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Abstract: Particle coagulation is a facile approach to produce large-scale polymer latex particles.
This approach has been widely used in academic and industrial research owing to its higher
polymerization rate and one-step polymerization process. Our work was motivated to control
the extent (or time) of particle coagulation. Depending on reaction parameters, particle coagulation is
also able to produce narrowly dispersed latex particles. In this study, a series of experiments were
performed to investigate the role of the initiator system in determining particle coagulation and
particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems
or higher reaction temperature, the time of particle coagulation would be advanced to particle
nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination
of the Smoluchowski equation and the electrostatic stability theory, the relationship between the
particle size distribution and particle coagulation was established: the earlier the particle coagulation,
the narrower the particle size distribution, while the larger the extent of particle coagulation, the
larger the average particle size. Combined with the results of previous studies, a systematic method
controlling the particle size distribution in the presence of particle coagulation was developed.
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1. Introduction

Emulsion polymerization is a widely used process for the production of rubber, plastic, coating,
and adhesives in industry [1–5]. Control over size and polydispersity in these applications is
required because of the close relationship between the properties of the polymer and the particle size
distribution [6–13]. Thus, how to control particle size and polydispersity has gradually become an
essential issue. Until today, many technologies based on emulsion polymerization including seeded
emulsion polymerization and agglomeration method [1,3,6,10,14–16] have been proposed to control
the particle size and distribution. Among these technologies, the particle coagulation technology has
been accepted as a highly effective approach to prepare nanoparticles in both industrial production
and theoretical investigation [1,7,15,17–19].

Particle coagulation is a process that occurs in the period of the particle nucleation and growth.
Even though it is induced by the increase in the interfacial energy change, it is also a kinetically
controlled process. Particle coagulation can be divided into two periods, as shown in Scheme 1:
(1) the process of the particle aggregation is determined by the probability of the particle collision.
Some factors such as the viscosity of the media and the reaction temperature can directly affect
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this process [20]. In agreement with the Smoluchowski equation [21,22], the kinetic of the particle

coagulation can be expressed by ´
dN
dt
“ kcN2

0 , where ´
dN
dt

is the particle coagulation rate, and kc and
N0 are a constant and particle number, respectively. In another period, several particles merge into
a larger one, which is determined by the particle structure and glass transition temperature [23,24].
The effect of simple reaction parameters on particle coagulation in emulsion polymerization using pure
water as solvent has been well illustrated by many researchers. For instance, Dobrowolska et al.
investigated the effect of ionic strength on the extent of particle coagulation and particle size
distribution, and illustrated that higher ionic strength could decrease the thickness of the diffuse
electric double layer, and further increase the extent of particle coagulation [17,18,25]. Chern et al.
elaborated the role of surfactant systems in determining particle coagulation and found that the
relationship between the particle number and the surfactant concentration [26,27].

Scheme 1. The schematic diagram of particle coagulation in one-step emulsion polymerization.

As usual, the emulsion polymerization is carried out in water as the medium. However, recent
investigations indicated that the addition of co-solvent to the medium played an important role
in determining the particle size and distribution of the ultima latex. For example, Adelnia et al.
investigated that the effect methanol on the characteristics of the Poly (methacrylate-co-butyl acrylate)
latex, and found that the addition of methanol increased the medium viscosity and further facilitated
the particle coagulation [20]. Kim et al. also carried out the investigation of soap-free emulsion
polymerization of methyl methacrylate in different methanol solutions, and indicated that the
polymerization product and behavior resembled those typical of pure water [28].

In our previous reports, we carried out a series of experimental investigations about particle
coagulation, and stressed the role of a co-solvent such as methanol in determining the extent of
the particle coagulation [29–32]. With the increase in methanol concentration in aqueous phase,
the interfacial tension between the aqueous phase and particles decreased. This decreased the
adsorption capability of the surfactant molecules on particle surface and further decreased the repulsive
potential energy. On the other hand, the attractive potential increased because of the decrease in the
Hamaker constant. As a result, the extent of the particle coagulation was enhanced. In addition,
the addition of the methanol also increased the length of the critical chain length (CCL) when polymer
chains precipitated from the aqueous phase, further increasing the initial particle size, and decreasing
the polymerization reaction rate. Even though particle coagulation has been studied extensively,
some fundamental issues such as the effect of the initiator systems on particle coagulation are still
puzzling to investigators.

