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Abstract: Natural polymers, such as alginate and gelatin, can be used to produce scaffolds for tissue
engineering applications; but, their mechanical and biochemical performance should be improved. A
possible solution to obtain this result, is the generation of multi-component scaffolds, by blending
two or more polymers. One way to realize it, is the formation of an interpenetrating polymer network
(IPN). In this work, the interpenetration of alginate and gelatin hydrogels has been successfully
obtained and preserved by supercritical CO2 (SC-CO2) drying performed at 200 bar and 35 ˝C, using
different blend compositions: from alginate/gelatin = 20:80 v/v to alginate/gelatin = 80:20 v/v. The
process allowed modulation of morphology and mechanical properties of these blends. The overall
result was made possible by the supercritical drying process that, working at zero surface tension,
allows preserving the hydrogels nanostructure in the corresponding aerogels.
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1. Introduction

Tissue-engineering (TE) involves three major components: (1) cells, (2) scaffold, and (3) tissue
formation environment. Scaffold should mime the natural features of the tissue extracellular matrix
(ECM) at macro, micro, and nanoscale and should provide an initial biomechanical profile for the
replaced tissue, allowing cells to develop their functions in a simulated environment as they would
in vivo [1]. The most complex characteristic that should be embedded in the scaffold is nanoscale
feature due to the difficulty in manipulating the matter at nanoscale level.

Scaffolds can be obtained from natural or synthetic polymers. Natural polymers, such as
collagen [2,3], gelatin [4,5], fibrin [6,7], chitosan [8,9], and alginate [10,11], have gained large interest
for TE applications, due to their biocompatibility, capacity to adsorb large quantities of water, and
ability to assume morphologies similar to the ECM and biodegradability [12–14].

Alginate and gelatin are among the most used natural polymers in TE applications. Alginate
is a negatively charged linear polysaccharide composed of 1,4-linked β-D-mannuronate (M) and
1,4-linked α-L-guluronate (G) residues. G-blocks of alginate can generate an “egg box”-like structure
hydrogel in contact with divalent cations, such as Ca2+, Ba2+, and Sr2+ [15]. It is largely used in the
biomedical field, due to its biodegradability, biocompatibility, hydrophilicity, and low toxicity [16].
Nevertheless, its negative charge inhibits protein adsorption and reduces cellular adhesion. For
this reason, bioactive molecules such as arginine-glycine-aspartic acid (RGD) and fibronectin were
proposed for the immobilization within the hydrogel, to induce cell adhesion [17,18].

Gelatin is formed by denatured collagen; it has relatively low antigenicity compared to its
precursor and maintains signals that may promote cell adhesion, differentiation, and proliferation,
such as the RGD sequence of collagen [19]. It is largely soluble in aqueous solutions; therefore,
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it is generally crosslinked with glutaraldehyde (GTA) to increase both its thermal and mechanical
stability [20,21]; but, GTA is cytotoxic and it may be desirable to minimize its use or to try to reduce its
unreacted residues after processing [22].

Alginate and gelatin are frequently prepared in the form of hydrogels, since gels can reproduce
a nanostructured fibrous network, similar to native ECM and have been proposed in soft tissue
applications, or dried by lyophilization, for hard tissues application. In this last case, the scaffold
can collapse, due to the surface tension exerted by the solvent on the polymer matrix during the
drying process. Moreover, they are generally characterized by poor mechanical properties and
could not have the biological active groups required to interact with cells. Cheng et al. prepared
alginate-based aerogels by ionotropic gelation and freeze drying, using N,N1-methylenebisacrylamide
and carboxy-methylcellulose as reinforcing agents. The final aerogels showed an irregular and closed
morphology [23]. Yamamoto et al. obtained alginate scaffolds with aligned micropores by freeze
drying [24]. Wu et al. prepared aligned porous scaffolds of gelatin by unidirectional freeze-drying
method [4]. Zhang et al. produced 3-D macroporous gelatin/hyaluronic acid hybrid scaffolds using
the same technique [25].

