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Abstract: Metal-organic frameworks assembled from Ln(III), Li(I) and rigid dicarboxylate ligand,
formulated as [LiLn(BDC)2(H2O)¨ 2(H2O)] (MS1-6,7a) and [LiTb(BDC)2] (MS7b) (Ln = Tb, Dy, Ho,
Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid), were obtained under hydrothermal
conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the
case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a) and a new
monoclinic C2/c phase (MS7b). All compounds have been studied by single-crystal and powder
X-ray diffraction, thermal analyses (TGA), vibrational spectroscopy (FTIR), and scanning electron
microscopy (SEM-EDX). The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid
chains. These chains constructed from unusual four-membered rings, are formed by edge- and
vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex) and O6-O7 (edge).
Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While,
the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related
symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely
alternating {LiO4} and {TbO8} polyhedra through (O2-O3) edges to create Tb–O–Li connectivity along
the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels
running along the a and c axes, containing water molecules and anhydrous, respectively. Topological
studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D
net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds
(MS5-6) are also investigated, exhibiting strong red and green light emissions, respectively, which are
attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

Keywords: lanthanide-organic frameworks; dicarboxylate; hydrothermal; crystal structure;
topology; photoluminescence

1. Introduction

Metal-organic frameworks (MOFs), as an important class of advanced functional materials,
have received extensive attention due to their great potential application in various research areas,
such as gas adsorption/storage [1–5], liquid separation [6], drug delivery [4,7], and heterogeneous
catalysis [8–10]. Among different classes of MOFs, lanthanide MOFs (LnMOFs) [11–15], which can be
synthesized using a wide range of lanthanide cations and organic ligands, have been investigated in the
fields of coordination chemistry, inorganic chemistry, and material chemistry, not only for their diverse
architectures due to high coordination numbers and large ionic radii of lanthanide cations, but also for
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the potential applications in the field of luminescence [13–21], because of their increased brightness
and emission quantum yield [22,23], and also in magnetism [11,24–28]. To obtain functional MOFs,
considerable efforts have been made and tremendous progress has been achieved. However, challenges
in crystal engineering still remain for controlling the chemical composition and dimensionality. It is
well-known that the crystal structure is generally driven by the coordination mode of the metal center,
solvent system, temperature, pH, and so on [29–32]. Furthermore, the geometry and nature of the
organic ligands play an important role in determining the final structures and topologies [33]. As an
important class of organic ligands, those containing the carboxyl groups that have been applied in
the preparation of LnMOFs due to the affinity of lanthanides cations to carboxylate oxygen atoms.
In particular, we focused our research on the dianion organic linker 1,4-benzenedicarboxylic acid (BDC),
due to its structural rigidity, a diversity of coordination geometries, and the possibility to facilitate the
formation of structures with large voids [34,35]. Alkali-based MOFs [36] are not extensively explored,
in comparison with transition metals or lanthanide-based MOFs, despite the incorporation of alkali
cations into MOFs being an interesting development of MOF chemistry, through exploitation of their
various coordination modes, low polarizability, and unique affinity for basic molecules [37,38]. Among
these compounds, the lithium-based MOFs [39–46] are attracting particular interest due to recent
experimental and theoretical studies showing enhanced H2 uptake in lithium doped MOFs [47–54].
Moreover, they are promising candidates for replacing the conventional electrode in Li-ion batteries,
exhibiting a high reversible specific capacity and excellent cyclability [55–58]. Many studies have been
carried out using the hydrothermal route to prepare Ln–BDC [20,59–61] or alkali–BDC [62–65] based
frameworks, while the first example of MOFs assembled from Li–Ln–BDC has been recently reported
by us [12].

Inspired by this previous work and in continuation of our ongoing studies on the design of
novel alkali-lanthanide hetero-MOFs, herein we report the full structural characterization of novel
lithium-lanthanide-containing MOFs, formulated as [LiLn(BDC)2(H2O)¨ 2(H2O)] (Ln = Dy (MS1),
Ho (MS2), Er (MS3), Yb (MS4), Y0.96Eu0.04 (MS5), and Y0.93Tb0.07 (MS6)) and [LiTb(BDC)2] (MS7b).
Their luminescence properties have been investigated.