Radical polymerization initiator systems can be divided into many categories. From the solubility
view, the initiator systems can be divided into water-soluble and oil-soluble initiators; from another
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view, it can also be divided into ionic and nonionic types. The ionic type initiator system is further
divided into cationic and anionic types based on the difference in the charges. The effect of the
initiator system on particle coagulation seems to be an easy problem, but it is indeed an extremely
complicated phenomenon. According to the Smith–Ewart theory, pure water was usually chosen
as solvent, and the particle number increased with increasing initiator concentration [3], but the
Smoluchowski equation indicated that the rate of particle coagulation also increased with increasing
particle number, as described above [21,22]. Thus, the addition of the initiator seems to play an
opposite role in determining particle number, and what is its main function? The ionic initiator not
only plays the role of the initiator, but also function as an electrolyte, which increases the complexity
of the particle coagulation. In the case of opposite charged surfactant and initiator, does the shielding
action between surfactant molecules adsorbed on particle surface and the initiator chain ends affect the
extent of the particle coagulation? Can the time of particle coagulation be adjusted by initiator systems?

In regard to the effect of the oil-soluble initiator on particle nucleation mechanism in emulsion
polymerization, two main mechanisms for the production of radicals were postulated. One of the
mechanisms considered that the first radicals were generated in the monomer-swollen polymer
particles/monomer droplets/monomer swollen micelles, and desorbed to the continuous phase;
another mechanism considered that the radical formed in the continuous phase were derived from
the fraction of the oil-soluble initiator dissolved in the continuous phase [33–37]. Nomura et al.
indicated the relationship between the particle number (and molecular weight) and recipe compositions
when oil-soluble initiator was used in pure water solvent. For example, Nomura et al. carried out
the unseeded and seeded emulsion polymerization of styrene using azodiisobutyronitrile (AIBN)
as an oil-soluble initiator and concluded that the latex particles were formed in the emulsifier
micelles, and the particle number was proportional to the 0.30th power of the concentration of
the initiator [38,39]. Capek et al. also reported that the kinetic aspects initiated by AIBN in the presence
of a blend of anionic and non-ionic surfactant conditions and stressed that the addition of AIBN
decreased the molecular weight and the polymerization reaction rate [40,41]. Recently, Gugliotta et al.
investigated the role of the oil-soluble initiator in governing the particle nucleation in mini-emulsion
polymerization, and indicated that the oil-soluble initiator could promote droplet nucleation and
control the second nucleation [42]. Even though the kinetic model and experimental evidence of the
emulsion polymerization initiated by oil-soluble initiator have been developed, it is still difficult to
control the particle size distribution of ultima latex when oil-soluble initiator is used, especially to
prepare narrowly dispersed polymer latex particles.

To address these problems, in this study, different initiator systems such as water-soluble
potassium persulfate (an anionic type initiator), oil-soluble azodiisobutyronitrile (a nonionic type),
and 2,2’-azobis [2-methylpropionamidine] dihydrochloride (AIBA) (a cationic ionic type) were chosen
to initiate the polymerization reaction of styrene in the presence of methanol solution. The evolution of
the particle size, number, and distribution as a function of polymerization time was traced for achieving
a comprehensive understanding about particle coagulation. The polymerization condition selected
here is based on the idea that obvious particle coagulation occurs, although, in many situations, particle
coagulation is not obvious. The effect of reaction parameters except initiator systems on the particle
coagulation and particle size distribution could be obtained from our previous studies [23,29–32].

2. Materials and Methods

Chemical Styrene (St, 99%), supplied by the Shanghai Chemical Reagent Corporation (Shanghai,
China), was distilled under vacuum to remove the inhibitors prior to polymerization and used
as the monomer. Sodium dodecyl sulfate (SDS; 99%; Aladdin, Shanghai, China) and Potassium
carbonate (K2CO3; 98.5%; Aladdin, Shanghai, China) were used as the surfactant and electrolyte
without any further purification. Potassium persulfate (KPS; 99.5%; Aladdin, Shanghai, China),
Azodiisobutyronitrile (AIBN; 98%; Aladdin, Shanghai, China), 2,2’-azobis [2-methylpropionamidine]
dihydrochloride (AIBA, 99%; Aladdin, Shanghai, China) were used as the initiator. Double
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distilled-deionized (DDI) water was used in all experiments. The polymerization fundamental recipe
for investigating the effect of initiator systems on particle coagulation is shown in Table 1.