A possible solution to improve mechanical and biochemical performance of alginate and gelatin
is the generation of multi-component scaffolds, obtained by blending the two polymers. One way to
realize it is the formation of an interpenetrating polymer network (IPN) between alginate and gelatin.
In particular, a non-covalent IPN could be realized, in which gelatin and alginate are crosslinked and
partially interlocked on a molecular scale, but not covalently bonded to each other [26]. It can give the
opportunity of modulating architectural, mechanical, and biological properties of the blends. However,
the production of polymer blends can, in principle, be complex due to compatibility problems among
the polymeric chains that could give, for example, phase separation during the blend formation [27,28].

To improve alginate mechanical resistance, some authors prepared alginate blends with other
polymers [29,30] or inorganic substances [31,32]. Dahlmann et al. developed an hydrogelation system,
based on alginate and hyaluronic acid, in which aldehyde and hydrazide-derivatives enabled covalent
hydrazone cross-linking of polysaccharides in the presence of myocytes [33]. Liu et al. produced
hydrogels based on dextran modified with methacrylate and aldehyde groups mixed with gelatin,
using freeze-drying. The incorporation of gelatin into the hydrogels provided cell adhesive and
enzymatically degradable properties and significantly increased the compressive modulus and strength
of the polymeric system [34]. Gautam et al. used electrospinning to prepare composite nanofibrous
tissue engineering-scaffolds consisting of polycaprolactone and gelatin. They demonstrated cell
adhesion to the composite scaffold and the expression of the characteristic cell morphologies indicated
the suitability of the scaffold for TE applications [35]. Rosellini et al. blended alginate and gelatin, to
obtain films for myocardial tissue engineering, produced by solvent evaporation. They showed the
presence of interactions among the functional groups of the two biopolymers [36]. However, until
now, morphological analyses only in rare cases have been performed and highlighted the absence
of an organization at nanoscale of the polymeric construct, probably due to the processes used for
sample production.

One of the techniques used for biopolymer aerogel production is freeze drying. Various studies on
different polymer systems have been performed using this technique; however, the authors generally
obtained microporous aerogels that did not exhibit a sub-nanostructure. It is well known, instead, that
this last feature is relevant for cell adhesion on the artificial support in tissue engineering applications.
The scientific literature contains several works on alginate and gelatin scaffolds produced by freeze
drying. However, also in these cases, aerogels characterized only by a microporous morphology
have been obtained [4,23–25]. Generally speaking, freeze drying leads to formation of microporous
structures and pore size mainly depending on freezing temperature, solute concentration, and kind of
solvent. In particular, when an aqueous solution is frozen at an extremely low temperature (´196 ˝C)
the rapid formation of ice nuclei leads to a growth of small ice crystals; but, in any case, not of
nanometric dimension [37].
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Processes assisted by supercritical CO2 (SC-CO2) have been proposed as alternative to traditional
ones, for example for micro and nanoparticle production [38–41], extraction [42], and membrane
preparation [43,44]. In particular, supercritical gel drying has been demonstrated to be an efficient
technique to obtain aerogels that maintain their native morphology at micro and nanoscale, and
present very small organic solvent residues in the final structure, making it safe for biomedical
applications [22,45]. For example, García-González et al. reviewed polysaccharide aerogel production
by SC-CO2 for biomedical and pharmaceutical applications [46], whereas Mikkonen et al. described
polysaccharide aerogels as advanced food materials [47]. According to Ulker et al., both inorganic and
organic aerogels present a huge potential in the field of drug delivery. In particular, depending on the
structural properties, the adsorption or release of the active compounds can be obtained by tailoring
the synthesis conditions [48].

These results are possible, because these processes are carried out at negligible surface tension and
the supercritical mixture (solvent + CO2) shows a large mass transfer coefficient. These characteristics,
in the case of gels, avoid structure collapse and the solvent is rapidly extracted from the polymeric
matrix [49].

