.0 was the most reliable with an average comparison correlation of 0.85
(standard deviation of 0.09), compared with the AlJ equation calculated using a coefficient of strength
reduction of « = 0.67.

This study proposes coefficients of shear strength reduction (x), using Equations (4) and (5) of the
sprayed FRP strengthening technique based on a comparison between theoretical values calculated
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from the two existing equations and experimental test results of the column specimens strengthened
using the sprayed FRP.
2

0.053P%23 (17.6
Vtes? — L~ (7.6 + fai) —0.100 p /0.845 | — Py X Osw
bxj M
5. to12
o = Qx ()

wa X Ofw

where
«q = coefficient of shear strength reduction based on Equation (2), specified by the JBDPA [35].
Viest = experimental test results of the column specimens strengthened using sprayed FRP (Table 9).

{Vtest—tanGX(1—[5)><v><fck><b><D/2

o — b x ji x cotd = Fow x Gsw} 5)
2= wa X Ofw

where

g = coefficient of shear strength reduction based on Equation (3), modified by the AIJ [36], using
the arch-truss mechanism equation for calculating shear strength capacity.

To use Equations (4) and (5) with sprayed FRP, the properties of the mixture of chopped fibers
and resins was taken into account using the value of reinforcement design thickness (ty) for P,
and the reinforcement strength obtained from the material test (o;) for of, (Table 3), respectively.
When the shear strengthening capacity of sprayed FRP was computed under these conditions without
considering the coefficient of shear strength reduction, the shear capacity could not be estimated
appropriately because the computation is based on the assumption that the sprayed FRP behaves in
tandem with the member.

Because the actual behavior of sprayed FRP results in fracturing and debonding failure at the
region of maximum load, there is a need for a coefficient of shear strength reduction of the design
strength for sprayed FRP, just as there is for the existing FRP sheet strengthening method [35,36,38].
Thus, the experimental values of Table 10 and the computed values from Equations (2) and (3) were
compared to propose a coefficient of shear strength reduction (x; and «;) for sprayed FRP, as shown
in Equations (4) and (5).

Table 11 lists coefficients of shear strength reduction («;) calculated using Equation (4)—which
was derived using Equation (2), proposed by the JBDPA [35]—and those (x;) calculated using
Equation (5), which was derived based on Equation (3), proposed by the AlJ [36]. As indicated
in Table 11, the coefficients of strength reduction («1) for the sprayed FRP system in Equation (4)
(JBDPA) were distributed in the range of 0.93-2.25, and the average value was 1.51. The coefficients of
strength reduction (x;) in Equation (5) (Al]) had a lower limit value of 0.35, an upper limit value of
0.48, and an average value of 0.41.

Table 12 and Figure 16 show the relationship between the test values of Vax (test) and the
theoretical values of Vax (calculation), which were computed by applying each of the values for
o (JBDPA), the proposed coefficient of shear strength reduction in Table 11: «; = 1.51 (average «;
value); the minimum value of o; = 0.93, and the maximum value of & = 2.25, together with o; = 1.0,
as proposed by Kang [37]. Table 13 and Figure 17 show the relationship between the test values of
Vmax (test) and the theoretical values of V max (calculation), which were computed by applying each
of the values for o (Al]), the proposed coefficient of shear strength reduction in Table 11: «; = 0.41
(average «; value); the minimum value of &, = 0.35, and the maximum value of «; = 0.48, together
with oy = 0.67, as proposed by the AlJ [36].
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Table 11. Proposed coefficients of strength reduction.

18 of 21

Coefficients of strength reduction

Specimen o (Equation (4)) (Japan Building &y (Equation (5)) ({\'rchitectural Institute
Disaster Prevention Association) [35] of Japan; modified based on the
Arch-Truss mechanism equation) [36]
SC-N - -
SC-S-GV 1.54 0.41
SC-S-GE 2.25 0.48
SC-S-CV 1.31 0.38
SC-S-CE 0.93 0.35
Average 1.51 0.41

Table 12. Comparison of Viax (test) and Vmayx (calculation) based on coefficients of strength reduction.