Table 1. The polymerization fundamental recipe for investigating the effect of initiator systems on
particle coagulation.

Formulation parameter Reagents Quantity (g)

Monomer St 100
Surfactant SDS 1.5
Initiator KPS/AIBN/AIBA Variable

Electrolyte K2CO3 0.6
Co-solvent methanol 30

2.1. Polymerization Reactions

The emulsion polymerization reactions of styrene were carried out using a 500 mL glass reactor
equipped with four necks for string mechanically with an anchor stirrer (Bar Length: 300 mm;
Blade Diamete: 45 mm; Surface Coating Material: Polytetrafluoroethylene), condensing the reflux with
cold water, purging with nitrogen gas, and sampling an aliquot of the solution with a pipette. The SDS,
K2CO3, DDI and co-solvent (methanol) were added to reaction equipment according to this sequence;
subsequently, monomer was also added when all auxiliaries were dissolved in the aqueous phase.
Nitrogen (N2) purging was carried out for 30 min before the initiator was added to the reactor. When
the initiator dissolved in some DDI or monomer was added into the equipment, the polymerization
reaction begins. The polymerization reaction was carried out under the N2 atmosphere, the reaction
temperature and stirring rate were set as 65 ˝C and 250 rpm, respectively. During the polymerization
process, 2–3 g latex was withdrawn from the reactor using a syringe at appropriate intervals to analyze
the monomer conversion, particle size distribution and particle number. The polymerization reaction
time was set as 6 h.

2.2. Characterization

The particle size and distribution was measured by the Brookhaven 90plus Particle Size Analyzer
(Brookhaven, NY, USA) and transmission electron microscopy (TEM) (JEOL 1210, Tokyo, Japan).
The polydispersity index (PDI) was directly obtained from the Particle Size Analyzer, and defined by
ISO 13321: 1996 E. The particle number (Np) was obtained by the following equation [32]:

Np “
6XM0

πd3
pρp

(1)

where M0 is the monomer concentration in the unit mass aqueous phase (1 kg for aqueous phase),
ρp is the polymer density, X is the monomer fractional conversion (which could be obtained by the
gravimetric method) and dp is the average size of the latex particle.

3. Results

3.1. KPS Initiator System

To better understand the effect of the initiator system on the particle coagulation and particle size
distribution, the KPS system was first considered. The KPS initiator system is one of the most widely
used initiators in conventional emulsion polymerization in pure water solvent [3,10]. The theory of
Smith–Ewart (micellar theory) predicted a proportionality value of 0.40 between particle number and
KPS initiator concentration; Sajjadi et al. performed the emulsion polymerization of butyl acrylate
using KPS as initiator according to the method of Capek [41], and found that the particle number was
proportional to 0.39th power of KPS concentration [43]. These theories confirmed the relationship
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between the particle size and initiator concentration, indicated that the particle size of the ultimate
latex decreased with increasing the initiator concentration. In this study, the particle size of the
ultimate latex corresponding to different initiator concentrations is shown in Figure 1. The particle
size increased with increasing initiator concentrations (97.9, 107.5, 136.7, and 161.5 nm at 0.3, 0.6,
0.9 and 1.2 wt %, respectively), and was in reverse trend to that of particle size in the conventional
emulsion polymerization.

Figure 1. TEM micrographs of the final particles prepared by emulsion polymerization of styrene using
methanol solution (20/80 w/w) as the polymerization medium and various amount of initiator KPS:
(a) 0.3 wt %; (b) 0.6 wt %; (c) 0.9 wt %; and (d) 1.2 wt %.