Therefore, the aim of this work is to produce alginate/gelatin (A/G) IPN aerogels by supercritical
gel drying to evaluate if, using this technique, it is possible to obtain a good interpenetration of the
two polymers at nanometric level, to preserve gels nanostructure and to analyze the mechanical
performance of the blend. The obtained structures have been characterized by Field Emission Scanning
Electron Microscopy (FESEM), Differential Scanning Calorimetry (DSC), Energy Dispersive X-ray
spectroscopy (EDX). UV/Vis spectrophotometry has been used to measure GTA residues. Mechanical
tests on A/G aerogels have also been performed.

2. Materials and Methods

PROTANAL LF 10/60 was termed high-G alginate, with M/G = 25/75 and was kindly
provided by FMC BioPolymer (Milano, Italy); gelatin, type B from bovine skin, Calcium Chloride,
Glutaraldehyde solution 25% w/w in water and Ethanol (purity > 99.8%) were purchased from
Sigma-Aldrich (Milano, Italy); Carbon Dioxide (99% purity) was bought from Morlando Group S.R.L.
(Sant’Antimo (NA), Italy). Distilled water was produced using a laboratory water distiller supplied by
ISECO (St. Marcel (AO), Italy). All materials were used as received.

2.1. Preparation of Alginate/Gelatin Aerogels

2.1.1. Experimental Procedure to Produce Alginate Aerogel

To obtain an alginate hydrogel, solutions of alginate in water, at 5% w/w concentration, were
prepared and stirred for 24 h at 200 rpm. In particular, 0.5 g of alginate (Protanal LF 10/60) were
dissolved in 10.0 mL of distilled water. Then, samples were produced by pouring the solution into
cylindrical molds of 2 cm diameter and thickness of about 2 mm.

The samples were immersed in a 50 mL coagulation bath of CaCl2 (2.63 g, 5% in water) for 24 h to
promote gelation. During this part of the process, sodium alginate was converted to calcium alginate.
Then the hydrogels were removed from the molds and repeatedly washed with distilled water to
eliminate Ca2+ residues. Subsequently, they were treated using a multistage solvent exchange in
baths containing water and ethanol, with increasing concentrations of ethanol (10, 30, 50, 70, 90, and
100% v/v), 30 min each. Indeed, a water elimination step was required to perform the supercritical
process, since CO2 and water, at the usual operative conditions, show a very reduced affinity [50].

2.1.2. Experimental Procedure to Produce Gelatin Aerogel

A gelatin (Type B) solution 5% w/w in distilled water was prepared by dissolving 0.5 g of gelatin
in 10.0 mL of water. The solution was stirred for 24 h at 200 rpm. Then, we produced samples by
pouring the solution into cylindrical molds of 2 cm diameter and thickness of about 2 mm. The samples
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were immersed in a coagulation bath of 30 mL GTA (aqueous GTA, 25% w/w) 8% v/v in water, for 24 h
in the dark, to obtain gelatin crosslinking and gelation. The obtained hydrogels were, then removed
from the molds and repeatedly rinsed with distilled water to remove GTA residues. Then, these
hydrogels also underwent a process of multistage solvent exchange in baths of water and ethanol
with increasing concentrations of ethanol (10, 30, 50, 70, 90, and 100% v/v), 30 min each, progressively
eliminating water.

2.1.3. Experimental Procedure to Produce Alginate/Gelatin Aerogel

Two aqueous solutions of alginate (5% w/w) and gelatin (5% w/w) were prepared, as described
before. The solutions were stirred for 24 h at 200 rpm. Then, the solutions of alginate and gelatin
were mixed in three different ratios by volume: A/G—20/80, 50/50, 80/20. The mixtures were
stirred for 1 h and, then, poured into cylindrical molds of 2 cm diameter and thickness of about 2 mm.
Each sample was immersed in 25 mL of CaCl2 at 5% w/w in water for 24 h, to promote Alginate gel
formation. The obtained hydrogels were, then, repeatedly washed with distilled water to remove Ca2+

residues. Afterwards, samples were immersed in 30 mL of an aqueous solution of GTA (aqueous GTA,
25% w/w) 8% v/v to induce the crosslinking of gelatin. A/G hydrogels were rinsed three times in
distilled water to remove excess GTA and underwent to the same process of multistage exchange of
the solvent used for single polymer hydrogels.