2. Experimental Section

2.1. Hydrothermal Synthesis

[LiLn(BDC)2(H2O)]¨ 2(H2O) (MS1-4 and MS7) were synthesized under hydrothermal conditions.
In a typical synthesis, 0.08 g (0.5 mmol) of terephthalic acid (H2BDC), 0.14 g (3.5 mmol) of LiOH¨H2O,
and (1 mmol) of LnCl3¨ 6H2O (Tb: 37 g; Dy: 0.38 g; Ho: 0.38 g; Er: 0.38 g; Yb: 0.39 g) were dissolved in
a mixture of distilled water (5 mL) and ethanol (5 mL). [Eu0.04Y0.96(BDC)2(H2O)]¨ 2H2O (MS5) and
[Tb0.07Y0.93(BDC)2(H2O)]¨ 2H2O (MS6) have been obtained following the same procedures as described
above, by using solutions of Y:Ln with a molar ratio of 19:1 previously prepared by dissolving: 0.29 g
(0.95 mmol) of YCl3¨ 6H2O and 0.03 g (0.05 mmol) of EuCl3¨ 6H2O or TbCl3¨ 6H2O for MS5 and MS6,
respectively, in a mixture of ethanol (5 mL) and distilled water (5 mL). The both solutions have been
stirred for 24 h. The synthesis of all compounds has been done in presence of tartaric acid and an
amount of 1 mmol (0.21 g) was necessary to obtain these compounds. In all cases the reaction mixture
was stirred at room temperature to homogeneity and then placed in a Teflon-lined stainless vessel
(40 mL) and heated to 180 ˝C for three days under autogenous pressure and, afterwards, cooled
to room temperature. The resulting products were filtered off, washed thoroughly with distilled
water, and finally air-dried at room temperature. Yield: 27 mg, ca. 12% for all compounds based
on Ln. A crystalline phase of parallelepiped-like single-crystals and microcrystalline powder was
obtained in the case of MS1-6 while, for MS7, a mixture of plate- and parallelepiped-like crystals and
a microcrystalline powder was obtained.



Polymers 2016, 8, 86 3 of 15

2.2. Single-Crystal X-Ray Diffraction Studies

Collection was performed at 293 K on an Agilent Gemini CCD diffractometer (Oxford, Oxfordshire,
UK), using CuKα radiation. Images were collected at a 55 mm fixed crystal-detector distance, using
the oscillation method, with 1˝ oscillation and variable exposure time per image. The crystal structure
was solved by direct methods. The refinement was performed using full-matrix least squares on F2.
All non-H atoms were anisotropically refined. All H atoms were either geometrically placed riding on
their parent atoms or located from the difference Fourier map, with isotropic displacement parameters
set to 1.2 times the Ueq of the atoms to which they are attached. Crystallographic calculations were
carried out using the following programs: CrysAlis CCD [66] for data collection; CrysAlis RED [67]
for cell refinement, data reduction and empirical absorption correction; SHELXS-97 [68] for structure
solution; XABS2 [69] for refined absorption correction; SHELXL-97 for structure refinement and prepare
materials for publication; PLATON [70,71] for the geometrical calculations; and Diamoned [72] for
molecular graphics.

2.3. Powder X-Ray Diffraction Studies

Powder X-ray diffraction patterns were recorded on X’pert Philips diffractometer with CuKα

radiation. The samples were gently ground in an agate mortar in order to minimize the preferred
orientation. All data were collected at room temperature over the angular 2θ range 4˝–60˝ with a step
of 0.01˝ and a counting time of 1.5 s/step. The PXRD patterns of the compounds were compared with
the calculated ones, indicating that the products have been successfully obtained as crystalline phase
for MS1-6 (Figure 1) and as a crystalline mixture composed of at least two phases for MS7 (Figure 2).
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Figure 1. PXRD patterns of MS1-6 compared with the calculated for MS2; (*) shows the peak of an
unidentified phase.
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2.4. Morphological Characterization

SEM micrographs and X-ray microanalysis (SEM/EDX) were recorded by using JEOL-6610LV
scanning electron microscope (Akishima, Tokyo, Japan) operating at 30 kV coupled with an Oxford
X-Max microanalysis system (EDX). SEM images (Figure S1) show parallelepiped-like morphology
and micropowder for MS3 sample, while the plate- and parallelepiped-like morphologies along with
micropowder were observed in the case of MS7 sample. EDX provided Y:Eu and Y:Tb quantitative
analysis for MS5 and MS6 (Figure S2 and Table S1).