In addition, the evolution of monomer conversion, particle size and number as a function of
the polymerization process for different initiator concentrations is traced, as shown in Figure 2.
The curve of monomer conversion vs. the polymerization time, as shown in Figure 2a, indicates that
the polymerization rate using 0.3 wt % KPS initiator system was the fastest among these reactions
and was opposite to the results reported by Carro et al [21]. Figure 2b shows that the particle size
rapidly reached 90 nm at 0.2 conversion in the presence of 1.2 wt % KPS. Meanwhile, the particle size
corresponding to the systems consisting of 0.3, 0.6, and 0.9 wt % KPS only attained 54.2, 62.1, and
70.0 nm, respectively. Figure 2c shows that the particle number increased with increasing conversion,
then decreased until reaching a constant particle number at appropriate conversion. The decrease
in particle number and the increase in particle size indicated that the particle coagulation occurred
during the polymerization process [29–32]. With increasing initiator concentration, the extent of
particle coagulation gradually increased and the time of particle coagulation advanced. In addition,
the evolution of the system temperature inside reactor also reflects some information about the particle
coagulation, as shown in Figure 2d. The increase in the system temperature was mainly attributed to
the heat released from the system larger than the heat transmission from the reaction system to the
environment [44,45]. The increase in temperature was also considered as an evaluated parameter to
indicate the polymerization reaction rate [46]. Figure 2d shows that the maximum system temperature
decreased with increasing initiator concentrations from 71.2, 70.2, and 69.1 ˝C at 0.3, 0.6 and 0.9 wt %
KPS, respectively, to 67.9 ˝C at 1.2 wt %. Moreover, the time corresponding to the maximum system
temperature also advanced as the initiator KPS concentrations increased. With increasing initiator
concentrations, the initial reaction rate was enhanced, and the particle number also increased. However,
by increasing the particle number, the extent and time of the particle coagulation were enhanced. This
decreased the rate of the polymerization reaction and led to the decrease of the system temperature [20].
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Figure 2. Plots of monomer conversion (a); particle size (b); number (c); and system temperature
(d) against reaction time (or monomer conversion) for the emulsion polymerization of styrene using
methanol solution (20/80 w/w) as the polymerization medium and various amount of initiator KPS
([I] = 0.3, 0.6, 0.9 and 1.2 wt %).

As a result of early particle coagulation, the width of particle size distribution of the final latex
particles decreased with increasing initiator concentrations, as shown in Figure 3. The polydispersity
index of ultimate latex particles decreased from 0.036, 0.030, and 0.024 at 0.3, 0.6, and 0.9 wt % KPS,
respectively, to 0.016 at 1.2 wt % KPS. The polydispersity index of ď0.1 indicates that the ultimate latex
particles had a relatively narrow particle size distribution [47]. Meanwhile, the particles obtained by
particle coagulation were spherical and smooth, indicating that narrowly dispersed latex particles
could be prepared in the presence of particle coagulation.

Figure 3. Cont.
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Figure 3. Particle size distribution of final latex particles prepared by emulsion polymerization of
styrene using methanol solution (20/80 w/w) as the polymerization medium and various amount of
initiator KPS: (a) 0.3 wt %; (b) 0.6 wt %; (c) 0.9 wt %; and (d) 1.2 wt %.

To ensure the role of increasing initiator concentration, the polymerization reactions with 0.6 wt %
KPS initiator were carried out at the initiation reaction temperatures of 55 and 75 ˝C. The initiator
decomposition rate is well known to increase with increasing reaction temperature [48]. Therefore,
increasing initiation temperature also increased the primary radicals, thus increasing the extent of
particle coagulation [45,46,48]. The TEM images of the ultimate latex particles prepared at different
reaction temperature are shown in Figure 4. As expected, the average size of latex particles increased
with increasing reaction temperature from 91.2 to 111.2 nm. Moreover, the polydispersity index value
decreased from 0.031 at 55 ˝C to 0.015 at 75 ˝C.

Figure 4. TEM micrographs of the final particles prepared by emulsion polymerization of styrene using
methanol solution (20/80 w/w) as the polymerization medium and various reaction temperatures:
(a) 55 ˝C and (b) 75 ˝C. The TEM micrograph of the final particles prepared by emulsion polymerization
of styrene at 65 ˝C is shown in Figure 1b.

The evolution of the monomer conversion, average particle size, number and system temperature
as a function of reaction time (or monomer conversion) of KPS system at different initiation reaction
temperatures is shown in Figure 5. The rapid increase in average particle size and the decrease
in the particle number confirmed the particle coagulation behavior during the polymerization
process. The initial time of the decrease in the particle number showed that the starting time of
particle coagulation advanced to the nucleation period with increasing initiation reaction temperature.
As the reaction temperature increased, the total polymerization reaction time shortened, as shown in
Figure 5a. In addition, the time corresponding to the highest system temperature shifted to 10 min
from 24 min with increasing reaction temperature, as expected.
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Figure 5. Plots of monomer conversion (a); particle size (b); number (c); and system temperature
(d) against reaction time (or monomer conversion) for the emulsion polymerization of styrene using
methanol solution (20/80 w/w) as the polymerization medium and various reaction temperatures
(55, 65, and 75 ˝C).