2.2. Supercritical Gel Drying

A, G and A/G aerogels were prepared using a homemade laboratory plant that consists of
a 316 stainless steel cylindrical high-pressure vessel with an internal volume of 200 mL, equipped with
a high pressure pump (mod. LDB1, Lewa, Leonberg, Germany) used to deliver SC-CO2. Pressure in
the vessel was measured by a test gauge (mod. MP1, Lecco, Italy) and regulated using a micrometering
valve (mod. 1335G4Y, Hoke, Spartanburg, SC, USA). Temperature was regulated using PID controllers
(mod. 305, Corsico (MI), Italy). At the exit of the vessel, a rotameter (mod. D6, ASA, Sesto San Giovanni
(MI), Italy) was used to measure CO2 flow rate.

The vessel was filled with SC-CO2; then, when the required pressure and temperature were
obtained (200 bar and 35 ˝C), drying was performed using a SC-CO2 flow rate of about 1 kg/h
for 5 or 8 h. A depressurization time of about 30 min was used to bring the system back to
atmospheric pressure.

2.3. Analytical Methods

Field Emission Scanning Electron Microscopy (FESEM) was performed on aerogels previously
cryo-fractured using liquid Nitrogen; then, they were sputter coated with Gold (Agar Auto Sputter
Coater mod. 108 A, Stansted, UK) at 30 mA for 160 s and analyzed using a FESEM (mod. LEO 1525,
Carl Zeiss SMT AG, Oberkochen, Germany) to determine the aerogel morphology and to measure the
mean diameter of the nanofibers forming the structure.

Porosity and density measurements were performed on aerogels using an Ultrapycnometer
1000 (Quantachrome instruments, Boynton Beach, FL, USA). Five samples for each process condition
were analyzed. Moreover, Brunauer-Emmett-Teller (BET) specific surface area was determined by
N2 physisorption using an AutoPore IV 9500 V 1.06 by European Micromeritics Analysis Services
(Peschiera Borromeo, Milan, Italy). 0.1–0.2 g of aerogel sample was first degassed at 115 ˝C for 4 h
prior to the analysis followed by N2 adsorption at ´196 ˝C. BET analysis was carried out at a relative
vapor pressure of 0.01–0.3 bar at ´196 ˝C.

Differential Scanning Calorimetry analysis (DSC 30 Mettler, Toledo, Spain) was carried out to
identify any change in the thermograms of pure substances compared to A/G aerogels. The analysis
was performed in the temperature range between 25 and 400 ˝C, with a heating rate of 10 ˝C/min,
using Nitrogen as the inert gas.
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Aerogels were cryo-fractured using liquid Nitrogen and, then, sputter coated with Chromium
(EMITECH K575X peltier cooled); then, they were analyzed by Energy Dispersive X-ray spectroscopy
(EDX INCA Energy 350, Oxford Instruments, Gometz la Ville, France) to control the dispersion of
the materials in the aerogel matrix; Calcium atoms were selected for alginate and Nitrogen atoms
for gelatin.

Free GTA residues released from A/G aerogel were measured in continuous using a Varian (mod.
Cary 50) UV/Vis spectrophotometer, reading the absorbance of the sample at 234 nm (the wavelength
at which GTA shows maximum absorption) at room temperature.

The aerogel was immersed in a Phosphate Buffer Solution (PBS) at pH = 7.4 and glycine 0.1 M
(PBS:Gly = 0.43). We used a solution of PBS at pH = 7.4 to simulate the body environment during
GTA release tests from the aerogel. Moreover, we added glycine to the system since PBS tends to
precipitate in solid crystals in the release medium and this phenomenon could negatively influence
the analysis [20].

