Supplementary Materials: Polyelectrolyte Threading through a Nanopore

Pai-Yi Hsiao

The probability distribution of translocation time $P(\tau)$ is a single-peak function (Figure S1). The peak is lowered and broadened as the chain length N increases. At a given N, the distribution becomes sharper with increasing E.

Figure S1. Probability distribution $P(\tau)$ of translocation time at $E=2.0,4.0$, and 8.0. The chain length N is indicated near the curves.

How the chain size $\left\langle R_{\mathrm{g}}\right\rangle$, the z-coordinates of chain end $\left\langle z_{1}\right\rangle,\left\langle z_{N}\right\rangle$, the number of condensed counterions $\left\langle N_{\mathrm{c}}^{(+1)}\right\rangle$, and the fraction of charge neutralization $\langle | Q_{\mathrm{c}} / N e| \rangle$ depend on the chain length N can be seen through a comparison of the cases (a) $N=128$, (b) $N=256$, (c) $N=384$ in Figures S2-S4. The results show similar trend of variation during a translocation process, for different chain lengths.

(a)

Figure S2. Cont.

Figure S2. Variation of $\left\langle R_{\mathrm{g}}\right\rangle$ in the cis- (I), the trans- (III), and the whole (tot) region at different E fields, for (a) $N=128$; (b) $N=256$; and (c) $N=384$. The gray-colored region denotes the error of a curve.

(a)

Figure S3. Cont.

Figure S3. Averaged z-coordinates of chain end, $\left\langle z_{1}\right\rangle$ and $\left\langle z_{N}\right\rangle$, and the difference $\left\langle z_{1}-z_{N}\right\rangle$, as a function of \tilde{t} at different field strength for (a) $N=128$; (b) $N=256$; and (c) $N=384$.

(a)

Figure S4. Cont.

Figure S4. (Left) Variations of mean number of condensed counterions $N_{\mathrm{c}}^{(+1)}$ in the cis-region (I), the pore-region (II), and the trans-region (III) for (a) $N=128$; (b) $N=256$; and (c) $N=384$. (Right) Fraction of charges neutralized on the chain, $\langle | Q_{c} / N e| \rangle$, during a translocation process for (a) $N=128 ;($ b) $N=256$; and (c) $N=384$. The field strength E is indicated in the legend.

The zigzagged curves of the translocation coordinate $N_{\mathrm{m}, \text { III }}$ show diffusion characteristics of translocation when the chain threads through the pore (in Figure S5). In contrast, the variation of the averaged translocation coordinate $\left\langle N_{\mathrm{m}, \mathrm{III}}\right\rangle$ is a smooth, monotonically increased function. It depicts the drifting behavior of the chain forced by the applied electric field.

Figure S5. Variation of translocation coordinate for $N=128$ at $E=0.2$: raw data (run 1 - run 6) vs. the averaged behavior $\left\langle N_{\mathrm{m}, \mathrm{III}}\right\rangle$