3.2. AIBN and AIBA Initiator Systems

As mentioned above, other type of initiators, such as oil-soluble AIBN and cationic AIBA, could
also be used to initiate emulsion polymerization reactions. Differing from the conventional KPS
initiator, the oil-soluble initiator AIBN scarcely dissolves in aqueous media during the polymerization
process. From the AIBN solubility view, the initiator decomposition reaction should be carried out in
these monomer droplets or swollen micelles according to a similar bulk method. However, the small
reaction volume of the swollen-micelles (or monomer droplets) made the initiator radicals easy to
recombine, further limiting the initiation reactions that occurred in monomer droplets [33–37]. Thus,
the kinetic model of emulsion polymerization using oil-soluble AIBN was closer to the zero-one model,
rather than the pseudo-bulk model [48–50]. Figure 6 shows that the TEM images of ultimate latex
particles prepared using AIBN and AIBA initiators at 0.6 wt % concentration. The results indicated
that the latex particles using AIBN and AIBA were much larger than those using KPS initiator system.
The average particle size attained were 141.2 and 224.6 nm with AIBN and AIBA, respectively.

The curves of monomer conversion, particle size, particle number, and system temperature vs.
monomer conversion (or reaction time) shown in Figure 7 indicate that particle coagulation was scarcely
observed for the AIBN system because no decrease in particle number was observed in Figure 7c.
In contrast to AIBN system, an obvious particle coagulation process was observed in the AIBA system,
as shown in Figure 7c. Figure 7a shows that the KPS initiator system only needed ~120 min reaction
time when the monomer conversion reached 1, even though particle coagulation occurred. However,
the systems initiated by AIBN and AIBA needed 240 and 300 min, respectively. The curves of the
particle number vs. monomer conversion indicate that the initial particle numbers of the AIBA and the
AIBN systems were much smaller than the KPS one. The evolution of the system temperature inside
the reactor initiated by AIBA and AIBN is also traced, as shown in Figure 7d. However, the variation
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in the system temperature was difficult to observe because of the slow polymerization rate. In the
whole polymerization process, the maximum system temperatures for AIBA and AIBN were slightly
higher than the reaction temperature, 67.5 and 67.2 ˝C, respectively.

Figure 6. TEM micrographs of the final particles prepared by emulsion polymerization of styrene using
methanol solution (20/80 w/w) as the polymerization medium and various initiator systems: (a) AIBN
and (b) AIBA. The TEM micrograph of the final particles prepared by emulsion polymerization of
styrene initiated by KPS is shown in Figure 1b.

Figure 7. Plots of the monomer conversion (a); particle size (b); particle number (c); and system
temperature (d) against monomer conversion (or reaction time) for the emulsion polymerization
of styrene using methanol solution (20/80 w/w) as the polymerization medium and various types
of initiator.
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4. Discussion

Based on these experimental results, the effect of initiator systems on particle coagulation and
particle size distribution is discussed.

The extent of particle coagulation was indeed controlled by adjusting the initiator system,
especially by using ionic initiators such as KPS and AIBA. The addition of KPS not only increased the
primary radical concentration in aqueous media, but also increased the ionic strength. The increase in
the primary radical concentration increased the probability of particle collision, and further promoted
particle coagulation occurred. This process could be expressed by the modified Von Smoluchowski
equation [51]:

B pi, jq “ f pγqN piqN pjq
“

dp piq ` dp pjq
‰3 (2)