2.5. Infrared Spectra

The infrared data were collected at room temperature using a FT-IR Bruker Tensor-27 spectrometer
(Billerica, MA, USA) from KBr pellets. The spectra were collected over the range 4000–400 cm´1 by
averaging 15 scans at a maximum resolution of 4 cm´1.

2.6. Thermal Characterization

A Mettler-Toledo TGA/SDTA851e (Greifensee, Switzerland) was used for the thermal analysis in
oxygen dynamic atmosphere (50 mL/min) at a heating rate of 10 ˝C/min. In this case, ca. 10 mg of
powder sample was thermally treated, and blank runs were performed.

2.7. Photoluminescence Studies

RT excitation and emission spectra and luminescence lifetimes were measured using a standard
spectrofluorometer Edinburgh Instruments FLSP920 (Edimburgh, Scotland, UK), having a 450W Xe
lamp as the excitation source. The samples were placed between two quartz plates placed at 45˝ from
the incident beam and the detector. The luminescence lifetimes sample was excited using a nanopulsed
light source at 260 nm. Luminescence decay curves were recorded using a fast-response MCP-PMT
detector in cooled housing. Lifetime was estimated by fitting the decay curve with a mathematical
model, according to the general formula I = I0 e p´t{tauq where tau is the lifetime. The optical images of
the sample were obtained, upon excitation at 360–370 nm and detecting the emission over 420 nm,
by using an automated optical microscope Olympus CAST2 for transmission and fluorescence studies
equipped with a motorized stage and a high-resolution digital camera.

3. Results

3.1. Description of the Crystal Structures

The series of compounds MS1-6 are isoreticular and crystallize in the same monoclinic space
group P21/c as revealed by single-crystal X-ray diffraction studies. While the second phase MS7b
crystallizes in the monoclinic space group C2/c. The crystallographic and structure refinement data
are presented in Table 1, whereas Table S2 shows selected bond angles and lengths for MS1-4 and
MS7b compounds. Powder X-ray diffraction measurements (Figure 1), confirm that the series MS1-6
have been successfully obtained as crystalline phases and that the crystals exhibit a strong preferential
orientations. However, in case of Tb, the powder X-ray diffraction (Figure 2) indicates that the product
of the synthesis consist of at least two identified phases, MS7a which belongs to the series MS1–6 and
the second novel phase MS7b.



Polymers 2016, 8, 86 5 of 15

Table 1. Crystallographic data for MS1–4 and MS7b.

Identification Code MS1 MS2 MS3 MS4 MS7b

Empirical formula C16H14O11DyLi C16H14O11HoLi C16H14O11ErLi C16H14O11YbLi C16H8O8TbLi

Formula
weight/g¨mol´1 551.71 554.14 556.47 562.25 494.09

Temperature/K 293(2) 296(2) 293(2) 293(2) 293(2)

Wave length 0.71073 0.71073 0.71073 0.71073 0.71073

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic

Space group P21/c P21/c P21/c P21/c C2/c

Unit cell dimensions

a(Å) 11.6769(4) 10.1727(7) 10.1678(3) 10.1110(2) 13.611(1)

b(Å) 16.1012(2) 16.1068(8) 16.1139(4) 16.0630(3) 26.1672(5)

c(Å) 13.2509(5) 13.228(1) 13.2366(5) 13.1703(2) 6.7381(5)

β(˝) 132.240(6) 122.037(5) 122.113(2) 122.193(2) 136.14(1)

Cell volume/Å3 1,844.4(2) 1,837.3(2) 1,836.9(1) 1,810.17(7) 1,662.8(4)

Z 4 4 4 4 4

Calc. density/mg¨m´3 1.987 2.003 2.012 2.063 1.974

Absorption
coefficient/mm´1 4.110 4.37 4.628 5.227 4.29

F(000) 1,068 1,072 1,076 1,084 944

Crystal size/mm3 0.153 ˆ 0.084 ˆ 0.030 0.09 ˆ 0.08 ˆ 0.04 0.206 ˆ 0.157 ˆ 0.039 0.266 ˆ 0.083 ˆ 0.044 0.09 ˆ 0.08 ˆ 0.04

Theta range for data
collection/˝ 3.27 to 31.81 3.28 to 31.16 3.27 to 31.26 3.29 to 31.39 3.3 to 31.4