Vmax [Calculation] (the JBDPA) [35] (kN)

Vmax [Test]

Specimen (kN) o =1.0 a; = 0.93 o =15 o =225
(Kang [37]) (Minimum) (Average) (Maximum)
SC-N 325 280
SC-5-GV 422 385 380 420 460
SC-5-GE 461 386 381 421 462
SC-S-CV 423 399 394 438 483
SC-S-CE 397 404 397 442 488

Table 13. Comparison of Viax (test) and Vmayx (calculation) based on coefficients of strength reduction.

Vmax [Calculation] (the AIJ Modified Based on the

. Vo [test] Arch-Truss mechanism equation) [36] (kN)
Specimen max
(kN) xp = 0.35 xp = 041 ap = 0.48 oy = 0.67
(Minimum)  (Average) (Maximum)  (AIJ [35])
SC-N 325 303
SC-S-GV 422 469 498 531 622
SC-S-GE 461 470 499 533 624
SC-S-CV 423 502 536 576 684
SC-S-CE 397 631 663 690 774
500
= ,=0.93[min.]
=1.00
[JBDPA, 18]
ma © o o=1.50[ave.]
= %7 a,=2.25[max.]
Z 1
<
? up BA o N ¥
x
©
g 400 - \ o %
350 T T T T T T T
350 400 450 500 550

Vmax [calculation] (kN)

Figure 16. Comparison of Vmax (test) and Vmax (calculation) based on coefficients of strength

reduction («;).
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Test results using the sprayed FRP technique against shear failure in columns indicated that the
coefficient of shear strength reduction () in the existing equation specified by the AlJ [36] tended
to over-estimate the value of Vax (test) compared with oy (JBDPA) [35]. Considering the safety
of seismic capacity for the shear strengthening of columns, in the sprayed FRP retrofitting method,
the shear strength equation calculated using o1 = 0.93 (specified by the JBDPA) is the most practical
theoretical equation.

500

® 0,=0.35[min.]
A 0,=0.41[ave]
© «,=0.48[max]
A
" © *l % 0=067[A.19]
450
z
<
E m & A O * *
<
£
£ 4004 N %
350

-1 r r + T + T - T _ T * T * T 7
350 400 450 500 550 600 650 700 750 800
Vmax [calculation] (kN)

Figure 17. Comparison of Vmax (test) and Vmax (calculation) based on coefficients of strength
reduction (xp).

6. Concluding Remarks

Material tests and structural tests were conducted in this study to determine the optimum
properties of sprayed FRP materials for construction workability and field applicability. The material
property values to achieve strength equivalent to one layer of existing FRP sheet were determined by
the material tests. The results of the material tests were used in cyclic loading structural tests on shear
column specimens to investigate the seismic strengthening performance of sprayed FRP, including the
maximum load-carrying capacity, deformation, and hysteresis of the lateral load-drift relationship.

Finally, the possibility of using the existing FRP sheet strengthening design equations for sprayed
FRP calculations was investigated, and a seismic strengthening design equation for sprayed FRP
reinforcement was proposed. The results of this study are summarized below.

(1) The optimum material was found to be 38-mm chopped glass and carbon fibers mixed with resin
in a ratio of 1:2. The optimum design thickness for sprayed FRP was 4.4 mm, 4.2 mm and 4.0 mm
respectively for chopped glass fiber, vinyl ester resin, and epoxy resin, 3.0 mm for chopped
carbon fiber.

(2) The maximum shear strength of specimens strengthened using the sprayed FRP exhibited a
reinforcement effect, in terms of shear strength, on average 1.31 (i.e., 31% larger) times greater
than the control specimen. The displacement at the maximum strength point of four specimens
strengthened using sprayed FRP ranged from ~19.22 to 21.28 mm,; this indicates a reinforcement
effect (i.e., deformation) on average 1.43 times larger than the control specimen.

(3) Existing FRP sheet design equations are applicable to column test specimens. Considering the
safety of seismic capacity for the shear strengthening of columns, in the sprayed FRP retrofitting
method the shear strength equation calculating using «; = 0.93, as specified by the JBDPA, is the
most practical theoretical equation.

(4) The proposed sprayed FRP technique for RC columns controlled by shear is an effective
retrofitting technique providing both increased strength and deformation, which is a useful
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approach for existing low- to medium-rise RC buildings that are not designed according to the
seismic specifications. For further research, the influence of discrepancies between the design
thickness and the actual construction thickness and debonding mechanism of the strengthening
material and concrete should be examined.
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