where B(i,j) and f (γ) are the number of collisions between particles i and j class and constant,
respectively. Because of the increase in the primary particle number, the B(i,j) directly increased, thus
enhancing the extent of particle coagulation. This process was controlled by the kinetics, as described
in the Introduction Section. As the particle coagulation was carried out, N(i) and N(j) decreased,
thus the collision frequency between particles i and j class decreased. Meanwhile, the larger particles
obtained by the particle coagulation between particles i and j class was difficult to aggregate unless
the number of larger particles attained a critical value. On the other hand, KPS and AIBA initiator
could also be considered as the electrolyte in polymerization recipe, and the addition of ionic initiator
enhanced the ionic strength. Furthermore, the thickness of electrical double layer surrounding the
particle surface was compressed, which decreased the particle stability and increased the extent of
particle coagulation [25]. The oil-soluble AIBN initiator was not ionic, therefore, the addition of AIBN
scarcely affected the thickness of electrical double layer, and, furthermore, particle coagulation was
not obvious. Meanwhile, when the oil-soluble AIBN was used as initiator, the vast majority of the
initiator dissolved in monomer droplets, monomer-swollen micelles, and polymer particles, and only a
small quantity of initiator dissolved in the aqueous phase, which initiated the polymerization reaction.
Because the pairs of radicals produced within a volume as small as a monomer-swollen latex particle
or a monomer-swollen micelle are easily recombined, the free radicals produced from the fraction of
initiator dissolved in the aqueous phase are responsible for particle formation and growth. Therefore,
the deactivation of the oil-soluble initiator plays a significant role in determining the initial particle
number and the rate of the polymerization reaction. Nomura et al. indicated that the efficiency of the
oil-soluble initiator was only 1/9 of that of KPS in pure water solvent [52]. In the oil-soluble initiator
system, the relationship between particle number and initiator was similar to conventional emulsion
initiated by KPS system, indicating that the particle number decreased with decreasing initiator
concentration. The deactivation of the AIBN is equivalent to the decrease in initiator concentration.
As a result, the initial particle number of the oil-soluble initiator was much smaller than that initiated
by KPS. The smaller the particle number was, the smaller the frequency of particle collision achieved,
which limited the occurrence of particle coagulation. Notably, in the AIBA initiator system, the initial
particle number was much smaller than that of the KPS system. This might be attributed to the in situ
charge neutralization. The polymer initiated AIBA possessed cationic chain ends, which shielded
the anionic charge of surfactant molecules SDS adsorbed on the particle surface. As a result, particle
coagulation occurred in the early polymerization period. Even though particle coagulation occurred
in particle nucleation period, the slight increase in particle number was also observed in this period
(Figure 7c). The increase in particle number might be attributed to the new particle formed in aqueous
phase. The particle number would increase when the rate of particle formed in aqueous phase is
larger than the rate of particle coagulation [30,32]. As the polymerization reaction was carried out, the
particle number gradually attained a constant value because a balance between particle nucleation
and coagulation was obtained. The earlier the particle coagulation, the narrower the particle size
distribution of ultimate latex particles. The curves of particle number vs. monomer conversion confirm
that the time of particle coagulation could affect the polydispersity of the final latex particles because
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of the competitive growth mechanism [53]. If the particle coagulation occurred in the early nucleation
period, the latex particles were completely swollen by styrene monomer because of the presence of
monomer droplets. Thus, the particles were practically soft, leading to the primary coagulation of latex
particles easily merging into the larger one [25]. The process of particle coagulation was controlled by
the kinetic factors such as the particle collision. In the next particle growth period, the larger particle
size had a smaller ratio of surface and volume and, furthermore, had a relatively slow rate of capturing
monomer radicals, resulting in a much slower growth rate of larger particles than the smaller ones [6].
As a result, the narrowly dispersed latex particles were obtained in the presence of particle coagulation.

From the thermodynamic view, the initiator systems also affect the electrostatic force among
the particles themselves. For instance, the cationic AIBA initiator systems decomposed into initiator
radicals, and the initiator radicals reacted with styrene monomer dissolved in aqueous media and
formed the monomer radicals with cationic initiator ends. These monomer radicals were captured
by the swollen micelles formed by SDS molecules, and further shielded the negative charge of the
surfactant SDS molecules adsorbed on the particle surface, and decreased the electrostatic repulsion
among the particle themselves. As a result, in situ charge neutralization process occurred, further
increasing the extent of the particle coagulation, and promoting particle coagulation that occurred in
the early nucleation period.

5. Conclusions

In conclusion, we demonstrated the effect of initiator systems on the particle coagulation and
particle size distribution of ultimate latex particles. The change in the initiator systems not only affects
the extent of the particle coagulation, but also determines the time of particle coagulation. In the anionic
KPS system, with the increase in the initiator concentration, the extent of particle coagulation was
enhanced, resulting in obtaining larger size and narrowly dispersed latex particles. The cationic AIBA
initiator played a significant role in determining the time of particle coagulation. The positive charges
derived from AIBA chain ends shield the negative charge of surfactant SDS molecules adsorbed on
the particle surface, leading to in situ charge neutralization, further enhancing the extent of particle
coagulation and advancing the time of particle coagulation. The kinetics of oil-soluble AIBN systems
seems similar to that of a conventional polymerization because of the deactivation of the oil-soluble
initiator. Thus, combined with our previous reports on the particle coagulation, a systematic method
for controlling the particle size distribution in the presence of particle coagulation was achieved.
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