Index ranges
´17ď h ď 17,
´23 ď k ď 22,

´13 ď h ď 14,
´22 ď k ď 23,

´14 ď h ď 14,
´23 ď k ď 23,

´14 ď h ď 14,
´23 ď k ď 23,

´19 ď h ď 19,
´38 ď k ď 37,

´18 ď l ď19 ´18 ď l ď19 ´18 ď l ď 19 ´18 ď l ď 19 ´9 ď l ď 9

Reflections collected 22,135 12,103 15,702 10,974 12,022

Independent reflections 6,297 5,932 5,982 5,968 2,761

Completeness to
theta = 67˝ 99.80% 99.04% 99.45% 99.80% 99.78%

Absorption correction multi-scan multi-scan multi-scan multi-scan multi-scan

Max. and min
transmission 0.933 and 0.883 0.836 and 0.678 0.836 and 0.424 1 and 0.861 0.838 and 0.682

Refinement method Full-matrix least
squares on F2

Full-matrix least
squares on F2

Full-matrix least
squares on F2

Full-matrix least
squares on F2

Full-matrix least
squares on F2

Data/restraints/parameters 5,851/2/286 5,365/15/280 5,465/6/286 5,366/6/280 2,548/0/119

Goodness -of -fit on F2 1.052 1.03 1.016 1.022 1.08

Final R indices
(I > 2sigma (I))

R1 = 0.0288
(wR2 = 0.0682)

R1 = 0.055
(wR2 = 0.150)

R1 = 0.028
(wR2 = 0.061)

R1 = 0.0283
(wR2 = 0.057)

R1 = 0.0343
(wR2 = 0.0585)

R indices (all data) R1 = 0.053
(wR2 = 0.0589)

R1 = 0.109
(wR2 = 0.236)

R1 = 0.048
(wR2 = 0.072)

R1 = 0.061
(wR2 = 0.0449)

R1 = 0.0436
(wR2 = 0.0624)

Largest diff. peak
and hole/eÅ´3 0.545 and ´1.335 2.74 and ´3.21 0.950 and ´1.452 0.736 and ´0.103 1.70 and ´1.60

CCDC no. 1444552 1444554 1444553 1444556 1444555

The asymmetric units in case of MS1–6 (Figure S3a), comprises one Ln3+, one Li+, one BDC, two
half-BDC, one coordinated water molecule, and two non-coordinated water molecules. The Ln3+ cation
is bonded to eight oxygen atoms, all of them coming from six carboxylate groups which belong to four
non-equivalent groups. Its coordination geometry may be described as a distorted bicapped trigonal
prism (Figure 3a). Out of the four carboxylate groups surrounding Ln3+, which belong to two different
carboxylate groups, each of two contribute with one oxygen atom, and the two remaining carboylates
act in chelating mode. The eight Ln–O bond distances range from 2.212(2) to 2.473(2) Å, and the average
value decreases from 2.368 Å (Dy), 2.362 Å (Ho), 2.348 Å (Er), to 2.334 Å (Yb). Each Li+ ion assumes a
distorted tetrahedron environment by coordinating to four crystallographically-independent oxygen
atoms (Figure 3b). These oxygen atoms come from three independent carboxylate groups and one of
water molecules. The Li–O bond distances range from 1.880(2) Å to 2.060(2) Å, with the average values
of 1.950 Å (Dy), 1.950 Å (Ho), 1.949 Å (Er), and 1.945 Å (Yb), indicating that the environment of Li+ is
not affected by the type of Ln3+.The 3D structures of MS1-6 series are built up of inorganic-organic
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hybrid chains;, each chain is, in turn, crosslinked to six neighboring chains through six terephthalate
bridges. These chains constructed from unusual four-membered rings (Figure 4c) are formed by
edge- and vertex-shared {LnO8} and {LiO4} polyhedra (Figure 4a,b) through oxygen atoms O6–O7
(edge) and O3(vertex) (Er, for instance). The isolated four-membered rings stacked along the a-axis,
are bridged via two equivalent carboxylate groups O1–C12–O5 forming the above mentioned hybrid
chains (Figure 4d). The distance between adjacent Ln–Li cations in the chain has an average value of
3.395 Å. The 3D framework with trigonal channels running along the a-axis contains the crystallization
water molecules (Figure 5a), which are involved in strong hydrogen bonds between each other and
with the carboxylate oxygen atoms (Table S3).
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In the case of MS7b, the asymmetric unit (Figure S3b) consists of one Tb3+, one Li+, and two
half-BDC. Tb3+ cation shows a distorted square antiprism geometry (Figure 3c) with the average
Tb–O bond distances of 2.361 Å. While Li+ cation exhibts a similar distorted tetrahedron coordination
polyhedron, like Li+ in the series MS1–6. Out of the four carboxylate groups surrounding the Li+