Mechanical properties of the aerogels were measured using an INSTRON 4301 (Instron Int. Ltd,
High Wycombe, UK). Five rectangular samples for each process condition with a length of 35 mm and
a mean thickness of 1.5 mm were specifically prepared following the procedure reported in Section 2.1
and were analyzed using a 100 N load cell, at 1.5 mm/min and 23 ˝C. All samples were immersed in
water for about 20 h before the test. The Young modulus is defined as the initial linear portion of the
stress-strain curve. Five specimens were tested for each sample.

3. Results and Discussion

3.1. Alginate/Gelatin Aerogel Morphology

Scaffold morphology is one of the key characteristics that influences cells adhesion, migration,
differentiation, and proliferation [51]. In particular, the organization at nanoscale is required for cell
attachment and guidance on the structure; whereas, microporosity is useful to allow the transport of
nutrients to the cells [52]. The nanostructure can be naturally introduced in the scaffold if the polymer
has the capacity to form a gel. Indeed, in TE application proposals, hydrogels are largely used, due to
their similarity to the ECM of the tissue, biocompatibility, and capacity to absorb water [12]. First of
all, we analyzed the volume shrinkage of the samples from the stating hydrogel to the final aerogel; all
the samples shrank of about 5%–10% during the multistage exchange of the solvent. On the contrary,
during supercritical gel drying, which is performed at zero surface tension, the volume remained
substantially constant.

Aerogels formed by A and G alone and their blends, were observed by FESEM to analyze their
structure. In Figure 1, pictures of G aerogel and A aerogel at 5% w/w are reported, for example.
G aerogels (Figure 1a) are characterized by a nanofibrous structure, where nanofibers with a mean
diameter lower than 100 nm are detectable and form a complex network. Alginate aerogels (Figure 1b)
showed a nanoporous homogeneous structure, with a mean pore size of about 100 nm. In both cases,
the nanoscale morphology has been preserved, G nanofibers being the most suitable for cell cultivation,
since they are more similar to natural ECM [53].

Then, A/G aerogels morphology was observed. In Figure 2a–c, examples of FESEM images of
A/G 20/80% v/v, 50/50% v/v, and 80/20% v/v are shown. The first observation is that A/G aerogels
morphology changes with the relative proportion of the two polymers. In particular, it evolves
from nanofibrous to nanoporous by increasing alginate percentage in the starting gel, according
to the sequence A/G 20/80, 50/50, 80/20. Summarizing, the resulting morphology is similar to
that of the polymer contained in the higher percentage and is substantially a hybrid between that
of the two polymers when equal percentages are used. As a result, it is possible to select the
scaffold structure by changing the polymers’ relative proportions. The supercritical process does
not modify gel organization and the avoidance of gel collapse during drying is confirmed also for
A/G blends. An explanation of the success of SC-CO2 drying is that the operative conditions adopted
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(i.e., 200 bar, 35 ˝C) were properly selected to allow the formation of a supercritical mixture
(Ethanol + CO2), characterized by a negligible surface tension.
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Porosity analyses were also performed. We verified that the produced aerogels were highly
porous at all polymer compositions tested. In the second column of Table 1, the measured porosity
are reported: G aerogel presents a porosity of 95%; whereas A aerogel shows a porosity of 85%. The
two-component aerogels present a porosity ranging between about 92% and 88%; i.e., increasing the
amount of alginate, the porosity decreases due to the influence of the nanoporous structure that, as
expected, is “more compact” that the nanofibrous one. We also analyzed the bulk and skeletal density
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of the produced aerogels; we found that bulk density varied from 0.016 g/cm3 for pure G aerogels,
to 0.026 g/cm3 for A/G 20/80% v/v aerogels, to 0.041 g/cm3 for A/G 80/20% v/v aerogels, and to
0.055 g/cm3 for A aerogels. The skeletal density varied from 0.315 g/cm3 for pure G aerogels,
to 0.327 g/cm3 for A/G 20/80% v/v aerogels, to 0.342 g/cm3 for A/G 80/20% v/v aerogels and to
0.366 g/cm3 for A aerogels. The aerogels presented similar values of specific surface area ranging
between 227 m2/g for G aerogel, to 248 m2/g for A/G 50/50 v/v aerogels and to 271 m2/g for
A aerogels. This last aspect is relevant for potential TE applications: indeed, a high surface area is
necessary to allow extensive cell adhesion.