(Figure 3d), which belong to two independent carboxylate groups O1–C1–O2 and O3–C5–O4, each of
two contribute with one oxygen atom O1 and O3, where the average Li–O bond distances is 1.943 Å.
The structure of MS7 is constructed from double inorganic chains running along the c-axis. Each chain
is formed from edge (O2–O3) shared {LiO4} and {TbO8} polyhedra (Figure 4e–g). The {LiO4} and
{TbO8} polyhedra alternate infinitely in a chain to create Tb–O–Li connectivity along the c direction
(Figure 4h), with the Li–Ln distance between adjacent cations in the chain of 3.3765(6) Å. Each chain
is symmetrically related to the neighbor one through c glide plane. These chains are connected via
carboxylate group O1–C1–O2 along c-axis, forming the inorganic-organic double chains (Figure 4h).
These hybrid double chains are, in turn, linked to six neighboring units via six BDC bridges, forming
the 3D framework with empty trigonal channels running along the c-axis (Figure 5b).

The coordination modes of BDC anions, found in both MS1–6 and MS7b, are shown in Figure 3e.
Each carboxylate group belongs to one of the three modes: (i) groups coordinating one oxygen atom
to one Ln3+ cation where the other oxygen is bonded in bridging mode between other Ln3+ and Li+

cations; (ii) groups bridging two adjacent Ln3+ cations; or (iii) bonded to one Ln3+ cation via two
oxygen atoms, and in bridging mode between Ln3+ and Li+ cations through one of these oxygen atoms.
The coordination modes (i) and (iii) have been found in both MS1–6 and MS7b, while mode (ii) has
only been found in MS1–6.

The topology of MS1–6 and MS7b have been analyzed with the TOPOS software [73], reducing
the structure to a simpler node-and-linker net [74]. The framework of MS1–6 reveals a novel
binodal net topology (Figure 5c), simplified as a 2-nodal 3,10-c net with the point symbol of
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{4.5ˆ2}- 2{4ˆ14.5ˆ10.6ˆ18.7.8ˆ2}. The framework of MS7b exhibits unusual β-Sn topology with a uninodal
6-connected net with the point symbol of {4ˆ8.5ˆ4.6ˆ3} (Figure 5d).

3.2. IR Analysis

The IR spectra of MS1–4 and MS7 are shown in Figure 6. The broad band observed in the
3710–2820 cm´1 region is assigned to O–H stretching vibrations of coordinated and uncoordinated
water molecules, where in the case of MS7, this band belongs to the hydrated phase MS7a.
The characteristic bands for the antisymmetric νasym(C=O) and symmetric νsym(C=O) vibrations appear
at ca. 1589 cm´1 and 1409 cm´1, respectively. The difference between the bands (∆νasympCOOq´sympCOOq

= 180 cm´1) confirms the bridging mode of the carboxylate groups found in these compounds.
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3.3. Thermal Analysis

The thermal stability of MS1–6 compounds was investigated by thermogravimetric analysis
(TGA/DTG). Figure 7 shows the thermal behavior of MS3 and MS4, while the thermal behavior of
MS1, MS2, MS5, and MS6 is shown in Figure S4. All compounds show a similar thermal behavior.
The first and second weight loss in the range 25–200 ˝C correspond to the loss of the two guest water
molecules. The third weight loss between 260 and 330 ˝C is attributed to the loss of the coordinated
water molecule. The forth weight loss from 330 to 470 ˝C corresponds to the beginning of the
decomposition of BDC ligand, while in the fifth step between 480 and 550 ˝C the complete oxidation
of the BDC is taking place. Further weight loss above 550 ˝C is expected to be due to the evacuation of
trapped carbonaceous residual species.
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3.4. Potoluminescence Properties

Taking into account the excellent luminescent properties of Eu3+ and Tb3+ cations, the doped
compounds MS5 and MS6 have been prepared as described above. The photoluminescence properties
of MS5 and MS6 were investigated at room temperature. The RT luminescence and excitation spectra
of MS5 and MS6 are shown in Figure 8. Moreover, selected single-crystals of MS5 and MS6 have
been examined by optical microscopy under UV light, and they exhibit strong red and blue-green light
emissions, respectively, as illustrated in Figure 9. The both bluish and green light emissions observed
in the case of MS6 are related to the variation of Tb3+ content in the crystals, which indicates that the
emission could be tuned from green to blue by changing the Tb3+ content. The excitation spectrum
of MS5, monitored within the Eu3+ 5D0 Ñ

7F2 transition, shows a large band with two maxima at ca.
275 nm and 320 nm are attributed to the excited state of BDC ligand, and also a series of peaks attributed
to the electronic transition from the ground states 7F0,1 to the excited states 5D4-1, 5G2-6, and 5L6

according to the Dieke’s diagram [75]. Its emission spectrum, upon excitation at 275 nm, exhibits the
characteristic emission lines for Eu3+ cations centered at 580, 590, 615, 651, and 698 nm, which result
from deactivation of the 5D0 excited state down to the 7F4-0 ground states (Figure 8b). The most intense
emission peak, centered at 615 nm and corresponding to the hypersensitive 5D0 Ñ

7F2 transition,
implies red emission light of Eu3+ with a lifetime τ = 0.84 ˘ 0.01 ms (Figure 8e). The excitation
spectrum of MS6, monitored within the Tb3+ 5D4 Ñ

7F5 transition, exhibits a large band (maxima at
ca. 260 and 300 nm) assigned to BDC ligand and a series of lines assigned to the transition from the
ground stats 7F6 to the excited stats 5D2, 5G6-4, and 5L10 [76] (Figure 8c). Its emission spectrum upon
excitation at 260 nm exhibits the characteristic emission peaks for Tb3+ cation centered at 490, 545,
585, 620, 650, 668, and 681 nm, which result from deactivation of the 5D4 excited state down to the
7F6-0 ground state multipelts (Figure 8d). The most striking green luminescence centered at 545 nm
corresponds to the hypersensitive transition5D4 Ñ

7F5 with a lifetime τ = 1.37 ˘ 0.01 ms (Figure 8f).
Furthermore, in both MS5 and MS6 excitation spectra, the low intensity of the intra 4f6 and 4f8 peaks
with respect to the strong bands at wavelengths smaller than 350 nm point out that the Eu3+ and Tb3+

cation sensitization, via charge transfer from the BDC ligand, is more efficient when compared to direct
4f excitations.
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Figure 9. Optical microscopic images under UV light of single crystals of Eu-doped compound MS5
(a,b) and Tb-doped compound MS6 (c,d).

Moreover, PL properties of MS3 were also studied (Figure S5). The excitation spectrum monitored
around Er3+ 4I15/2 Ñ

4S3/2 transition exhibits an intense peak at 376 nm, which is attributed to the
electronic transition from 4I15/2 ground state to the excited state 3G11/2. Its emission spectrum upon
excitation at 370 nm shows the characteristic emission peaks of Er3+ located at 414, 437,492, 582,
and 557 nm corresponding to transitions from 2G9/2, 2F9,5,7/2, 2H9,11/2, and 4S3/2 down to 4I15/2[14,77].

4. Conclusions

In summary, we have synthesized and characterized novel MOFs assembled from Li+, Ln3+,
and rigid dicarboxylate ligands, formulated as [LiLn(BDC)2(H2O)¨ 2(H2O)] (MS1–4) (where Ln = Dy,
Ho, Er, and Yb) and [LiTb(BDC)2] (MS7b). Their structures were determined by single X-ray diffraction
are based on unusual four-membered rings {Li2Ln2O18} and double inorganic chains constructed from
{LiTbO10} dimeric units, and both exhibit a 3D framework with 1D trigonal channels running along the
a and c axes, containing guest water molecules and anhydrous, respectively. Photoluminescence
properties of MS5 and MS6 have been studied showing strong red and green light emissions,
attributed to the effective Eu3+ and Tb3+ sensitization via ligands, with a lifetime of 0.84 ˘ 0.01 ms and
1.37 ˘ 0.01 ms, respectively.
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