Table 1. Porosity values, GTA concentration detected, bulk and skeletal density, and specific surface
area for A/G aerogels and pure A and G aerogels, produced at 200 bar, 35 ˝C for 5 or 8 h SC-drying.

Aerogel Porosity (%) CGTAmax@5 h
(ppm)

CGTAmax@8 h
(ppm)

Bulk density
(g/cm3)

Skeletal density
(g/cm3)

Specific surface
area (m2/g)

G 95.0 ˘ 3.2 4.2 1.4 0.016 0.315 227
A/G 20/80% v/v 92.1 ˘ 3.1 6.6 2.8 0.026 0.327 235
A/G 50/50% v/v 89.9 ˘ 2.8 9.5 5.1 0.034 0.335 248
A/G 80/20% v/v 88.3 ˘ 2.7 21.5 6.8 0.041 0.342 260

A 84.8 ˘ 1.9 – – 0.055 0.366 271

3.2. GTA Elimination from Alginate/Gelatin Aerogels

Gelatin crosslinking with GTA is aimed at reducing gelatin solubility and, thus, its fast degradation
in an aqueous environment and to improve its mechanical properties [20]. However, GTA is lethal for
living cells; indeed, according to the literature, content of about 3 ppm GTA is enough to block cell
reproduction [54]. Therefore, to ascertain GTA content in the produced aerogels, we performed GTA
release tests by UV/Vis spectrophotometry.

We performed GTA release analysis reporting the corresponding curves on the same diagram
in Figure 3, where normalized GTA concentrations (i.e., GTA concentration released at the time t, Ct,
divided by the maximum GTA concentration detected for that sample, C8) versus time are shown. It
evidences that the release kinetics depend on the kind of aerogel. We can observe that, in all cases, the
slope of the curves, i.e. the initial release rate, is different. In particular, to release 50% GTA: 1.2, 2.8 and
3.6 h are required, for the aerogels G, A/G 80/20 and A/G 20/80, respectively. This result depends on
both the quantity of free (unreacted) GTA and on the aerogels’ morphology. This last indication can be
explained considering that nanofibrous structure is characterized by larger porosities that allow larger
mass transfer rates inside the structure during GTA extraction.
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After SC-CO2 drying for 5 h, the GTA concentration was 21.5 ppm for A/G 80/20 aerogel. In
the other samples, GTA concentration decreased when the gelatin amount increased in the aerogel.
In the case of G aerogel, GTA residue concentration was about 4 ppm. These GTA concentrations
are very small; but in all cases are larger than the GTA level that assures no toxicity for living cells,
as previously discussed. To explain these results we have to consider that GTA reacts only with the
–NH2 groups of lysine and hydroxylysine present in the gelatin structure [20] and GTA solution was
added in excess with respect to the stoichiometric ratio; therefore, when gelatin amount was reduced
in the polymeric blend, a lower number of NH2 groups was involved in the reaction, leaving larger
quantities of unreacted GTA.

To force GTA final content to values lower than 3 ppm, we performed longer supercritical gel
drying treatments, increasing the drying time from 5 to 8 h. Indeed, it has been shown, in a previous
work on GTA elimination from Chitosan aerogels by supercritical gel drying [22], that by increasing the
process time, GTA content can be reduced. The results of GTA release tests from the various polymer
blends after 8 h drying, are reported in the fourth column of Table 1. Only G and A/G 20/80 aerogels
showed GTA levels lower that 3 ppm. In the other cases, longer drying/GTA extraction times are
still required.

3.3. DSC and EDX Analyses

DSC analysis was performed on A and G aerogels and on A/G mixture aerogels to determine the
possible changes in the thermal behavior of materials after polymer mixing and processing. Similar
thermograms were obtained for all the processed materials (Figure 4), confirming that supercritical
processing did not influence the physico-chemical characteristics of the final structures and that the
polymers are compatible.
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Figure 4. DSC analysis performed on: 80/20% v/v A/G aerogel; 50/50% v/v A/G aerogel;
20/80% v/v A/G aerogel; G aerogel, G powder, A Aerogel, and A powder.

We also analyzed the two polymers’ contribution inside the aerogel by EDX, taking advantage
of the fact that gelatin presents Nitrogen atoms, indicated in green in the EDX map, and alginate
shows characteristic Calcium atoms, that are reported in red in the EDX map. In Figure 5, element
maps identifying alginate and gelatin in an A/G aerogel 50/50% v/v are reported. These images
show that G and A are uniformly dispersed in the aerogel: the area covered by Nitrogen overlaps the
Calcium area. This interesting result is a consequence of the polymers compatibility, but, also of the
fast supercritical process that avoided possible polymer demixing inside the hydrogel matrix during
drying. A uniform distribution of the two polymers is required to assure homogeneous biological
properties and mechanical behavior of the aerogel.
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3.4. Mechanical Tests

In the last part of the work, we focused attention on the mechanical characteristics of the A/G
aerogels. Tensile mechanical properties were measured and the results obtained are summarized in
Table 2.

Table 2. Comparison among tensile mechanical properties of A/G aerogels and A and G aerogels,
processed at 200 bar, 35 ˝C, 5 h.

Aerogel Young modulus (MPa) Tensile strength at break (MPa)

G 0.91 ˘ 0.11 1.41 ˘ 0.15
A/G 20/80% v/v 0.85 ˘ 0.08 1.92 ˘ 0.18
A/G 50/50% v/v 0.78 ˘ 0.06 2.33 ˘ 0.25
A/G 80/20% v/v 0.61 ˘ 0.05 2.54 ˘ 0.30

A 0.48 ˘ 0.03 2.78 ˘ 0.36

The results show the effect of A/G composition on the mechanical characteristics of the aerogels
produced. The aerogels of single polymers are characterized by a higher Young modulus for gelatin
(0.91 MPa) and a higher tensile strength at break for alginate (2.78 MPa). Combining the two polymers,
intermediate values and their variation are obtained.

These results confirm that it is possible to continuously modulate A/G aerogels mechanical
properties, using the capability of gelatin to increase the elasticity of alginate. The presence of alginate
increases the tensile strength of gelatin. Therefore, also at the level of mechanical properties, the
integration between the two polymeric gels has been successful.

Moreover, the Young modulus values of the A/G aerogels obtained from the mechanical tests
ranged from about 0.6 to 0.9 MPa. These values fall in the range suitable for vascular applications,
considering that normal blood vessels are characterized by elastic moduli in the range of 0.2–0.6 MPa
under physiological pressures [55].

4. Conclusions and Perspectives

The interpenetration of alginate and gelatin hydrogels has been successfully obtained and
preserved by SC-CO2 drying; it allows modulation of morphology and mechanical properties of
these polymer blends. This overall result was made possible by the fact that supercritical drying
process allows us to preserve the hydrogels nanostructure in the corresponding aerogels. Moreover,
no modifications were found in FESEM and DSC analyses.

In the future, we will study the possibility of adding a porogen to the starting hydrogels with
the aim of generating the macroporous structure suitable for cell movement inside the structure. Also
biological tests will be performed to analyze the behavior of the structures and of their biological sites
and morphology, for potential TE applications.
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These results could open the way to the production of improved polymeric scaffolds, taking
advantage of the specific characteristics of each polymer used in the IPN.
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